Skip to main content

Molecular Mechanisms of Action and Resistance of Antimalarial Drugs

  • Chapter
  • First Online:
Bacterial Adaptation to Co-resistance

Abstract

Drug-resistance in plasmodium parasites is manifested at large scale, putting all the malaria control efforts in vain with an urgent need of complementary strategies. A deeper understanding of mechanism of action of drugs, drug resistance and cross-resistance between drugs will pave a way to design an effective individualized drug for malaria-affected regions. This chapter summarizes the molecular mechanism of all currently available anti-malarial drugs and the factors playing significant role in the development and spread of resistance against the antimalarials.

Authors Juveria Khan and Monika Kaushik have equally contributed to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjuik M, Agnamey P, Babiker A, Borrmann S, Brasseur P, Cisse M, Cobelens F, Diallo S, Faucher JF, Garner P, Gikunda S, Kremsner PG, Krishna S, Lell B, Loolpapit M, Matsiegui PB, Missinou MA, Mwanza J, Ntoumi F, Olliaro P, Osimbo P, Rezbach P, Some E, Taylor WR (2002) Amodiaquine-artesunate versus amodiaquine for uncomplicated Plasmodium falciparum malaria in African children: a randomised, multicentre trial. Lancet 359:1365–1372

    Article  PubMed  Google Scholar 

  • Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N (2004) Artesunate combinations for treatment of malaria: meta-analysis. Lancet 363:9–17

    Article  CAS  PubMed  Google Scholar 

  • Afonso A, Hunt P, Cheesman S, Alves AC, Cunha CV, Do Rosario V, Cravo P (2006) Malaria parasites can develop stable resistance to artemisinin but lack mutations in candidate genes atp6 (encoding the sarcoplasmic and endoplasmic reticulum Ca2+ ATPase), tctp, mdr1, and cg10. Antimicrob Agents Chemother 50:480–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaratunga C, Sreng S, Suon S, Phelps ES, Stepniewska K, Lim P, Zhou C, Mao S, Anderson JM, Lindegardh N, Jiang H, Song J, Su XZ, White NJ, Dondorp AM, Anderson TJ, Fay MP, Mu J, Duong S, Fairhurst RM (2012) Artemisinin-resistant Plasmodium falciparum in Pursat province, western Cambodia: a parasite clearance rate study. Lancet Infect Dis 12:851–858

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariey F, Witkowski B, Amaratunga C, Beghain J, Langlois AC, Khim N, Kim S, Duru V, Bouchier C, Ma L, Lim P, Leang R, Duong S, Sreng S, Suon S, Chuor CM, Bout DM, Menard S, Rogers WO, Genton B, Fandeur T, Miotto O, Ringwald P, Le Bras J, Berry A, Barale JC, Fairhurst RM, Benoit-Vical F, Mercereau-Puijalon O, Menard D (2013) A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505:50–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashley EA, Dhorda M, Fairhurst RM, Amaratunga C, Lim P, Suon S, Sreng S, Anderson JM, Mao S, Sam B, Sopha C, Chuor CM, Nguon C, Sovannaroth S, Pukrittayakamee S, Jittamala P, Chotivanich K, Chutasmit K, Suchatsoonthorn C, Runcharoen R, Hien TT, Thuy-Nhien NT, Thanh NV, Phu NH, Htut Y, Han KT, Aye KH, Mokuolu OA, Olaosebikan RR, Folaranmi OO, Mayxay M, Khanthavong M, Hongvanthong B, Newton PN, Onyamboko MA, Fanello CI, Tshefu AK, Mishra N, Valecha N, Phyo AP, Nosten F, Yi P, Tripura R, Borrmann S, Bashraheil M, Peshu J, Faiz MA, Ghose A, Hossain MA, Samad R, Rahman MR, Hasan MM, Islam A, Miotto O, Amato R, Macinnis B, Stalker J, Kwiatkowski DP, Bozdech Z, Jeeyapant A, Cheah PY, Sakulthaew T, Chalk J, Intharabut B, Silamut K, Lee SJ, Vihokhern B, Kunasol C, Imwong M, Tarning J, Taylor WJ, Yeung S, Woodrow CJ, Flegg JA, Das D, Smith J, Venkatesan M, Plowe CV, Stepniewska K, Guerin PJ, Dondorp AM, Day NP, White NJ (2014) Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 371:411–423

    Article  CAS  Google Scholar 

  • Atamna H, Ginsburg H (1995) Heme degradation in the presence of glutathione. A proposed mechanism to account for the high levels of non-heme iron found in the membranes of hemoglobinopathic red blood cells. J Biol Chem 270:24876–24883

    Article  CAS  PubMed  Google Scholar 

  • Atkinson CT, Bayne MT, Gordeuk VR, Brittenham GM, Aikawa M (1991) Stage-specific ultrastructural effects of desferrioxamine on Plasmodium falciparum in vitro. Am J Trop Med Hyg 45:593–601

    Article  CAS  PubMed  Google Scholar 

  • Barnes KI, Little F, Smith PJ, Evans A, Watkins WM, White NJ (2006) Sulfadoxine-pyrimethamine pharmacokinetics in malaria: pediatric dosing implications. Clin Pharmacol Ther 80:582–596

