Skip to main content

Chloroplast Proteins and Virus Interplay: A Pathfinder to Crop Improvement

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

Plant viruses always posed extensive losses to crop production. Thus, it is of utmost importance to plant virologists and biologists to accurately identify culprit host plant proteins which participate in plant-virus interactions. Advancements in molecular virology and plant biotechnology have led to many major breakthroughs in past years enabling recognition of innumerable host factors of virus-plant interactions. Interestingly majority of these host factors are chloroplast and photosynthesis related proteins. Hence chloroplast-virus interaction is an epicentre of plant-virus interplays, and its study could help to understand mechanisms of virus infection, spread, symptom development and host resistance. Advanced proteomic tools have empowered the development of sensitive and effective methods to detect host and viral proteins of interplays. Thus, precise information on chloroplast-virus interaction could be used to develop finer disease control strategies and genetically engineered plants with better photosynthetic efficiency and yields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbink, T. E., Peart, J. R., Mos, T. N., Baulcombe, D. C., Bol, J. F., & Linthorst, H. J. (2002). Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology, 295, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Ahlquist, P. (2002). RNA-dependent RNA polymerases, viruses, and RNA silencing. Science, 296(5571), 1270–1273.

    Article  CAS  PubMed  Google Scholar 

  • Alazem, M., & Lin, N. S. (2015). Roles of plant hormones in the regulation of host-virus interactions. Molecular Plant Pathology, 16(5), 529–540.

    Google Scholar 

  • Allen, T. C. (1972). Subcellular responses of mesophyll cells to wild Cucumber mosaic virus. Virology, 47, 467–474.

    Article  CAS  PubMed  Google Scholar 

  • Almási, A., Harsányi, A., & Gáborjányi, R. (2001). Photosynthetic alterations of virus infected plants. Acta Phytopathologica et Entomologica Hungarica, 36, 15–29.

    Article  Google Scholar 

  • Angel, C. A., Lutz, L., Yang, X., Rodriguez, A., Adair, A., Zhang, Y., Leisner, S. M., Nelson, R. S., & Schoelz, J. E. (2013). The P6 protein of cauliflower mosaic virus interacts with CHUP1, a plant protein which moves chloroplasts on actin filaments. Virology, 443, 363–374.

    Article  CAS  PubMed  Google Scholar 

  • Appiano, A., Pennazio, S., & Redolfi, P. (1978). Cytological alterations in tissues of Gomphrena globosa plants systemically infected with tomato bushy stunt virus. Journal of General Virology, 40, 277–286.

    Article  Google Scholar 

  • Arnott, H. J., Rosso, S. W., & Smith, K. M. (1969). Modification of plastid ultrastructure in tomato leaf cells infected with tobacco mosaic virus. Journal of Ultrastructure Research, 27, 149–167.

    Article  PubMed  Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163.

    Article  CAS  Google Scholar 

  • Babu, M., Griffiths, J. S., Huang, T. S., & Wang, A. (2008). Altered gene expression changes in Arabidopsis leaf tissues and protoplasts in response to Plum pox virus infection. BMCGenomics, 9, 325.

    Google Scholar 

  • Balasubramaniam, M., Kim, B. S., Hutchens-Williams, H. M., & Loesch-Fries, L. S. (2014). The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of alfalfa mosaic virus and inhibits virus replication. Molecular Plant-Microbe Interactions, 27, 1107–1118.

    Article  CAS  PubMed  Google Scholar 

  • Bassi, M., Appiano, A., Barbieri, N., & D’Agostino, G. (1985). Chloroplast alterations induced by tomato bushy stunt virus in Datura leaves. Protoplasma, 126, 233–235.

    Article  Google Scholar 

  • Betto, E., Bassi, M., Favali, M. A., & Conti, G. G. (1972). An electron microscopic and autoradiographic study of tobacco leaves infected with the U5 strain of tobacco mosaic virus. Journal of Phytopathology, 75, 193–201.

    Article  Google Scholar 

  • Bhat, S., Folimonova, S. Y., Cole, A. B., Ballard, K. D., Lei, Z., Watson, B. S., Sumner, L. W., & Nelson, R. S. (2013). Influence of host chloroplast proteins on Tobacco mosaic virus accumulation and intercellular movement. Plant Physiology, 161, 134–147.

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharjee, S. (2013). Role of genomic and proteomic tools in the study of host-virus interactions and virus evolution. Indian Journal of Virology, 24(3), 306–311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya, D., & Chakraborty, S. (2018). Chloroplast: The Trojan horse in plant-virus interaction. Molecular Plant Pathology, 19(2), 504–518.

    Article  PubMed  Google Scholar 

  • Bhattacharyya, D., Gnanasekaran, P., Kumar, R. K., Kushwaha, N. K., Sharma, V. K., Yusuf, M. A., & Chakraborty, S. (2015). A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. Journal of Experimental Botany, 66(19), 5881–5895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bobik, K., & Burch-Smith, T. M. (2015). Chloroplast signaling within, between and beyond cells. Frontiers in Plant Science, 6, 307.

    Article  Google Scholar 

  • Brizard, J. P., Carapito, C., Delalande, F., Van Dorsselaer, A., & Brugidou, C. (2006). Proteome analysis of plant-virus interactome: Comprehensive data for virus multiplication inside their hosts. Molecular & Cellular Proteomics, 5(12), 2279–2297.

    Article  CAS  Google Scholar 

  • Cantú, M. D., Mariano, A. G., Palma, M. S., Carrilho, E., & Wulff, N. A. (2008). Proteomic analysis reveals suppression of bark chitinases and proteinase inhibitors in citrus plants affected by the citrus sudden death disease. Phytopathology, 98(10), 1084–1092.

    Article  CAS  PubMed  Google Scholar 

  • Caplan, J. L., Mamillapalli, P., Burch-Smith, T. M., Czymmek, K., & Dinesh-Kumar, S. P. (2008). Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell, 132, 449–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll, T. W. (1970). Relation of barley stripe mosaic virus to plastids. Virology, 42, 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  • Casado-Vela, J., Sellés, S., & Martínez, R. B. (2006). Proteomic analysis of tobacco mosaic virus-infected tomato (Lycopersicon esculentum M.) fruits and detection of viral coat protein. Proteomics, 6(Suppl1), S196–S206.

