Skip to main content

Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling

  • Chapter
  • First Online:
Protein Allostery in Drug Discovery

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1163))

Abstract

Allostery is a basic principle that enables proteins to process and transmit cellular information. Protein kinases evolved allosteric mechanisms to transduce cellular signals to downstream signalling components or effector molecules. Protein kinases catalyse the transfer of the terminal phosphate from ATP to protein substrates upon specific stimuli. Protein kinases are targets for the development of small molecule inhibitors for the treatment of human diseases. Drug development has focussed on ATP-binding site, while there is increase interest in the development of drugs targeting alternative sites, i.e. allosteric sites. Here, we review the mechanism of regulation of protein kinases, which often involve the allosteric modulation of the ATP-binding site, enhancing or inhibiting activity. We exemplify the molecular mechanism of allostery in protein kinases downstream of PI3-kinase signalling with a focus on phosphoinositide-dependent protein kinase 1 (PDK1), a model kinase where small compounds can allosterically modulate the conformation of the kinase bidirectionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Changeux JP (2012) Allostery and the Monod-Wyman-Changeux model after 50 years. Annu Rev Biophys 41:103–133. https://doi.org/10.1146/annurev-biophys-050511-102222

    Article  CAS  PubMed  Google Scholar 

  2. Goodey NM, Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4(8):474–482. https://doi.org/10.1038/nchembio.98

    Article  CAS  PubMed  Google Scholar 

  3. Nussinov R, Tsai CJ (2013) Allostery in disease and in drug discovery. Cell 153(2):293–305. https://doi.org/10.1016/j.cell.2013.03.034

    Article  CAS  PubMed  Google Scholar 

  4. Changeux JP (2013) 50 years of allosteric interactions: the twists and turns of the models. Nat Rev Mol Cell Biol 14(12):819–829. https://doi.org/10.1038/nrm3695

    Article  CAS  PubMed  Google Scholar 

  5. Whittington AC, Larion M, Bowler JM, Ramsey KM, Bruschweiler R, Miller BG (2015) Dual allosteric activation mechanisms in monomeric human glucokinase. Proc Natl Acad Sci U S A 112(37):11553–11558. https://doi.org/10.1073/pnas.1506664112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nussinov R, Tsai CJ, Ma B (2013) The underappreciated role of allostery in the cellular network. Annu Rev Biophys 42:169–189. https://doi.org/10.1146/annurev-biophys-083012-130257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pawson T, Scott JD (2005) Protein phosphorylation in signaling--50 years and counting. Trends Biochem Sci 30(6):286–290

    Article  CAS  PubMed  Google Scholar 

  8. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298(5600):1912–1934

    Article  CAS  PubMed  Google Scholar 

  9. Hunter T (2012) Why nature chose phosphate to modify proteins. Philos Trans R Soc Lond Ser B Biol Sci 367(1602):2513–2516. https://doi.org/10.1098/rstb.2012.0013

    Article  CAS  Google Scholar 

  10. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Biondi RM (2004) Phosphoinositide-dependent protein kinase 1, a sensor of protein conformation. Trends Biochem Sci 29(3):136–142

    Article  CAS  PubMed  Google Scholar 

  12. Tompa P (2016) The principle of conformational signaling. Chem Soc Rev 45(15):4252–4284. https://doi.org/10.1039/c6cs00011h

    Article  CAS  PubMed  Google Scholar 

  13. Cowan-Jacob SW, Guez V, Fendrich G, Griffin JD, Fabbro D, Furet P, Liebetanz J, Mestan J, Manley PW (2004) Imatinib (STI571) resistance in chronic myelogenous leukemia: molecular basis of the underlying mechanisms and potential strategies for treatment. Mini-Rev Med Chem 4(3):285–299

    Article  CAS  PubMed  Google Scholar 

  14. Saladino G, Gervasio FL (2016) Modeling the effect of pathogenic mutations on the conformational landscape of protein kinases. Curr Opin Struct Biol 37:108–114. https://doi.org/10.1016/j.sbi.2016.01.005

    Article  CAS  PubMed  Google Scholar 

  15. Marino KA, Sutto L, Gervasio FL (2015) The effect of a widespread cancer-causing mutation on the inactive to active dynamics of the B-Raf kinase. J Am Chem Soc 137(16):5280–5283. https://doi.org/10.1021/jacs.5b01421

    Article  CAS  PubMed  Google Scholar 

  16. Shi Z, Resing KA, Ahn NG (2006) Networks for the allosteric control of protein kinases. Curr Opin Struct Biol 16(6):686–692. https://doi.org/10.1016/j.sbi.2006.10.011

    Article  CAS  PubMed  Google Scholar 

  17. Leroux AE, Schulze JO, Biondi RM (2017) AGC kinases, mechanisms of regulation and innovative drug development. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2017.05.011