    Article  CAS  PubMed  Google Scholar 

  • Bayih AG, Getnet G, Alemu A, Getie S, Mohon AN, Pillai DR (2015) A unique plasmodium falciparum K13 gene mutation in Northwest Ethiopia. Am J Trop Med Hyg 94:132–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JW, Pybus BS, Yadava A, Tosh D, Sousa JC, Mccarthy WF, Deye G, Melendez V, Ockenhouse CF (2013) Primaquine failure and cytochrome P-450 2D6 in Plasmodium vivax malaria. N Engl J Med 369:1381–1382

    Article  CAS  Google Scholar 

  • Bhisutthibhan J, Pan XQ, Hossler PA, Walker DJ, Yowell CA, Carlton J, Dame JB, Meshnick SR (1998) The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem 273:16192–16198

    Article  CAS  PubMed  Google Scholar 

  • Blauer G, Akkawi M (1997) Investigations of B- and beta-hematin. J Inorg Biochem 66:145–152

    Article  CAS  PubMed  Google Scholar 

  • Blum JJ, Yayon A, Friedman S, Ginsburg H (1984) Effects of mitochondrial protein synthesis inhibitors on the incorporation of isoleucine into Plasmodium falciparum in vitro. J Protozool 31:475–479

    Article  CAS  PubMed  Google Scholar 

  • Bray PG, Mungthin M, Ridley RG, Ward SA (1998) Access to hematin: the basis of chloroquine resistance. Mol Pharmacol 54:170–179

    Article  CAS  PubMed  Google Scholar 

  • Bray PG, Ward SA, O'neill PM (2005) Quinolines and artemisinin: chemistry, biology and history. Curr Top Microbiol Immunol 295:3–38

    CAS  PubMed  Google Scholar 

  • Brooks DR, Wang P, Read M, Watkins WM, Sims PF, Hyde JE (1994) Sequence variation of the hydroxymethyldihydropterin pyrophosphokinase: dihydropteroate synthase gene in lines of the human malaria parasite, Plasmodium falciparum, with differing resistance to sulfadoxine. Eur J Biochem 224:397–405

    Article  CAS  PubMed  Google Scholar 

  • Brown GD (2010) The biosynthesis of artemisinin (Qinghaosu) and the phytochemistry of Artemisia annua L. (Qinghao). Molecules 15:7603–7698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budimulja AS, Syafruddin, Tapchaisri P, Wilairat P, Marzuki S (1997) The sensitivity of Plasmodium protein synthesis to prokaryotic ribosomal inhibitors. Mol Biochem Parasitol 84:137–141

    Article  CAS  PubMed  Google Scholar 

  • Burstein A (1993) Panic as a posttraumatic stressor. Am J Psychiatry 150:842

    Article  CAS  PubMed  Google Scholar 

  • Bzik DJ, Li WB, Horii T, Inselburg J (1987) Molecular cloning and sequence analysis of the Plasmodium falciparum dihydrofolate reductase-thymidylate synthase gene. Proc Natl Acad Sci U S A 84:8360–8364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabantchik ZI, Moody-Haupt S, Gordeuk VR (1999) Iron chelators as anti-infectives; malaria as a paradigm. FEMS Immunol Med Microbiol 26:289–298

    Article  CAS  PubMed  Google Scholar 

  • Cheeseman IH, Miller BA, Nair S, Nkhoma S, Tan A, Tan JC, Al Saai S, Phyo AP, Moo CL, Lwin KM, Mcgready R, Ashley E, Imwong M, Stepniewska K, Yi P, Dondorp AM, Mayxay M, Newton PN, White NJ, Nosten F, Ferdig MT, Anderson TJ (2012) A major genome region underlying artemisinin resistance in malaria. Science 336:79–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou AC, Fitch CD (1980) Hemolysis of mouse erythrocytes by ferriprotoporphyrin IX and chloroquine. Chemotherapeutic implications. J Clin Invest 66:856–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou AC, Fitch CD (1981) Mechanism of hemolysis induced by ferriprotoporphyrin IX. J Clin Invest 68:672–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou AC, Fitch CD (1993) Control of heme polymerase by chloroquine and other quinoline derivatives. Biochem Biophys Res Commun 195:422–427

    Article  CAS  PubMed  Google Scholar 

  • Chou AC, Chevli R, Fitch CD (1980) Ferriprotoporphyrin IX fulfills the criteria for identification as the chloroquine receptor of malaria parasites. Biochemistry 19:1543–1549

    Article  CAS  PubMed  Google Scholar 

  • Chugh M, Sundararaman V, Kumar S, Reddy VS, Siddiqui WA, Stuart KD, Malhotra P (2013) Protein complex directs hemoglobin-to-hemozoin formation in Plasmodium falciparum. Proc Natl Acad Sci U S A 110:5392–5397

    Article  CAS  Google Scholar 

  • Cibulskis RE, Aregawi M, Williams R, Otten M, Dye C (2011) Worldwide incidence of malaria in 2009: estimates, time trends, and a critique of methods. PLoS Med 8:e1001142

    Article  PubMed  PubMed Central  Google Scholar 

  • Clyde DF, Shute GT (1957) Resistance of Plasmodium falciparum in Tanganyika to pyrimethamine administered at weekly intervals. Trans R Soc Trop Med Hyg 51:505–513

    Article  CAS  PubMed  Google Scholar 

  • de Ridder S, van der Kooy F, Verpoorte R (2008) Artemisia annua as a self-reliant treatment for malaria in developing countries. J Ethnopharmacol 120:302–314

    Article  CAS  PubMed  Google Scholar 

  • Delabays N, Simonnet X, Gaudin M (2001) The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars. Curr Med Chem 8:1795–1801