    Article  PubMed  Google Scholar 

  • Chavez, J. D., Cilia, M., Weisbrod, C. R., Ju, H.-J., Eng, J. K., Gray, S. M., & Bruce, J. E. (2012). Cross-linking measurements of the Potato leafroll virus reveal protein interaction topologies required for virion stability, aphid transmission and virus-plant interactions. Journal of Proteome Research, 11(5), 2968–2981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng, Y. Q., Liu, Z. M., Xu, J., Zhou, T., Wang, M., Chen, Y. T., Li, H. F., & Fan, Z. F. (2008). HC-Pro protein of sugar cane mosaic virus interacts specifically with maize ferredoxin-5 in vitro and in planta. Journal of General Virology, 89, 2046–2054.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, S. F., Huang, Y. P., Chen, L. H., Hsu, Y. H., & Tsai, C. H. (2013). Chloroplast phosphoglycerate kinase is involved in the targeting of bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiology, 163, 1598–1608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, W. K., Lian, S., Kim, S. M., Seo, B. Y., Jung, J. K., & Kim, K. H. (2015). Time-course RNA-Seq analysis reveals transcriptional changes in Rice plants triggered by Rice stripe virus infection. PLoS One, 10(8), e0136736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, C. W. (1996). Cytological modification of sorghum leaf tissues showing the early acute response to maize dwarf mosaic virus. Journal of Plant Biology, 39, 215–221.

    Google Scholar 

  • Chowdhury, S. R., & Savithri, H. S. (2011). Interaction of Sesbania mosaic virus movement protein with the coat protein-implications for viral spread. FEBS Journal, 278, 257–272.

    Article  CAS  PubMed  Google Scholar 

  • Citovsky, V., Knorr, D., Schuster, G., & Zambryski, P. (1990). The P30 movement protein of tobacco mosaic virus is a single-strand nucleic acid binding protein. Cell, 60, 637–647.

    Article  CAS  PubMed  Google Scholar 

  • Clemente-Moreno, M. J., Díaz-Vivancos, P., Rubio, M., Fernández-García, N., & Hernández, J. A. (2013). Chloroplast protection in plum pox virus-infected peach plants by L-2-oxo-4-thiazolidine-carboxylic acid treatments: Effect in the proteome. Plant Cell and Environment, 36, 640–654.

    Article  CAS  Google Scholar 

  • Cowan, G. H., Roberts, A. G., Chapman, S. N., Ziegler, A., Savenkov, E. I., & Torrance, L. (2012). The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. Frontiers in Plant Science, 3, 290.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dardick, C. (2007). Comparative expression profiling of Nicotiana benthamiana leaves systemically infected with three fruit tree viruses. Molecular Plant Microbe Interactions, 20, 1004–1017.

    Article  CAS  PubMed  Google Scholar 

  • De Stradis, A., Redinbaugh, M., Abt, J., & Martelli, G. (2005). Ultrastructure of maize necrotic streak virus infections. Journal of Plant Pathology, 87, 213–221.

    Google Scholar 

  • Di Carli, M., Villani, M. E., Bianco, L., Lombardi, R., Perrotta, G., Benvenuto, E., & Donini, M. (2010). Proteomic analysis of the plant−virus interaction in cucumber mosaic virus (CMV) resistant transgenic tomato. Journal of Proteome Research, 9(11), 5684–5697.

    Article  CAS  PubMed  Google Scholar 

  • Di Carli, M., Benvenuto, E., & Donini, M. (2012). Recent insights into plant-virus interactions through proteomic analysis. Journal of Proteome Research, 11, 4765–4780.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Vivancos, P., Rubio, M., Mesonero, V., Periago, P. M., Barceló, A. R., Martínez-Gómez, P., & Hernández, J. A. (2006). Apoplastic antioxidant system in Prunus: Response to long-term plum pox virus infection. Journal of Experimental Botany, 57(14), 3813–3824.

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Vivancos, P., Clemente-Moreno, M. J., Rubio, M., Olmos, E., García, J. A., Martínez-Gómez, P., & Hernández, J. A. (2008). Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus. Journal of Experimental Botany, 59(8), 2147–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, B., Haudenshield, J. S., Hull, R. J., Wolf, S., Beachy, R. N., & Lucas, W. J. (1992). Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell, 4, 915–928.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dufresne, P. J., Thivierge, K., Cotton, S., Beauchemin, C., Ide, C., Ubalijoro, E., Laliberté, J. F., & Fortin, M. G. (2008). Heat shock 70 protein interaction with Turnip mosaic virus RNA-dependent RNA polymerase within virus-induced membrane vesicles. Virology, 374(1), 217–227.

    Article  CAS  PubMed  Google Scholar 

  • El Fattah, A. A., El-Din, H. A. N., Abodoah, A., & Sadik, A. (2005). Occurrence of two sugarcane mosaic potyvirus strains in sugarcane. Pakistan Journal of Biotechnology, 2, 1–12.

    Google Scholar 

  • Elvira, M. I., Galdeano, M. M., Gilardi, P., García-Luque, I., & Serra, M. T. (2008). Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. Journal of Experimental Botany, 59(6), 1253–1265.

    Article  CAS  PubMed  Google Scholar 

  • Falcioni, T., Ferrio, J. P., del Cueto, A. I., Giné, J., Achón, M. Á., & Medina, V. (2014). Effect of salicylic acid treatment on tomato plant physiology and tolerance to potato virus X infection. European Journal of Plant Pathology, 138, 331–345.

    Article  CAS  Google Scholar 

  • Feki, S., Loukili, M. J., Triki-Marrakchi, R., Karimova, G., Old, I., Ounouna, H., Nato, A., Nato, F., Guesdon, J. L., Lafaye, P., & Elgaaied, A. B. A. (2005). Interaction between tobacco ribulose-1,5-biphosphate carboxylase/oxygenase large subunit (RubisCO-LSU) and the PVY coat protein (PVY-CP). European Journal of Plant Pathology, 112, 221–234.

