Skip to main content

Genomic Intervention in Wheat Improvement

  • Chapter
  • First Online:
Plant Biotechnology: Progress in Genomic Era

Abstract

Common wheat is the second most important cereal crop after rice worldwide. Hexaploidy nature of wheat genome makes it the model crop for the study of allopolyploid genomes with highly repetitive sequences. Conventional approaches of genome sequencing proved to be very tedious and time consuming for allohexaploid wheat. Therefore, with the advancement in the latest next generation sequencing technologies led IWGC to precisely map the wheat genome (~17 Gb). This genome sequence opens new avenues for functional characterization of genes which is the need of the hour for devising new strategies for wheat improvement. Here, we discuss the genome sequencing technologies, functional and comparative genomics of wheat to bridge the gap between genotype and phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuna-Galindo, M. A., Mason, R. E., et al. (2015). Meta-analysis of wheat QTL regions associated with adaptation to drought and heat stress. Crop Science, 55, 477–492.

    Article  Google Scholar 

  • Avni, R., Nave, M., et al. (2017). Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science, 357, 93–97.

    Article  CAS  PubMed  Google Scholar 

  • Bevan, M. W., Uauy, C., Wulff, B. B., Zhou, J., Krasileva, K., & Clark, M. D. (2017). Genomic innovation for crop improvement. Nature, 543, 346–354.

    Article  CAS  PubMed  Google Scholar 

  • Bhowmik, P., Ellison, E., et al. (2018). Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Scientific Reports, 8(1), 6502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhusal, N., Sarial, A. K., Sharma, P., & Sareen, S. (2017). Mapping QTLs for grain yield components in wheat under heat stress. PLoS One, 12, e0189594.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boch, J., Scholze, H., et al. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science, 326, 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Breen, J., Wicker, T., Shatalina, M., et al. (2013). International wheat genome sequencing consortium. In E. Paux, T. Fahima, J. Dolezel, A. Korol, C. Feuillet, B. Keller (Eds.), A physical map of the short arm of wheat chromosome 1A. PLoS One, 8, e80272.

    Google Scholar 

  • Cavanagh, C. R., Chao, S., et al. (2013). Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. PNAS USA, 110, 8057–8062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chin, C. S., Peluso, P., Sedlazeck, F. J., et al. (2016). Phased diploid genome assembly with single-molecule real-time sequencing. Nature Methods, 13, 1050–1054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clavijo, B. J., Venturini, L., et al. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 27, 885–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong, L., Ran, F. A., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819–823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dalal, M., Sahu, S., et al. (2018). Transcriptome analysis reveals interplay between hormones, ROS metabolism and cell wall biosynthesis for drought-induced root growth in wheat. Plant Physiology & Biochemistry, 130, 482–492. https://doi.org/10.1016/j.plaphy.2018.07.035.

  • Devos, K.M., Atkinson, M.D., et al. (1992). RFLP-based genetic map of the homoeologous group 3 chromosomes of wheat and rye. Theoretical & Applied Genetics, 83, 931–939.

    Google Scholar 

  • Devos, K. M., & Gale, M. D. (2000). Genome relationships: The grass model in current research. The Plant Cell, 12(5), 637–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edae, E. A., Byrne, P. F., et al. (2014). Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theoretical and Applied Genetics, 127, 791–807.

    Article  CAS  PubMed  Google Scholar 

  • Feng, N., Song, G., et al. (2017). Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral patterning identified stage-specific regulatory genes. Plant Physiology, 174, 1779–1794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrarini, M., Moretto, M., et al. (2013). An evaluation of the PacBio RS platform for sequencing and De novo assembly of a chloroplast genome. BMC Genomics, 14, 670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feuillet, C., & Keller, B. (2002). Comparative genomics in the grass family: Molecular characterization of grass genome structure and evolution. Annals of Botany, 89(1), 3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feuillet, C., Travella, S., et al. (2003). Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proceedings of the National Academy of Sciences of the United States of America, 100, 15253–15258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, D., Uauy, C., et al. (2007). RNA interference for wheat functional gene analysis. Transgenic Research, 16, 689–701.