    Article  CAS  PubMed  Google Scholar 

  • Dorn A, Vippagunta SR, Matile H, Jaquet C, Vennerstrom JL, Ridley RG (1998) An assessment of drug-haematin binding as a mechanism for inhibition of haematin polymerisation by quinoline antimalarials. Biochem Pharmacol 55:727–736

    Article  CAS  PubMed  Google Scholar 

  • Durrani N, Leslie T, Rahim S, Graham K, Ahmad F, Rowland M (2005) Efficacy of combination therapy with artesunate plus amodiaquine compared to monotherapy with chloroquine, amodiaquine or sulfadoxine-pyrimethamine for treatment of uncomplicated Plasmodium falciparum in Afghanistan. Tropical Med Int Health 10:521–529

    Article  CAS  Google Scholar 

  • Earle DP, Berliner RW, Taggart JV, Zubrod CG, Welch WJ, Bigelow FS, Kennedy TJ, Shannon JA (1948) Studies on the chemotherapy of the human malarias. X. the suppressive antimalarial effect of Paludrine. J Clin Invest 27:130–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckstein-Ludwig U, Webb RJ, Van Goethem ID, East JM, Lee AG, Kimura M, O'neill PM, Bray PG, Ward SA, Krishna S (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961

    Article  CAS  PubMed  Google Scholar 

  • Egan TJ, Ross DC, Adams PA (1994) Quinoline anti-malarial drugs inhibit spontaneous formation of beta-haematin (malaria pigment). FEBS Lett 352:54–57

    Article  CAS  PubMed  Google Scholar 

  • Egan TJ, Mavuso WW, Ross DC, Marques HM (1997) Thermodynamic factors controlling the interaction of quinoline antimalarial drugs with ferriprotoporphyrin IX. J Inorg Biochem 68:137–145

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn T, Winter D, Buchele B, Dirdjaja N, Frank M, Lehmann WD, Mertens R, Krauth-Siegel RL, Simmet T, Granzin J, Efferth T (2012) Molecular interaction of artemisinin with translationally controlled tumor protein (TCTP) of Plasmodium falciparum. Biochem Pharmacol 85:38–45

    Article  CAS  PubMed  Google Scholar 

  • Famin O, Ginsburg H (2002) Differential effects of 4-aminoquinoline-containing antimalarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes. Biochem Pharmacol 63:393–398

    Article  CAS  PubMed  Google Scholar 

  • Fernando SD, Rodrigo C, Rajapakse S (2011) Chemoprophylaxis in malaria: drugs, evidence of efficacy and costs. Asian Pac J Trop Med 4:330–336

    Article  PubMed  Google Scholar 

  • Ferone R (1977) Folate metabolism in malaria. Bull World Health Organ 55:291–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferone R, Burchall JJ, Hitchings GH (1969) Plasmodium berghei dihydrofolate reductase. Isolation, properties, and inhibition by antifolates. Mol Pharmacol 5:49–59

    CAS  PubMed  Google Scholar 

  • Fidock DA, Nomura T, Talley AK, Cooper RA, Dzekunov SM, Ferdig MT, Ursos LM, Sidhu AB, Naude B, Deitsch KW, Su XZ, Wootton JC, Roepe PD, Wellems TE (2000) Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol Cell 6:861–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitch CD, Chevli R, Banyal HS, Phillips G, Pfaller MA, Krogstad DJ (1982) Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine-ferriprotoporphyrin IX complex. Antimicrob Agents Chemother 21:819–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fivelman QL, Butcher GA, Adagu IS, Warhurst DC, Pasvol G (2002) Malarone treatment failure and in vitro confirmation of resistance of Plasmodium falciparum isolate from Lagos, Nigeria. Malar J 1:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Gascon J, Gomez ARCE, E J, Menendez C, Valls ME, Corachan M (1994) Poor response to primaquine in two cases of Plasmodium vivax malaria from Guatemala. Trop Geogr Med 46:32–33

    CAS  PubMed  Google Scholar 

  • Gialdroni Grassi G (1993) Tetracyclines-extending the atypical spectrum. Int J Antimicrob Agents 3(Suppl 1):S31–S46

    Article  PubMed  Google Scholar 

  • Ginsburg H, Demel RA (1983) The effect of ferriprotoporphyrin IX and chloroquine on phospholipid monolayers and the possible implications to antimalarial activity. Biochim Biophys Acta 732:316–319

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg H, Golenser J (2003) Glutathione is involved in the antimalarial action of chloroquine and its modulation affects drug sensitivity of human and murine species of Plasmodium. Redox Rep 8:276–279

    Article  CAS  PubMed  Google Scholar 

  • Ginsburg H, Famin O, Zhang J, Krugliak M (1998) Inhibition of glutathione-dependent degradation of heme by chloroquine and amodiaquine as a possible basis for their antimalarial mode of action. Biochem Pharmacol 56:1305–1313

    Article  CAS  PubMed  Google Scholar 

  • Gritzmacher CA, Reese RT (1984) Protein and nucleic acid synthesis during synchronized growth of Plasmodium falciparum. J Bacteriol 160:1165–1167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutteridge WE, Trigg PI (1971) Action of pyrimethamine and related drugs against Plasmodium knowlesi in vitr. Parasitology 62:431–444

    Article  CAS  PubMed  Google Scholar 

  • Harvey PW, Bell RG, Nesheim MC (1985) Iron deficiency protects inbred mice against infection with Plasmodium chabaudi. Infect Immun 50:932–934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haynes RK (2001) Artemisinin and derivatives: the future for malaria treatment? Curr Opin Infect Dis 14:719–726