    Article  CAS  Google Scholar 

  • Fujiwara, T., Giesman-Cookmeyer, D., Ding, B., Lommel, S. A., & Lucas, W. J. (1993). Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell, 5, 1783–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaddam, S. A., Kotakadi, V. S., Reddy, M. N., & Saigopal, D. V. R. (2012). Antigenic relationships of citrus yellow mosaic virus by immunological methods. Asian Journal of Plant Science and Research, 2, 566–569.

    Google Scholar 

  • Ganusova, E. E., Rice, J. H., Carlew, T. S., Patel, A., Perrodin-Njoku, E., Hewezi, T., & Burch-Smith, T. M. (2017). Altered expression of a chloroplast protein affects the outcome of virus and nematode infection. Molecular Plant Microbe Interactions, 30, 478–488.

    Article  CAS  PubMed  Google Scholar 

  • García-Marcos, A., Pacheco, R., Manzano, A., Aguilar, E., & Tenllado, F. (2013). Oxylipin biosynthesis genes positively regulate programmed cell death during compatible infections with the synergistic pair potato virus X-potato virus Y and tomato spotted wilt virus. Journal of Virology, 87, 5769–5783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garg, I., & Hegde, V. (2000). Biological characterization, preservation and ultrastructural studies of Andean strain of potato virus S. Indian Phytopathology, 53, 256–260.

    Google Scholar 

  • Gerola, F., & Bassi, M. (1966). An electron microscopy study of leaf vein tumours from maize plants experimentally infected with maize rough dwarf virus. Caryologia, 19, 13–40.

    Article  Google Scholar 

  • Gerold, G., Bruening, J., & Pietschmann, T. (2016). Decoding protein networks during virus entry by quantitative proteomics. Virus Research, 218, 25–39.

    Article  CAS  PubMed  Google Scholar 

  • Giribaldi, M., Purrotti, M., Pacifico, D., Santini, D., Mannini, F., Caciagli, P., Rolle, L., Cavallarin, L., Giuffrida, M. G., & Marzachì, C. (2011). A multidisciplinary study on the effects of phloem-limited viruses on the agronomical performance and berry quality of Vitis vinifera cv. Nebbiolo. Journal of Proteomics, 75(1), 306–315.

    Article  CAS  PubMed  Google Scholar 

  • Gröning, B. R., Abouzid, A., & Jeske, H. (1987). Single-stranded DNA from abutilon mosaic virus is present in the plastids of infected Abutilon sellovianum. Proceedings of the National Academy of Sciences U. S. A, 84, 8996–9000.

    Article  Google Scholar 

  • Gruhler, A., Olsen, J. V., Mohammed, S., Mortensen, P., Faergeman, N. J., Mann, M., & Jensen, O. N. (2005). Quantitative phosphoproteomics applied to the yeast pheromone signalling pathway. Molecular & Cellular Proteomics, 4(2005), 310–327.

    Article  CAS  Google Scholar 

  • Gudleski-O’Regan, N., Greco, T. M., Cristea, I. M., & Shenk, T. (2012). Increased expression of LDL receptor-related protein 1 during human cytomegalovirus infection reduces virion cholesterol and infectivity. Cell Host & Microbe, 12, 86–96.

    Article  CAS  Google Scholar 

  • Guo, X., Zhu, X., Zhang, J., & Guo, Y. (2004). Changes of cell ultrastructure of maize leaves infected by maize dwarf mosaic virus. Scientia Agricultura Sinica, 37, 72–75.

    Google Scholar 

  • Haagmans, B. L., Andeweg, A. C., & Osterhaus, A. D. M. E. (2009). The application of genomics to emerging zoonotic viral diseases. PLoS Pathogens, 5, e1000557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harries, P. A., Palanichelvam, K., Yu, W., Schoelz, J. E., & Nelson, R. S. (2009). The cauliflower mosaic virus protein P6 forms motile inclusions that traffic along actin microfilaments and stabilize microtubules. Plant Physiology, 149, 1005–1016.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hatta, T., & Matthews, R. E. F. (1974). The sequence of early cytological changes in Chinese cabbage leaf cells following systemic infection with turnip yellow mosaic virus. Virology, 59, 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Hernández, J. A., Díaz-Vivancos, P., Rubio, M., Olmos, E., Ros-Barceló, A., & Martínez-Gómez, P. (2006). Long-term plum pox virus infection produces an oxidative stress in a susceptible apricot, Prunus armeniaca, cultivar but not in a resistant cultivar. Plant Physiology, 126, 140–152.

    Article  CAS  Google Scholar 

  • Hohn, T., Fütterer, J., & Hull, R. (1997). The proteins and functions of plant pararetroviruses: Knowns and unknowns. Critical Reviewsin Plant Sciences, 16, 133–161.

    Article  CAS  Google Scholar 

  • Holmes, F. O. (1931). Local lesions of mosaic in Nicotiana tabacum L. Contrib Boyce Thompson Inst, 3, 163–172.

    Google Scholar 

  • Holmes, E. C. (2007). Viral evolution in the genomic age. PLoS Biology, 5(10), e278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horner, S. M., Wilkins, C., Badil, S., Iskarpatyoti, J., & Gale, M., Jr. (2015). Proteomic analysis of mitochondrion-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking. PLoSOne, 10, e0117963.

    Article  CAS  Google Scholar 

  • Huh, S. U., Kim, M. J., Ham, B. K., & Paek, K. H. (2011). A zinc finger protein Tsip1 controls cucumber mosaic virus infection by interacting with the replication complex on vacuolar membranes of the tobacco plant. New Phytologist, 191, 746–762.

    Article  CAS  PubMed  Google Scholar 

  • Jakubiec, A., Notaise, J., Tournier, V., Hericourt, F., Block, M. A., Drugeon, G., van Aelst, L., & Jupin, I. (2004). Assembly of turnip yellow mosaic virus replication complexes: Interaction between the proteinase and polymerase domains of the replication proteins. Journal of Virology, 78(15), 7945–7957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang, C., Seo, E. Y., Nam, J., Bae, H., Gim, Y. G., Kim, H. G., Cho, I. S., Lee, Z. W., Bauchan, G. R., Hammond, J., & Lin, H. S. (2013). Insights into alternanthera mosaic virus TGB3 functions: Interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 over-expression. Frontier in Plant Science, 4, 5.