    Article  CAS  PubMed  Google Scholar 

  • Gahlaut, V., Mathur, S., et al. (2014). A multi-step phosphorelay two-component system impacts on tolerance against dehydration stress in common wheat. Functional & Integrative Genomics, 14, 707–716.

    Article  CAS  Google Scholar 

  • Gil-Humanes, J., Piston, F., et al. (2014). The shutdown of celiac disease-related gliadin epitopes in bread wheat by RNAi provides flours with increased stability and better tolerance to over-mixing. PLoS One, 9, e91931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta, P. K., Mir, R. R., et al. (2008). Wheat genomics: Present status and future prospects. International Journal of Plant Genomics, 2008, 1–36.

    Google Scholar 

  • Gupta, P. K., Balyan, H. S., et al. (2017). QTL analysis for drought tolerance in wheat: Present status and future possibilities. Agronomy, 7, 5. https://doi.org/10.3390/agronomy7010005.

    Article  CAS  Google Scholar 

  • Guyot, R., Yahiaoui, N., et al. (2004). In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Functional & Integrative Genomics, 4(1), 47–58.

    Article  CAS  Google Scholar 

  • Hasterok, R., Marasek, A., et al. (2006). Alignment of the genomes of Brachypodiumdistachyon and temperate cereals and grasses using bacterial artificial chromosome landing with fluorescence in situ hybridization. Genetics, 173(1), 349–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez, P., Martis, M., et al. (2012). Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content. The Plant Journal, 69, 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Huo, N., Gu, Y. Q., et al. (2006). Construction and characterization of two BAC libraries from Brachypodium distachyon, a new model for grass genomics. Genome, 49(9), 1099–1108.

    Article  CAS  PubMed  Google Scholar 

  • ICAR-Indian Institute of Wheat and Barley Research Vision 2050.

    Google Scholar 

  • International Wheat Genome Sequencing Consortium. (2014). A chromosome-based draft sequence of the hexaploidy bread wheat (Triticum aestivum) genome. Science, 345, 1251788.

    Article  CAS  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC). (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, 661.

    Article  CAS  Google Scholar 

  • Ishida, Y., Tsunashima, M., et al. (2014). Wheat (Triticum aestivum L.) transformation using immature embryos. In K. Wang (Ed.), Agrobacterium protocols (Methods in molecular biology) (pp. 189–198). New York: Springer.

    Google Scholar 

  • Isidore, E., Scherrer, B., et al. (2005). Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Research, 15(4), 526–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordan, K. W., Wang, S., et al. (2015). A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biology, 16, 48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krasileva, K. V., Vasquez-Gross, H. A., et al. (2017). Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences of the United States of America, 114, E913–E921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lieberman-Aiden, E., van Berkum, N. L., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcussen, T., Sandve, S. R., et al. (2014). International wheat genome sequencing consortium. In K. S. Jakobsen, B. B. Wulff, B. Steuernagel, K. F. Mayer, O. A. Olsen (Eds.), Ancient hybridizations among the ancestral genomes of bread wheat. Science, 345, 1250092.

    Google Scholar 

  • McCallum, C. M., Comai, L., et al. (2000). Targeted screening for induced mutations. Nature Biotechnology, 18, 455–457.

    Article  CAS  PubMed  Google Scholar 

  • Montenegro, J. D., Golicz, A. A., et al. (2017). The pangenome of hexaploid bread wheat. The Plant Journal, 90, 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  • Moscou, M. J., & Bogdanove, A. J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science, 326, 1501.

    Article  CAS  PubMed  Google Scholar 

  • Paux, E., Sourdille, P., et al. (2008). A physical map of the 1-gigabase bread wheat chromosome 3B. Science, 322, 101–104.

    Article  CAS  PubMed  Google Scholar 

  • Periyannan, S., Moore, J., et al. (2013). The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science, 341, 786–788.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer, M., Kugler, K. G., et al. (2014). International wheat genome sequencing consortium. In K. F. Mayer, & O. A. Olsen (Eds.), Genome interplay in the grain transcriptome of hexaploid bread wheat. Science, 345, 1250091.