    Article  CAS  PubMed  Google Scholar 

  • Heinberg A, Siu E, Stern C, Lawrence EA, Ferdig MT, Deitsch KW, Kirkman LA (2013) Direct evidence for the adaptive role of copy number variation on antifolate susceptibility in Plasmodium falciparum. Mol Microbiol 88:702–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill DR, Baird JK, Parise ME, Lewis LS, Ryan ET, Magill AJ (2006) Primaquine: report from CDC expert meeting on malaria chemoprophylaxis I. Am J Trop Med Hyg 75:402–415

    Article  CAS  PubMed  Google Scholar 

  • Hoppe HC, Van Schalkwyk DA, Wiehart UI, Meredith SA, Egan J, Weber BW (2004) Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. Antimicrob Agents Chemother 48:2370–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Htut ZW (2009) Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med 361:1807–1808. author reply 1808

    Article  CAS  PubMed  Google Scholar 

  • Isozumi R, Uemura H, Kimata I, Ichinose Y, Logedi J, Omar AH, Kaneko A (2015) Novel mutations in K13 propeller gene of artemisinin-resistant Plasmodium falciparum. Emerg Infect Dis 21:490–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer JK, Milhous WK, Cortese JF, Kublin JG, Plowe CV (2001) Plasmodium falciparum cross-resistance between trimethoprim and pyrimethamine. Lancet 358:1066–1067

    Article  CAS  PubMed  Google Scholar 

  • Jones SA (1953) Experiment to determine if a proguanil-resistant strain of P. falciparum would respond to large doses of pyrimethamine. Br Med J 1:977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juge N, Moriyama S, Miyaji T, Kawakami M, Iwai H, Fukui T, Nelson N, Omote H, Moriyama Y (2015) Plasmodium falciparum chloroquine resistance transporter is a H+-coupled polyspecific nutrient and drug exporter. Proc Natl Acad Sci U S A 112:3356–3361

    Article  CAS  Google Scholar 

  • Kantele A, Jokiranta TS (2011) Review of cases with the emerging fifth human malaria parasite, Plasmodium knowlesi. Clin Infect Dis 52:1356–1362

    Article  PubMed  Google Scholar 

  • Keating GM (2012) Dihydroartemisinin/Piperaquine: a review of its use in the treatment of uncomplicated Plasmodium falciparum malaria. Drugs 72:937–961

    Article  CAS  PubMed  Google Scholar 

  • Kiatfuengfoo R, Suthiphongchai T, Prapunwattana P, Yuthavong Y (1989) Mitochondria as the site of action of tetracycline on Plasmodium falciparum. Mol Biochem Parasitol 34:109–115

    Article  CAS  PubMed  Google Scholar 

  • Kidgell C, Volkman SK, Daily J, Borevitz JO, Plouffe D, Zhou Y, Johnson JR, Le Roch K, Sarr O, Ndir O, Mboup S, Batalov S, Wirth DF, Winzeler EA (2006) A systematic map of genetic variation in Plasmodium falciparum. PLoS Pathog 2:e57

    Article  PubMed  PubMed Central  Google Scholar 

  • Klonis N, Creek DJ, Tilley L (2013) Iron and heme metabolism in Plasmodium falciparum and the mechanism of action of artemisinins. Curr Opin Microbiol 16:722–727

    Article  CAS  PubMed  Google Scholar 

  • Klonis N, Crespo-Ortiz MP, Bottova I, Abu-Bakar N, Kenny S, Rosenthal PJ, Tilley L (2011) Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc Natl Acad Sci U S A 108:11405–11410

    Article  CAS  Google Scholar 

  • Kong, K-F (2005) Characterization of the amp genes involved in the regulation of β-lactamase expression in Pseudomonas aeruginosa (2005). ProQuest ETD Collection for FIU. AAI3206025. https://digitalcommons.fiu.edu/dissertations/AAI3206025

  • Korsinczky M, Chen N, Kotecka B, Saul A, Rieckmann K, Cheng Q (2000) Mutations in Plasmodium falciparum cytochrome b that are associated with atovaquone resistance are located at a putative drug-binding site. Antimicrob Agents Chemother 44:2100–2108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krugliak M, Ginsburg H (1991) Studies on the antimalarial mode of action of quinoline-containing drugs: time-dependence and irreversibility of drug action, and interactions with compounds that alter the function of the parasite’s food vacuole. Life Sci 49:1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Krungkrai J, Webster HK, Yuthavong Y (1989) De novo and salvage biosynthesis of pteroylpentaglutamates in the human malaria parasite, Plasmodium falciparum. Mol Biochem Parasitol 32:25–37

    Article  CAS  PubMed  Google Scholar 

  • Krungkrai J, Burat D, Kudan S, Krungkrai S, Prapunwattana P (1999) Mitochondrial oxygen consumption in asexual and sexual blood stages of the human malarial parasite, Plasmodium falciparum. Southeast Asian J Trop Med Public Health 30:636–642

    CAS  PubMed  Google Scholar 

  • Krungkrai J, Prapunwattana P, Krungkrai SR (2000) Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum. Parasite 7:19–26

    Article  CAS  PubMed  Google Scholar 

  • Kumar N, Zheng H (1990) Stage-specific gametocytocidal effect in vitro of the antimalaria drug qinghaosu on Plasmodium falciparum. Parasitol Res 76:214–218