    Google Scholar 

  • Jean Beltran, P. M., Mathias, R. A., & Cristea, I. M. (2016). A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Systems, 3, 361–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jean Beltran, P. M., Cook, K. C., & Cristea, I. M. (2017). Exploring and exploiting proteome organization during viral infection. Journal of Virology, 91(18), e00268–e00217.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jimenez, I., Lopez, L., Alamillo, J. M., Valli, A., & Garcia, J. A. (2006). Identification of a plum pox virus CI-interacting protein from chloroplast that has a negative effect in virus infection. Molecular Plant-Microbe Interactions, 19, 350–358.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Y., Ma, D., Dong, J., Li, D., Deng, C., Jin, J., & Wang, T. (2007). The HC-pro protein of potatovirus Y interacts with NtMinD of tobacco. Molecular Plant-Microbe Interactions, 20, 1505–1511.

    Article  CAS  PubMed  Google Scholar 

  • Jin, X., Jiang, Z., Zhang, K., Wang, P., Cao, X., Yue, N., Wang, X., Zhang, X., Li, Y., Li, D., Kang, B. H., & Zhang, Y. (2018). Three-dimensional analysis of chloroplast structures associated with virus infection. Plant Physiology, 176, 1–13.

    Article  CAS  Google Scholar 

  • Kaido, M., Abe, K., Mine, A., Hyodo, K., Taniguchi, T., Taniguchi, H., Mise, K., & Okuno, T. (2014). Gapdh-A recruits a plant virus movement protein to cortical virus replication complexes to facilitate viral cell-to-cell movement. PLoS Pathogens, 10, e1004505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima, E., & Costa, A. (1973). Aggregates of chloroplasts in local lesions induced in Chenopodium quinoa wild by turnip mosaic virus. Journal of General Virology, 20, 413–416.

    Article  Google Scholar 

  • Kleffmann, T., Russenberger, D., von Zychlinski, A., Christopher, W., Sjolander, K., Gruissem, W., & Baginsky, S. (2004). The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Current Biology, 14, 354–362.

    Article  CAS  PubMed  Google Scholar 

  • Kong, L., Wu, J., Lu, L., Xu, Y., & Zhou, X. (2014). Interaction between rice stripe virus disease-specific protein and host PsbP enhances virus symptoms. Molecular Plant, 7, 691–708.

    Article  CAS  PubMed  Google Scholar 

  • Kozar, F. E., & Sheludko, Y. M. (1969). Ultrastructure of potato and Datura stramonium plant cells infected with Potato virus X. Virology, 38, 220–229.

    Article  CAS  PubMed  Google Scholar 

  • Kozuleva, M., Klenina, I., Proskuryakov, I., Kirilyuk, I., & Ivanov, B. (2011). Production of superoxide in chloroplast thylakoid membranes. FEBS Letters, 585, 1067–1071.

    Article  CAS  PubMed  Google Scholar 

  • Krenz, B., Windeisen, V., Wege, C., Jeske, H., & Kleinow, T. (2010). A plastid-targeted heat shock cognate 70kDa protein interacts with the abutilon mosaic virus movement protein. Virology, 401, 6–17.

    Article  CAS  PubMed  Google Scholar 

  • Krenz, B., Jeske, H., & Kleinow, T. (2012). The induction of stromule formation by a plant DNA-virus in epidermal leaf tissues suggests a novel intra- and intercellular macromolecular trafficking route. Frontiers in Plant Science, 3(29), 1–12.

    Google Scholar 

  • Kumar, A., Kumar, J., Khan, Z. A., Yadav, N., Sinha, V., Bhatnagar, D., & Khan, J. A. (2010). Study of betasatellite molecule from leaf curl disease of sunn hemp (Crotalaria juncea) in India. Virus Genes, 41, 432–440.

    Article  CAS  PubMed  Google Scholar 

  • Kundu, S., Chakraborty, D., & Pal, A. (2011). Proteomic analysis of salicylic acid induced resistance to Mungbean Yellow Mosaic India Virus in Vigna mungo. Journal of Proteomics, 74(3), 337–349.

    Article  CAS  PubMed  Google Scholar 

  • Larson, R. L., Wintermantel, W. M., Hill, A., Fortis, L., & Nunez, A. (2008). Proteome changes in sugar beet in response to Beet necrotic yellow vein virus. Physiological and Molecular Plant Pathology, 72(1–3), 62–72.

    Article  CAS  Google Scholar 

  • Lee, B. J., Kwon, S. J., Kim, S. K., Kim, K. J., Park, C. J., Kim, Y. J., Park, O. K., & Paek, K. H. (2006). Functional study of hot pepper 26S proteasome subunit RPN7 induced by Tobacco mosaic virus from nuclear proteome analysis. Biochemical and Biophysical Research Communications, 351(2), 405–411.

    Article  CAS  PubMed  Google Scholar 

  • Lehto, K., Tikkanen, M., Hiriart, J. B., Paakkarinen, V., & Aro, E. M. (2003). Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Molecular Plant-Microbe Interactions, 16, 1135–1144.

    Article  CAS  PubMed  Google Scholar 

  • Lei, R., Du, Z., Kong, J., Li, G., He, Y., Qiu, Y., Yan, J., & Zhu, S. (2018). Blue native/SDS-PAGE and iTRAQ-based chloroplasts proteomics analysis of Nicotianatabacum leaves infected with M Strain of Cucumber Mosaic Virus reveals several proteins involved in chlorosis symptoms. Proteomics, 18(2). https://doi.org/10.1002/pmic.201700359.