    Google Scholar 

  • Poland, J. A., Brown, P. J., et al. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One, 7, e32253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasekh, M. E., Chiatante, G., et al. (2017). Discovery of large genomic inversions using long range information. BMC Genomics, 18, 65.

    Article  Google Scholar 

  • Richardson, T., Thistleton, J., et al. (2014). Efficient Agrobacterium transformation of elite wheat germplasm without selection. Plant Cell, Tissue and Organ Culture, 119, 647–659.

    Article  CAS  Google Scholar 

  • Shan, Q., Wang, Y., et al. (2014). Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9, 2395–2410.

    Article  CAS  PubMed  Google Scholar 

  • Singh, N. K., Raghuvanshi, S., et al. (2004). Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Functional and Integrative Genomics, 4(2), 102–117.

    Article  CAS  PubMed  Google Scholar 

  • Sorrells, M. E., La Rota, M., et al. (2003). Comparative DNA sequence analysis of wheat and rice genomes. Genome Research, 13(8), 1818–1827.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, N., Feuillet, C., et al. (2000). Subgenome chromosome walking in wheat: A 450- kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). PNAS USA, 97(24), 13436–13441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, L., Sun, G., Shi, C., & Sun, D. (2018). Transcriptome analysis reveals new microRNAs-mediated pathway involved in another development in male sterile wheat. BMC Genomics, 19(1), 333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tahmasebi, S., Heidari, B., Pakniyat, H., & McIntyre, C. L. (2017). Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.). Genome, 60, 26–45.

    Article  CAS  PubMed  Google Scholar 

  • Tanno, K., & Willcox, G. (2006). How fast was wild wheat domesticated? Science, 311, 1886.

    Article  CAS  PubMed  Google Scholar 

  • Till, B. J., Zerr, T., et al. (2006). A protocol for TILLING and ecotilling in plants and animals. Nature Protocols, 1, 2465–2477.

    Article  CAS  PubMed  Google Scholar 

  • Travella, S., Klimm, T. E., & Keller, B. (2006). RNA interference-based gene silencing as an efficient tool for functional genomics in hexaploid bread wheat. Plant Physiology, 142, 6–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uauy, C., Distelfeld, A., et al. (2006). A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314, 1298–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan, Y., Poole, R. L., et al. (2008). Transcriptome analysis of grain development in hexaploid wheat. BMC Genomics, 9, 121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, Z., Gerstein, M., & Snyder, M. (2009). M.RNA-Seq: A revolutionary tool for transcriptomics. Nature Reviews Genetics, 10, 57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. P., Cheng, X., et al. (2014). Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology, 32, 947–951.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Simmonds, J., et al. (2018). Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat. Theoretical and Applied Genetics, 131(11), 2463–2475. https://doi.org/10.1007/s00122-018-3166-3177.

    Article  CAS  PubMed  Google Scholar 

  • Wulff, B. B. H., & Moscou, M. J. (2014). Strategies for transferring resistance into wheat: From wide crosses to GM cassettes. Frontiers in Plant Science, 5, 1–11.

    Article  Google Scholar 

  • Yu, M., Chen, G., et al. (2014). QTL mapping for important agronomic traits in synthetic wheat derived from Agilopis tauschii ssp. tauschii. Journal International Agricultural, 13, 1835–1844.

    Google Scholar 

  • Zhao, Y., Zhang, C., et al. (2016). An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Scientific Reports, 6, 23890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong, Y., Wang, Y., et al. (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nature Biotechnology, 35, 438–440.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyanendra Pratap Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, O.P., Pandey, V., Gopalareddy, K., Sharma, P., Singh, G.P. (2019). Genomic Intervention in Wheat Improvement. In: Khurana, S., Gaur, R. (eds) Plant Biotechnology: Progress in Genomic Era. Springer, Singapore. https://doi.org/10.1007/978-981-13-8499-8_3

Download citation

Publish with us

Policies and ethics