    Article  CAS  PubMed  Google Scholar 

  • Kwon YK, Lu W, Melamud E, Khanam N, Bognar A, Rabinowitz JD (2008) A domino effect in antifolate drug action in Escherichia coli. Nat Chem Biol 4:602–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Bras J, Durand R (2003) The mechanisms of resistance to antimalarial drugs in Plasmodium falciparum. Fundam Clin Pharmacol 17:147–153

    Article  CAS  PubMed  Google Scholar 

  • Learngaramkul P, Petmitr S, Krungkrai SR, Prapunwattana P, Krungkrai J (1999) Molecular characterization of mitochondria in asexual and sexual blood stages of Plasmodium falciparum. Mol Cell Biol Res Commun 2:15–20

    Article  CAS  PubMed  Google Scholar 

  • Li GQ, Arnold K, Guo XB, Jian HX, Fu LC (1984) Randomised comparative study of mefloquine, qinghaosu, and pyrimethamine-sulfadoxine in patients with falciparum malaria. Lancet 2:1360–1361

    Article  CAS  PubMed  Google Scholar 

  • Light WR 3rd, Olson JS (1990a) The effects of lipid composition on the rate and extent of heme binding to membranes. J Biol Chem 265:15632–15637

    CAS  PubMed  Google Scholar 

  • Light WR 3rd, Olson JS (1990b) Transmembrane movement of heme. J Biol Chem 265:15623–15631

    CAS  PubMed  Google Scholar 

  • Lin Q, Katakura K, Suzuki M (2002) Inhibition of mitochondrial and plastid activity of Plasmodium falciparum by minocycline. FEBS Lett 515:71–74

    Article  CAS  PubMed  Google Scholar 

  • Loyevsky M, Sacci JB, Boehme P, Weglicki W, John C, Gordeuk VR (1999) Plasmodium falciparum and Plasmodium yoelii: effect of the iron chelation prodrug dexrazoxane on in vitro cultures. Exp Parasitol 91:105–114

    Article  CAS  PubMed  Google Scholar 

  • Mabeza GF, Loyevsky M, Gordeuk VR, Weiss G (1999) Iron chelation therapy for malaria: a review. Pharmacol Ther 81:53–75

    Article  CAS  PubMed  Google Scholar 

  • Martensson A, Stromberg J, Sisowath C, Msellem MI, Gil JP, Montgomery SM, Olliaro P, Ali AS, Bjorkman A (2005) Efficacy of artesunate plus amodiaquine versus that of artemether-lumefantrine for the treatment of uncomplicated childhood Plasmodium falciparum malaria in Zanzibar, Tanzania. Clin Infect Dis 41:1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Martin RE, Kirk K (2004) The malaria parasite’s chloroquine resistance transporter is a member of the drug/metabolite transporter superfamily. Mol Biol Evol 21:1938–1949

    Article  CAS  PubMed  Google Scholar 

  • Mather MW, Darrouzet E, Valkova-Valchanova M, Cooley JW, Mcintosh MT, Daldal F, Vaidya AB (2005) Uncovering the molecular mode of action of the antimalarial drug atovaquone using a bacterial system. J Biol Chem 280:27458–27465

    Article  CAS  PubMed  Google Scholar 

  • Mercer AE, Copple IM, Maggs JL, O’neill PM, Park BK (2010) The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem 286:987–996

    Article  CAS  Google Scholar 

  • Milhous WK, Weatherly NF, Bowdre JH, Desjardins RE (1985) In vitro activities of and mechanisms of resistance to antifol antimalarial drugs. Antimicrob Agents Chemother 27:525–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LH, Su X (2011) Artemisinin: discovery from the Chinese herbal garden. Cell 146:855–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok S, Ashley EA, Ferreira PE, Zhu L, Lin Z, Yeo T, Chotivanich K, Imwong M, Pukrittayakamee S, Dhorda M, Nguon C, Lim P, Amaratunga C, Suon S, Hien TT, Htut Y, Faiz MA, Onyamboko MA, Mayxay M, Newton PN, Tripura R, Woodrow CJ, Miotto O, Kwiatkowski DP, Nosten F, Day NP, Preiser PR, White NJ, Dondorp AM, Fairhurst RM, Bozdech Z (2014) Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347:431–435

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Neufeld EJ (2006) Oral chelators deferasirox and deferiprone for transfusional iron overload in thalassemia major: new data, new questions. Blood 107:3436–3441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newbold CI, Boyle DB, Smith CC, Brown KN (1982) Stage specific protein and nucleic acid synthesis during the asexual cycle of the rodent malaria Plasmodium chabaudi. Mol Biochem Parasitol 5:33–44

    Article  CAS  PubMed  Google Scholar 

  • Nosten F, White NJ (2007) Artemisinin-based combination treatment of falciparum malaria. Am J Trop Med Hyg 77:181–192

    Article  CAS  PubMed  Google Scholar 

  • Nyunt MH, Hlaing T, Oo HW, Tin-Oo LL, Phway HP, Wang B, Zaw NN, Han SS, Tun T, San KK, Kyaw MP, Han ET (2014) Molecular assessment of artemisinin resistance markers, polymorphisms in the k13 propeller, and a multidrug-resistance gene in the eastern and western border areas of Myanmar. Clin Infect Dis 60:1208–1215