  • Li, Y., Wu, M. Y., Song, H. H., Hu, X., & Qiu, B. S. (2005). Identification of a tobacco protein interacting with tomato mosaic virus coat protein and facilitating long-distance movement of virus. Archives of Virology, 150, 1993–2008.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y. H., Hong, J., Xue, L., Yang, Y., Zhou, X. P., & Jiang, D. A. (2006). Effects of broad bean wilt virus 2 isolate infection on photosynthetic activities and chloroplast ultrastructure in broad bean leaves. Acta Phytophysiologica Sinica, 4, 490–496.

    Google Scholar 

  • Li, Z., Barajas, D., Panavas, T., Herbst, D. A., & Nagy, P. D. (2008). Cdc34p ubiquitin-conjugating enzyme is a component of the tombusvirus replicase complex and ubiquitinates p33 replication protein. Journal of Virology, 82(14), 6911–6926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Pogany, J., Panavas, T., Xu, K., Esposito, A. M., Kinzy, T. G., & Nagy, P. D. (2009). Translation elongation factor 1A is a component of the tombusvirus replicase complex and affects the stability of the p33 replication co-factor. Virology, 385(1), 245–260.

    Article  CAS  PubMed  Google Scholar 

  • Li, K., Xu, C., & Zhang, J. (2011). Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection. Gene, 485(2), 106–113.

    Article  CAS  PubMed  Google Scholar 

  • Lim, H. S., Vaira, A. M., Bae, H., Bragg, J. N., Ruzin, S. E., Bauchan, G. R., Dienelt, M. M., Owens, R. A., & Hammond, J. (2010). Mutation of a chloroplast-targeting signal in Alternanthera mosaic virus TGB3 impairs cell-to-cell movement and eliminates long-distance virus movement. Journal of General Virology, 91, 2102–2115.

    Article  CAS  PubMed  Google Scholar 

  • Lisal, J., Lam, T. T., Kainov, D. E., Emmett, M. R., Marshall, A. G., & Tuma, R. (2005). Functional visualization of viral molecular motor by hydrogen-deuterium exchange reveals transient states. Nature Structural & Molecular Biology, 12, 460–466.

    Article  CAS  Google Scholar 

  • Liu, K. C., & Boyle, J. S. (1972). Intracellular morphology of two tobacco mosaic virus strains in, and cytological responses of, systemically susceptible potato plants. Phytopathology, 62, 1303–1311.

    Article  Google Scholar 

  • Liu, L., Chung, H., Lacatus, G., Baliji, S., Ruan, J., & Sunter, G. (2014). Altered expression of 829 Arabidopsis genes in response to a multifunctional geminivirus pathogenicity protein. BMC Plant Biology, 14, 302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W., Gray, S., Huo, Y., Li, L., Wei, T., & Wang, X. (2015). Proteomic analysis of interaction between a plant virus and its vector insect reveals new functions of hemipteran cuticular protein. Molecular & Cellular Proteomics, 14, 2229–2242.

    Article  CAS  Google Scholar 

  • Ma, Y., Zhou, T., Hong, Y., Fan, Z., & Li, H. (2008). Decreased level of ferredoxin I in tobacco mosaic virus-infected tobacco is associated with development of the mosaic symptom. Physiological and Molecular Plant Pathology, 72, 39–45.

    Article  CAS  Google Scholar 

  • Mahgoub, H. A., Wipf-Scheibel, C., Delécolle, B., Pitrat, M., Dafalla, G., & Lecoq, H. (1997). Melon rugose mosaic virus: Characterization of an isolate from Sudan and seed transmission in melon. Plant Disease, 81, 656–660.

    Article  PubMed  Google Scholar 

  • Malter, D., & Wolf, S. (2011). Melon phloem-sap proteome: Developmental control and response to viral infection. Protoplasma, 248(1), 217–224.

    Article  CAS  PubMed  Google Scholar 

  • Martelli, G. P., & Russo, M. (1973). Electron microscopy of artichoke mottled crinkle virus in leaves of Chenopodium quinoa Wild. Journal of Ultrastructure Research, 42, 93–107.

    Article  CAS  PubMed  Google Scholar 

  • Maxwell, K. L., & Frappier, L. (2007). Viral proteomics. Microbiology and Molecular Biology Reviews, 71(2), 398–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazidah, M., Lau, W. H., Yusoff, K., Habibuddin, H., & Tan, Y. H. (2012). Ultrastructural features of Catharanthus roseus leaves infected with cucumber mosaic virus. Pertanika Journal of Tropical Agricultural Science, 35, 85–92.

    Google Scholar 

  • McHardy, A. C., & Adams, B. (2009). The role of genomics in tracking the evolution of influenza a virus. PLoS Pathogens, 5(10), e1000566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen, C., Gardner, W., & Myers, G. (1978). Aberrant plastids in barley leaf tissue infected with barley stripe mosaic virus. Phytopathology, 68, 317–325.

    Article  Google Scholar 

  • Mel’nichuk, M. D., Kozhukalo, V. E., D’Iachkova, O. A., Sytnik, S. K., Alekseenko, I. P., & Smirnova, S. A. (2002). Effect of tobacco mosaic virus on the ultrastructure of leaf mesophyll cells of the pepper Capsicuum anuum L. Mikrobiolohichnyĭ Zhurnal, 64, 35–40.

    PubMed  Google Scholar 

  • Mochizuki, T., & Ohki, S. T. (2011). Single amino acid substitutions at residue 129 in the coat protein of cucumber mosaic virus affect symptom expression and thylakoid structure. Archivesof Virology, 156, 881–886.

    Article  CAS  Google Scholar 

  • Mochizuki, T., Yamazaki, R., Wada, T., & Ohki, S. T. (2014a). Coat protein mutations in an attenuated cucumber mosaic virus encoding mutant 2b protein that lacks RNA silencing suppressor activity induces chlorosis with photosynthesis gene repression and chloroplast abnormalities in infected tobacco plants. Virology, 456–457, 292–299.

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki, T., Ogata, Y., Hirata, Y., & Ohki, S. T. (2014b). Quantitative transcriptional changes associated with chlorosis severity in mosaic leaves of tobacco plants infected with Cucumber mosaic virus. Molecular Plant Pathology, 15, 242–254.

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, N. A. (1973). Some effects of systemic infection by tomato spotted wilt virus on chloroplasts of Nicotiana tabacum leaves. Physiological Plant Pathology, 3, 509–516.

    Article  CAS  Google Scholar 

  • Moline, H. E. (1973). Ultrastructure of Datura stramonium leaves infected with the physalis mottle strain of belladonna mottle virus. Virology, 56, 123–133.

    Article  CAS  PubMed  Google Scholar 

  • Montasser, M., & Al-Ajmy, A. (2015). Histopathology for the influence of CMV infection on tomato cellular structures. FASEB Journal, 29(Suppl), 887.

    Google Scholar 

  • Naderi, M., & Beger, P. H. (1997). Effects of chloroplast targeted Potato virus Y coat protein on transgenic plants. Physiological and Molecular Plant Pathology, 50(2), 67–83.

    Article  CAS  Google Scholar 

  • Nagy, P. D., & Pogany, J. (2012). The dependence of viral RNA replication on co-opted host factors. Nature Reviews Microbiology, 10, 137–149.

    Article  CAS  Google Scholar 

  • Nambara, E., & Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 56, 165–185.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, R. S., & Citovsky, V. (2005). Plant viruses. Invaders of cells and pirates of cellular pathways. Plant Physiology, 138, 1809–1814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi, J., Hirai, K., Kanda, A., Usugi, T., Meshi, T., & Tsuda, S. (2009). The coat protein of tomato mosaic virus L11Y is associated with virus-induced chlorosis on infected tobacco plants. Journal of General Plant Pathology, 75, 297–306.

    Article  CAS  Google Scholar 

  • Otulak, K., Chouda, M., Bujarski, J., & Garbaczewska, G. (2015). The evidence of tobacco rattle virus impact on host plant organelles ultrastructure. Micron, 70, 7–20.

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan, M. S., & Dinesh-Kumar, S. P. (2010). All hands on deck-the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. Molecular Plant-Microbe Interactions, 23, 1368–1380.

    Article  CAS  PubMed  Google Scholar 

  • Panavas, T., Hawkins, C. M., Panaviene, Z., & Nagy, P. D. (2005). The role of the p33:p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology, 338, 81–95.

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Bueno, M. L., Rahoutei, J., Sajnani, C., García-Luque, I., & Barón, M. (2004). Proteomic analysis of the oxygen-evolving complex of photosystem II under biotec stress: Studies on Nicotiana benthamiana infected with tobamoviruses. Proteomics, 4(2), 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Pineda, M., Sajnani, C., & Barón, M. (2010). Changes induced by the Pepper mild mottle tobamovirus on the chloroplast proteome of Nicotiana benthamiana. Photosynthesis Research, 103(1), 31–45.

    Article  CAS  PubMed  Google Scholar 

  • Pompe-Novak, M., Wrischer, M., & Ravnikar, M. (2001). Ultrastructure of chloroplasts in leaves of potato plants infected by potato virus YNTN. Phyton (Horn. Austria), 41, 215–226.

    Google Scholar 

  • Qiao, Y., Li, H. F., Wong, S. M., & Fan, Z. F. (2009). Plastocyanin transit peptide interacts with potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Molecular Plant Microbe Interactions, 22, 1523–1534.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, Y., Zhang, Y., Wang, C., Lei, R., Wu, Y., Li, X., & Zhu, S. (2018). Cucumber mosaic virus coat protein induces the development of chlorotic symptoms through interacting with the chloroplast ferredoxin I protein. Scientific Reports, 8, 1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radwan, D. E. M., Lu, G., Fayez, K. A., & Mahmoud, S. Y. (2008). Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. Journal of Plant Physiology, 165, 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Rahoutei, J., García-Luque, I., & Barón, M. (2000). Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiologia Plantarum, 110(2), 286–292.

    Article  CAS  Google Scholar 

  • Reimann-Philipp, U., & Beachy, R. N. (1993). Coat protein-mediated resistance in transgenic tobacco expressing the tobacco mosaic virus coat protein from tissue-specific promoters. Molecular Plant-Microbe Interactions, 6, 323–330.

    Article  CAS  PubMed  Google Scholar 

  • Revers, F., Le Gall, O., Candresse, T., & Maule, A. J. (1999). New advances in understanding the molecular biology of plant/Potyvirus interactions. Molecular Plant Microbe Interactions, 12, 367–376.

    Article  CAS  Google Scholar 

  • Roberts, P. L., & Wood, K. R. (1982). Effects of a severe (P6) and a mild (W) strain of cucumber mosaic virus on tobacco leaf chlorophyll, starch and cell ultrastructure. Physiological Plant Pathology, 21, 31–37.

    Article  CAS  Google Scholar 

  • Rodrigo, G., Carrera, J., Ruiz-Ferrer, V., Del Toro, F. J., Llave, C., Voinnet, O., & Elena, S. F. A. (2012). Meta-analysis reveals the commonalities and differences in Arabidopsis thaliana response to different viral pathogens. PLoS One, 7, e40526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues, S. P., Ventura, J. A., Aguilar, C., Nakayasu, E. S., Almeida, I. C., Fernandes, P. M., & Zingali, R. B. (2011). Proteomic analysis of papaya (Carica papaya L.) displaying typical sticky disease symptoms. Proteomics, 11(13), 2592–2602.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues, S. P., Ventura, J. A., Aguilar, C., Nakayasu, E. S., Choi, H., Sobreira, T. J., Nohara, L. L., Wermelinger, L. S., Almeida, I. C., Zingali, R. B., & Fernandes, P. M. (2012). Label-free quantitative proteomics reveals differentially regulated proteins in the latex of sticky diseased Carica papaya L. plants. Journal of Proteomics, 75(11), 3191–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez, A., Angel, C. A., Lutz, L., Leisner, S. M., Nelson, R. S., & Schoelz, J. E. (2014). Association of the P6 protein of Cauliflower mosaic virus with plasmodesmata and plasmodesmal proteins. Plant Physiology, 166, 1–14.