    Article  PubMed  CAS  Google Scholar 

  • Nzila AM, Mberu EK, Sulo J, Dayo H, Winstanley PA, Sibley CH, Watkins WM (2000) Towards an understanding of the mechanism of pyrimethamine-sulfadoxine resistance in Plasmodium falciparum: genotyping of dihydrofolate reductase and dihydropteroate synthase of Kenyan parasites. Antimicrob Agents Chemother 44:991–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nzila-Mounda A, Mberu EK, Sibley CH, Plowe CV, Winstanley PA, Watkins WM (1998) Kenyan Plasmodium falciparum field isolates: correlation between pyrimethamine and chlorcycloguanil activity in vitro and point mutations in the dihydrofolate reductase domain. Antimicrob Agents Chemother 42:164–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’neill PM, Barton VE, Ward SA (2010) The molecular mechanism of action of artemisinin--the debate continues. Molecules 15:1705–1721

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palmer KJ, Holliday SM, Brogden RN (1993) Mefloquine. A review of its antimalarial activity, pharmacokinetic properties and therapeutic efficacy. Drugs 45:430–475

    Article  CAS  PubMed  Google Scholar 

  • Patzewitz EM, Salcedo-Sora JE, Wong EH, Sethia S, Stocks PA, Maughan SC, Murray JA, Krishna S, Bray PG, Ward SA, Muller S (2012) Glutathione transport: a new role for PfCRT in chloroquine resistance. Antioxid Redox Signal 19:683–695

    Article  CAS  Google Scholar 

  • Peters W (1975) The chemotherapy of rodent malaria, XXII. The value of drug-resistant strains of P. berghei in screening for blood schizontocidal activity. Ann Trop Med Parasitol 69:155–171

    Article  CAS  PubMed  Google Scholar 

  • Peterson DS, Walliker D, Wellems TE (1988) Evidence that a point mutation in dihydrofolate reductase-thymidylate synthase confers resistance to pyrimethamine in falciparum malaria. Proc Natl Acad Sci U S A 85:9114–9118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prapunwattana P, O'sullivan WJ, Yuthavong Y (1988) Depression of Plasmodium falciparum dihydroorotate dehydrogenase activity in in vitro culture by tetracycline. Mol Biochem Parasitol 27:119–124

    Article  CAS  PubMed  Google Scholar 

  • Price RN, Cassar C, Brockman A, Duraisingh M, van Vugt M, White NJ, Nosten F, Krishna S (1999) The pfmdr1 gene is associated with a multidrug-resistant phenotype in Plasmodium falciparum from the western border of Thailand. Antimicrob Agents Chemother 43:2943–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price RN, Von Seidlein L, Valecha N, Nosten F, Baird JK, White NJ (2014) Global extent of chloroquine-resistant Plasmodium vivax: a systematic review and meta-analysis. Lancet Infect Dis 14:982–991

    Article  PubMed  PubMed Central  Google Scholar 

  • Pybus BS, Marcsisin SR, Jin X, Deye G, Sousa JC, Li Q, Caridha D, Zeng Q, Reichard GA, Ockenhouse C, Bennett J, Walker LA, Ohrt C, Melendez V (2012) The metabolism of primaquine to its active metabolite is dependent on CYP 2D6. Malar J 12:212

    Google Scholar 

  • Pybus BS, Sousa JC, Jin X, Ferguson JA, Christian RE, Barnhart R, Vuong C, Sciotti RJ, Reichard GA, Kozar MP, Walker LA, Ohrt C, Melendez V (2013) CYP450 phenotyping and accurate mass identification of metabolites of the 8-aminoquinoline, anti-malarial drug primaquine. Malar J 11:259

    Google Scholar 

  • Ramos Junior WM, Sardinha JF, Costa MR, Santana MS, Alecrim MG, Lacerda MV (2010) Clinical aspects of hemolysis in patients with P. vivax malaria treated with primaquine, in the Brazilian Amazon. Braz J Infect Dis 14:410–412

    Article  Google Scholar 

  • Raventos-Suarez C, Pollack S, Nagel RL (1982) Plasmodium falciparum: inhibition of in vitro growth by desferrioxamine. Am J Trop Med Hyg 31:919–922

    Article  CAS  PubMed  Google Scholar 

  • Roberts MC (1996) Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol Rev 19:1–24

    Article  CAS  PubMed  Google Scholar 

  • Rollo IM (1952) Daraprim-experimental chemotherapy. Trans R Soc Trop Med Hyg 46:474–484. discussion, 498–508

    Article  CAS  PubMed  Google Scholar 

  • Salcedo-Sora JE, Ochong E, Beveridge S, Johnson D, Nzila A, Biagini GA, Stocks PA, O'neill PM, Krishna S, Bray PG, Ward SA (2011) The molecular basis of folate salvage in Plasmodium falciparum: characterization of two folate transporters. J Biol Chem 286:44659–44668

    Google Scholar 

  • Schellenberg KA, Coatney GR (1961) The influence of antimalarial drugs on nucleic acid synthesis in Plasmodium gallinaceum and Plasmodium berghei. Biochem Pharmacol 6:143–152

    Article  CAS  PubMed  Google Scholar 

  • Scholl PF, Tripathi AK, Sullivan DJ (2005) Bioavailable iron and heme metabolism in Plasmodium falciparum. Curr Top Microbiol Immunol 295:293–324

    CAS  PubMed  Google Scholar 

  • Sidhu AB, Verdier-Pinard D, Fidock DA (2002) Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson JA, Price R, Ter Kuile F, Teja-Isavatharm P, Nosten F, Chongsuphajaisiddhi T, Looareesuwan S, Aarons L, White NJ (1999) Population pharmacokinetics of mefloquine in patients with acute falciparum malaria. Clin Pharmacol Ther 66:472–484