    Article  CAS  Google Scholar 

  • Roossinck, M. J., Martin, D. P., & Roumagnac, P. (2015). Plant virus metagenomics: Advances in virus discovery. Phytopathology, 105, 716–727.

    Article  CAS  PubMed  Google Scholar 

  • Schnablová, R., Synková, H., & Čeřovská, N. (2005). The influence of potato virus Y infection on the ultrastructure of Pssuipt transgenic tobacco. International Journal of Plant Sciences, 166, 713–721.

    Article  Google Scholar 

  • Schoelz, J. E., & Leisner, S. (2017). Setting up shop: The formation and function of the viral factories of Cauliflower mosaic virus. Frontiers of Plant Science, 8, 1832.

    Article  Google Scholar 

  • Schuchalter-Eicke, G., & Jeske, H. (1983). Seasonal changes in the chloroplast ultrastructure in Abutilon mosaic virus (AbMV) infected Abutilon spec. (Malvaceae). Journal of Phytopathology, 108, 172–184.

    Article  Google Scholar 

  • Serrano, I., Audran, C., & Rivas, S. (2016). Chloroplasts at work during plant innate immunity. Journal of Experimental Botany, 67(13), 3845–3854.

    Article  CAS  PubMed  Google Scholar 

  • Seyfferth, C., & Tsuda, K. (2014). Salicylic acid signal transduction: The initiation of biosynthesis, perception and transcriptional reprogramming. Frontiers in Plant Science, 5, 697.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shalla, T. A. (1964). Assembly and aggregation of tobacco mosaic virus in tomato leaflets. Journal of Cell Biology, 21, 253–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi, Y., Chen, J., Hong, X., Chen, J., & Adams, M. J. (2007). A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Molecular Plant Pathology, 8, 785–790.

    Article  CAS  PubMed  Google Scholar 

  • Shimura, H., Pantaleo, V., Ishihara, T., Myojo, N., Inaba, J.-I., Sueda, K., Burgyan, J., & Masuta, C. (2011). A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathogens, 7, e1002021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shukla, D. D., Ward, C. W., & Brunt, A. A. (1994). The Potyviridae. Cambridge: CAB International, University Press.

    Google Scholar 

  • Smith, N. A., Eamens, A. L., & Wang, M. B. (2011). Viral small interfering RNAs target host genes to mediate disease symptoms in plants. PLoS Pathogens, 7, e1002022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stael, S., Kmiecik, P., Willems, P., Van Der Kelen, K., Coll, N. S., Teige, M., & Van Breusegem, F. (2015). Plant innate immunity-sunny side up? Trends in Plant Science, 20, 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Stobbe, A. H., & Roossinck, M. J. (2014). Plant virus metagenomics: What we know and why we need to know more. Frontiers of Plant Science, 5, 150.

    Article  Google Scholar 

  • Sun, X., Li, Y., Shi, M., Zhang, N., Wu, G., Li, T., Qing, L., & Zhou, C. (2013). In vitro binding and bimolecular fluorescence complementation assays suggest an interaction between tomato mosaic virus coat protein and tobacco chloroplast ferredoxin I. Archives of Virology, 158, 2611–2615.

    Article  CAS  PubMed  Google Scholar 

  • Thivierge, K., Cotton, S., Dufresne, P. J., Mathieu, I., Beauchemin, C., Ide, C., Fortin, M. G., & Laliberté, J. F. (2008). Eukaryotic elongation factor 1A interacts with Turnip mosaic virus RNA-dependent RNA polymerase and VPg-Pro in virus-induced vesicles. Virology, 377(1), 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, J. A., & Webb, M. J. W. (1978). Ultrastructural changes in chloroplasts of lettuce infected with beet western yellows virus. Physiological Plant Pathology, 12, 13–18.

    Article  Google Scholar 

  • Torrance, L., Cowan, G. H., Gillespie, T., Ziegler, A., & Lacomme, C. (2006). Barley stripe mosaic virus-encoded proteins triple-gene block 2 and γb localize to chloroplasts in virus-infected monocot and dicot plants, revealing hitherto-unknown roles in virus replication. Journal of General Virology, 87, 2403–2411.

    Article  CAS  PubMed  Google Scholar 

  • Torres, M. A., Jones, J. D. G., & Dangl, J. L. (2006). Reactive oxygen species signaling in response to pathogens. Plant Physiology, 141, 373–378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu, Y., Jin, Y., Ma, D., Li, H., Zhang, Z., Dong, J., & Wang, T. (2015). Interaction between PVY HC-Pro and the NtCF1β-subunit reduces the amount of chloroplast ATP synthase in virus-infected tobacco. Scientific Reports, 5, 15605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ushiyama, R., & Matthews, R. E. F. (1970). The significance of chloroplast abnormalities associated with infection by turnip yellow mosaic virus. Virology, 42, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Varjak, M., Saul, S., Arike, L., Lulla, A., Peil, L., & Merits, A. (2013). Magnetic fractionation and proteomic dissection of cellular organelles occupied by the late replication complexes of Semliki Forest virus. Journal of Virology, 87, 10295–10312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ventelon-Debout, M., Delalande, F., Brizard, J. P., Diemer, H., Van Dorsselaer, A., & Brugidou, C. (2004). Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics, 4(1), 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Visser, M., Cook, G., Burger, J. T., & Maree, H. J. (2017). In silico analysis of the grapefruit sRNAome, transcriptome and gene regulation in response to CTV-CDVd co-infection. Virology Journal, 14, 200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wasternack, C., & Hause, B. (2013). Jasmonates: Biosynthesis, perception, signal transduction and action in plant stress response, growth and development. An update to the 2007 review in Annals of Botany. Annals of Botany, 111, 1021–1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei, T., Huang, T.-S., McNeil, J., Laliberté, J.-F., Hong, J., Nelson, R. S., & Wang, A. (2010). Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. Journal of Virology, 84, 799–809.