    Article  CAS  PubMed  Google Scholar 

  • Simpson JA, Watkins ER, Price RN, Aarons L, Kyle DE, White NJ (2000) Mefloquine pharmacokinetic-pharmacodynamic models: implications for dosing and resistance. Antimicrob Agents Chemother 44:3414–3424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirawaraporn W, Sathitkul T, Sirawaraporn R, Yuthavong Y, Santi DV (1997) Antifolate-resistant mutants of Plasmodium falciparum dihydrofolate reductase. Proc Natl Acad Sci U S A 94:1124–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slater AF, Cerami A (1992) Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 355:167–169

    Article  CAS  PubMed  Google Scholar 

  • Slater AF, Swiggard WJ, Orton BR, Flitter WD, Goldberg DE, Cerami A, Henderson GB (1991) An iron-carboxylate bond links the heme units of malaria pigment. Proc Natl Acad Sci U S A 88:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridaran S, Mcclintock SK, Syphard LM, Herman KM, Barnwell JW, Udhayakumar V (2010) Anti-folate drug resistance in Africa: meta-analysis of reported dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) mutant genotype frequencies in African Plasmodium falciparum parasite populations. Malar J 9:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Srivastava IK, Rottenberg H, Vaidya AB (1997) Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J Biol Chem 272:3961–3966

    Article  CAS  PubMed  Google Scholar 

  • Srivastava IK, Morrisey JM, Darrouzet E, Daldal F, Vaidya AB (1999) Resistance mutations reveal the atovaquone-binding domain of cytochrome b in malaria parasites. Mol Microbiol 33:704–711

    Article  CAS  PubMed  Google Scholar 

  • Straimer J, Gnadig NF, Witkowski B, Amaratunga C, Duru V, Ramadani AP, Dacheux M, Khim N, Zhang L, Lam S, Gregory PD, Urnov FD, Mercereau-Puijalon O, Benoit-Vical F, Fairhurst RM, Menard D, Fidock DA (2014) Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347:428–431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su XZ, Miller LH (2015) The discovery of artemisinin and the Nobel prize in physiology or medicine. Sci China Life Sci 58:1175–1179

    Article  PubMed  PubMed Central  Google Scholar 

  • Su X, Kirkman LA, Fujioka H, Wellems TE (1997) Complex polymorphisms in an approximately 330 kDa protein are linked to chloroquine-resistant P. falciparum in Southeast Asia and Africa. Cell 91:593–603

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Li J, Cao Y, Long G, Zhou B (2015) Two distinct and competitive pathways confer the cellcidal actions of artemisinins. Microb Cell 2:14–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syafruddin D, Siregar JE, Marzuki S (1999) Mutations in the cytochrome b gene of Plasmodium berghei conferring resistance to atovaquone. Mol Biochem Parasitol 104:185–194

    Article  CAS  PubMed  Google Scholar 

  • Takala-Harrison S, Clark TG, Jacob CG, Cummings MP, Miotto O, Dondorp AM, Fukuda MM, Nosten F, Noedl H, Imwong M, Bethell D, Se Y, Lon C, Tyner SD, Saunders DL, Socheat D, Ariey F, Phyo AP, Starzengruber P, Fuehrer HP, Swoboda P, Stepniewska K, Flegg J, Arze C, Cerqueira GC, Silva JC, Ricklefs SM, Porcella SF, Stephens RM, Adams M, Kenefic LJ, Campino S, Auburn S, Macinnis B, Kwiatkowski DP, Su XZ, White NJ, Ringwald P, Plowe CV (2012) Genetic loci associated with delayed clearance of Plasmodium falciparum following artemisinin treatment in Southeast Asia. Proc Natl Acad Sci U S A 110:240–245

    Article  Google Scholar 

  • Takeuchi R, Lawpoolsri S, Imwong M, Kobayashi J, Kaewkungwal J, Pukrittayakamee S, Puangsa-Art S, Thanyavanich N, Maneeboonyang W, Day NP, Singhasivanon P (2010) Directly-observed therapy (DOT) for the radical 14-day primaquine treatment of Plasmodium vivax malaria on the Thai-Myanmar border. Malar J 9:308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan KR, Magill AJ, Parise ME, Arguin PM (2011) Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am J Trop Med Hyg 84:517–531

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson PE, Bayles A (1968) Reciprocal cross resistance between cycloguanil hydrochloride and pyrimethamine in Plasmodium berghei infections in mice. J Parasitol 54:588–593

    Article  CAS  PubMed  Google Scholar 

  • Thuma PE, Mabeza GF, Biemba G, Bhat GJ, Mclaren CE, Moyo VM, Zulu S, Khumalo H, Mabeza P, M'hango A, Parry D, Poltera AA, Brittenham GM, Gordeuk VR (1998) Effect of iron chelation therapy on mortality in Zambian children with cerebral malaria. Trans R Soc Trop Med Hyg 92:214–218

    Article  CAS  PubMed  Google Scholar 

  • Triglia T, Cowman AF (1999) The mechanism of resistance to sulfa drugs in Plasmodium falciparum. Drug Resist Updat 2:15–19

    Article  CAS  PubMed  Google Scholar 

  • Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17:1217–1220

    Article  CAS  PubMed  Google Scholar 

  • Vaidya AB, Mather MW (2009) Mitochondrial evolution and functions in malaria parasites. Annu Rev Microbiol 63:249–267