    Article  CAS  PubMed  Google Scholar 

  • Wei, T., Zhang, C., Hou, X., Sanfaçon, H., & Wang, A. (2013). The SNARE protein Syp 71 is essential for Turnip Mosaic Virus infection by mediating fusion of virus-induced vesicles with chloroplasts. PLoS Pathogens, 9(5), e1003378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wildermuth, M. C., Dewdney, J., Wu, G., & Ausubel, F. M. (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature, 414, 562–565.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, L. A., Powell, P. A., Nelson, R. S., & Beachy, R. N. (1990). Local and systemic spread of tobacco mosaic virus in transgenic tobacco. Plant Cell, 2, 559–567.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf, S., Lucas, W. J., Deom, C. M., & Beachy, R. N. (1989). Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science, 246, 377–379.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L., Han, Z., Wang, S., Wang, X., Sun, A., Zu, X., & Chen, Y. (2013). Comparative proteomic analysis of the plant-virus interaction in resistant and susceptible ecotypes of maize infected with sugarcane mosaic virus. Journal of Proteomics, 26(89), 124–140.

    Google Scholar 

  • Xu, J., & Feng, M. (1998). Ultrastructural differences of RMV and TMV infected Nicotiana tabacum mesophyll cells for distinguishing virus strains. Acta Microbiologica Sinica, 38, 422–427.

    CAS  PubMed  Google Scholar 

  • Yadav, S., & Chhibbar, A. K. (2018). Plant virus interactions. In A. Singh & I. Singh (Eds.), Molecular aspects of plant-pathogen interaction (pp. 43–77). Singapore: Springer.

    Chapter  Google Scholar 

  • Yadav, N., & Khan, J. A. (2008). Identification of a potyvirus associated with mosaic disease of Narcissus sp. in India. Plant Pathology, 57, 394.

    Article  Google Scholar 

  • Yadav, N., & Khan, J. A. (2015). Molecular identification of a new strain Narcissus yellow stripe virus strain associated with severe mosaic disease of Narcissus from India. Indian Phytopathology, 68(4), 444–448.

    Google Scholar 

  • Yadav, N., & Khurana, S. M. P. (2016). Plant virus detection and diagnosis: Progress and challenges. In P. Shukla (Ed.), Frontier discoveries and innovations in interdisciplinary microbiology (pp. 97–132). New Delhi: Springer.

    Google Scholar 

  • Yadav, N., Khurana, S. M. P., & Yadav, D. K. (2015a). Plant secretomics: Unique initiatives. In D. Barh, M. S. Khan, & E. Davies (Eds.), Plant Omics: The Omics of plant science (pp. 358–384). New Delhi: Springer.

    Google Scholar 

  • Yadav, S., Yadav, D. K., Yadav, N., & Khurana, S. M. P. (2015b). Plant glycomics: Advances and applications. In D. Barh, M. S. Khan, & E. Davies (Eds.), Plant Omics: The Omics of plant science (pp. 299–329). New Delhi: Springer Publisher.

    Google Scholar 

  • Yadav, D. K., Yadav, N., Yadav, S., Haque, S., & Tuteja, N. (2016). An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Archives of Biochemistry and Biophysics, 612, 57–77.

    Article  CAS  PubMed  Google Scholar 

  • Yan, S. L., Lehrer, A. T., Hajirezaei, M. R., Springer, A., & Komor, E. (2008). Modulation of carbohydrate metabolism and chloroplast structure in sugarcane leaves which were infected by sugarcane yellow leaf virus (SCYLV). Physiological and Molecular Plant Pathology, 73, 78–87.

    Article  CAS  Google Scholar 

  • Yang, C., Guo, R., Jie, F., Nettleton, D., Peng, J., Carr, T., Yeakley, J. M., Fan, J. B., & Whitham, S. A. (2007). Spatial analysis of Arabidopsis thaliana gene expression in response to Turnip mosaic virus infection. Molecular Plant Microbe Interactions, 20, 358–370.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Qiang, X., Owsiany, K., Zhang, S., Thannhauser, T. W., & Li, L. J. (2011). Evaluation of different multidimensional LC-MS/MS pipelines for isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of potato tubers in response to cold storage. Journal of Proteome Research, 10(10), 4647–4660.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Zhang, F., Li, J., Chen, J.-P., & Zhang, H.-M. (2016). Integrative analysis of the micro RNAome and transcriptome illuminates the response of susceptible rice plants to Rice stripe virus. PLoS One, 11(1), e0146946.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarzyńska-Nowak, A., Jeżewska, M., Hasiów-Jaroszewska, B., & Zielińska, L. (2015). A comparison of ultrastructural changes of barley cells infected with mild and aggressive isolates of barley stripe mosaic virus. Journal of Plant Diseases and Protection, 122, 153–160.

    Article  Google Scholar 

  • Zechmann, B., Müller, M., & Zellnig, G. (2003). Cytological modifications in zucchini yellow mosaic virus (ZYMV)-infected Styrian pumpkin plants. Archives of Virology, 148, 1119–1133.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Liu, Y., Sun, X., Qian, W., Zhang, D., & Qiu, B. (2008). Characterization of a specific interaction between IP-L, a tobacco protein localized in the thylakoid membranes, and tomato mosaic virus coat protein. Biochemical and Biophysical Research Communications, 374, 253–257.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Liu, Q., Zhang, H., Jia, Q., Hong, Y., & Liu, Y. (2013). The RubisCO small subunit is involved in Tobamovirus movement and Tm-22-mediated extreme resistance. Plant Physiology, 161, 374–383.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, J., Zhang, X., Hong, Y., & Liu, Y. (2016a). Chloroplast in plant-virus interaction. Frontiers in Microbiology, 7, 1565.

    PubMed  PubMed Central  Google Scholar 

  • Zhao, W., Yang, P., Kang, L., & Cui, F. (2016b). Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants. New Phytologist, 210, 196–207.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, J., Tan, B. H., Sugrue, R., & Tang, K. (2012). Current approaches on viral infection: Proteomics and functional validations. Frontiers in Microbiology, 3(393), 1–14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, N., Yadav, D.K., Yadav, S., Khurana, S.M.P. (2019). Chloroplast Proteins and Virus Interplay: A Pathfinder to Crop Improvement. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_27

Download citation

Publish with us

Policies and ethics