    Article  CAS  PubMed  Google Scholar 

  • Vale N, Moreira R, Gomes P (2009) Primaquine revisited six decades after its discovery. Eur J Med Chem 44:937–953

    Article  CAS  PubMed  Google Scholar 

  • Van Agtmael MA, Eggelte TA, Van Boxtel CJ (1999) Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci 20:199–205

    Article  CAS  PubMed  Google Scholar 

  • van der Velden M, Rijpma SR, Russel FG, Sauerwein RW, Koenderink JB (2015) PfMDR2 and PfMDR5 are dispensable for Plasmodium falciparum asexual parasite multiplication but change in vitro susceptibility to anti-malarial drugs. Malar J 14:76

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vestergaard OLSEN V (1983) Unsuccessful effect of sulfadoxine-pyrimethamine in the treatment of falciparum malaria in Tanzania. Ugeskr Laeger 145:751

    CAS  PubMed  Google Scholar 

  • Von Seidlein L, Milligan P, Pinder M, Bojang K, Anyalebechi C, Gosling R, Coleman R, Ude JI, Sadiq A, Duraisingh M, Warhurst D, Alloueche A, Targett G, Mcadam K, Greenwood B, Walraven G, Olliaro P, Doherty T (2000) Efficacy of artesunate plus pyrimethamine-sulphadoxine for uncomplicated malaria in Gambian children: a double-blind, randomised, controlled trial. Lancet 355:352–357

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Wang Q, Aspinall TV, Sims PF, Hyde JE (2004) Transfection studies to explore essential folate metabolism and antifolate drug synergy in the human malaria parasite Plasmodium falciparum. Mol Microbiol 51:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Huang L, Li J, Fan Q, Long Y, Li Y, Zhou B (2010) Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation. PLoS One 5:e9582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang J, Zhang CJ, Chia WN, Loh CC, Li Z, Lee YM, He Y, Yuan LX, Lim TK, Liu M, Liew CX, Lee YQ, Zhang J, Lu N, Lim CT, Hua ZC, Liu B, Shen HM, Tan KS, Lin Q (2015) Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat Commun 6:10111

    Google Scholar 

  • White N (1999) Antimalarial drug resistance and combination chemotherapy. Philos Trans R Soc Lond Ser B Biol Sci 354:739–749

    Article  CAS  Google Scholar 

  • WHO (2011). World Malaria Report 2011

    Google Scholar 

  • WHO (2013). World Malaria Report 2013

    Google Scholar 

  • WHO (2016). World Malaria Report 2016

    Google Scholar 

  • Willcox M (2009) Artemisia species: from traditional medicines to modern antimalarials–and back again. J Altern Complement Med 15:101–109

    Article  PubMed  Google Scholar 

  • Winstanley PA, Mberu EK, Szwandt IS, Breckenridge AM, Watkins WM (1995) In vitro activities of novel antifolate drug combinations against Plasmodium falciparum and human granulocyte CFUs. Antimicrob Agents Chemother 39:948–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkowski B, Amaratunga C, Khim N, Sreng S, Chim P, Kim S, Lim P, Mao S, Sopha C, Sam B, Anderson JM, Duong S, Chuor CM, Taylor WR, Suon S, Mercereau-Puijalon O, Fairhurst RM, Menard D (2012) Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect Dis 13:1043–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witkowski B, Khim N, Chim P, Kim S, Ke S, Kloeung N, Chy S, Duong S, Leang R, Ringwald P, Dondorp AM, Tripura R, Benoit-Vical F, Berry A, Gorgette O, Ariey F, Barale JC, Mercereau-Puijalon O, Menard D (2013) Reduced artemisinin susceptibility of Plasmodium falciparum ring stages in western Cambodia. Antimicrob Agents Chemother 57:914–923

    Article  PubMed  CAS  Google Scholar 

  • Woodrow CJ, Haynes RK, Krishna S (2005) Artemisinins. Postgrad Med J 81:71–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie SC, Dogovski C, Hanssen E, Chiu F, Yang T, Crespo MP, Stafford C, Batinovic S, Teguh S, Charman S, Klonis N, Tilley L (2015) Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J Cell Sci 129:406–416

    Article  PubMed  CAS  Google Scholar 

  • Yayon A, Timberg R, Friedman S, Ginsburg H (1984) Effects of chloroquine on the feeding mechanism of the intraerythrocytic human malarial parasite Plasmodium falciparum. J Protozool 31:367–372

    Article  CAS  PubMed  Google Scholar 

  • Yeo AE, Edstein MD, Shanks GD, Rieckmann KH (1997) Potentiation of the antimalarial activity of atovaquone by doxycycline against Plasmodium falciparum in vitro. Parasitol Res 83:489–491

    Article  CAS  PubMed  Google Scholar 

  • Young JA, Fivelman QL, Blair PL, De La Vega P, Le Roch KG, Zhou Y, Carucci DJ, Baker DA, Winzeler EA (2005) The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol Biochem Parasitol 143:67–79

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Krugliak M, Ginsburg H (1999) The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol 99:129–141

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailja Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, J., Kaushik, M., Singh, S. (2019). Molecular Mechanisms of Action and Resistance of Antimalarial Drugs. In: Mandal, S., Paul, D. (eds) Bacterial Adaptation to Co-resistance. Springer, Singapore. https://doi.org/10.1007/978-981-13-8503-2_14

Download citation

Publish with us

Policies and ethics