    Article  CAS  PubMed  Google Scholar 

  18. Dar AC, Shokat KM (2011) The evolution of protein kinase inhibitors from antagonists to agonists of cellular signaling. Annu Rev Biochem 80:769–795. https://doi.org/10.1146/annurev-biochem-090308-173656

    Article  CAS  PubMed  Google Scholar 

  19. Christopoulos A, Changeux JP, Catterall WA, Fabbro D, Burris TP, Cidlowski JA, Olsen RW, Peters JA, Neubig RR, Pin JP, Sexton PM, Kenakin TP, Ehlert FJ, Spedding M, Langmead CJ (2014) International Union of Basic and Clinical Pharmacology. XC. Multisite pharmacology: Recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev 66(4):918–947. https://doi.org/10.1124/pr.114.008862

    Article  CAS  PubMed  Google Scholar 

  20. Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP (2013) PKA: lessons learned after twenty years. Biochim Biophys Acta 1834(7):1271–1278. https://doi.org/10.1016/j.bbapap.2013.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Johnson DA, Akamine P, Radzio-Andzelm E, Madhusudan M, Taylor SS (2001) Dynamics of cAMP-dependent protein kinase. Chem Rev 101(8):2243–2270

    Article  CAS  PubMed  Google Scholar 

  22. Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM (1991) Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science 253(5018):407–414

    Article  CAS  PubMed  Google Scholar 

  23. Hubbard SR (1997) Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J 16(18):5572–5581. https://doi.org/10.1093/emboj/16.18.5572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang J, Cron P, Good VM, Thompson V, Hemmings BA, Barford D (2002) Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol 9(12):940–944

    Article  CAS  PubMed  Google Scholar 

  25. Srivastava AK, McDonald LR, Cembran A, Kim J, Masterson LR, McClendon CL, Taylor SS, Veglia G (2014) Synchronous opening and closing motions are essential for cAMP-dependent protein kinase A signaling. Structure 22(12):1735–1743. https://doi.org/10.1016/j.str.2014.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kornev AP, Haste NM, Taylor SS, Eyck LF (2006) Surface comparison of active and inactive protein kinases identifies a conserved activation mechanism. Proc Natl Acad Sci U S A 103(47):17783–17788. https://doi.org/10.1073/pnas.0607656103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109(3):275–282

    Article  CAS  PubMed  Google Scholar 

  28. Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376(6538):313–320. https://doi.org/10.1038/376313a0

    Article  CAS  PubMed  Google Scholar 

  29. Huang H, Zhao R, Dickson BM, Skeel RD, Post CB (2012) alphaC helix as a switch in the conformational transition of Src/CDK-like kinase domains. J Phys Chem B 116(15):4465–4475. https://doi.org/10.1021/jp301628r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baumli S, Lolli G, Lowe ED, Troiani S, Rusconi L, Bullock AN, Debreczeni JE, Knapp S, Johnson LN (2008) The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J 27(13):1907–1918. https://doi.org/10.1038/emboj.2008.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang X, Gureasko J, Shen K, Cole PA, Kuriyan J (2006) An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 125(6):1137–1149

    Article  CAS  PubMed  Google Scholar 

  32. Lemmon MA, Schlessinger J, Ferguson KM (2014) The EGFR family: not so prototypical receptor tyrosine kinases. Cold Spring Harb Perspect Biol 6(4):a020768. https://doi.org/10.1101/cshperspect.a020768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Plaza-Menacho I, Barnouin K, Barry R, Borg A, Orme M, Chauhan R, Mouilleron S, Martinez-Torres RJ, Meier P, McDonald NQ (2016) RET functions as a dual-specificity kinase that requires allosteric inputs from juxtamembrane elements. Cell Rep 17(12):3319–3332. https://doi.org/10.1016/j.celrep.2016.11.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Register AC, Leonard SE, Maly DJ (2014) SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family. Biochemistry 53(44):6910–6923. https://doi.org/10.1021/bi5008194

    Article  CAS  PubMed  Google Scholar 

  35. Engen JR, Wales TE, Hochrein JM, Meyn MA 3rd, Banu Ozkan S, Bahar I, Smithgall TE (2008) Structure and dynamic regulation of Src-family kinases. Cell Mol Life Sci 65(19):3058–3073. https://doi.org/10.1007/s00018-008-8122-2

    Article  CAS  PubMed  Google Scholar 

  36. Marcotte DJ, Liu YT, Arduini RM, Hession CA, Miatkowski K, Wildes CP, Cullen PF, Hong V, Hopkins BT, Mertsching E, Jenkins TJ, Romanowski MJ, Baker DP, Silvian LF (2010) Structures of human Bruton’s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC family kinases. Protein Sci 19(3):429–439. https://doi.org/10.1002/pro.321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Deindl S, Kadlecek TA, Brdicka T, Cao X, Weiss A, Kuriyan J (2007) Structural basis for the inhibition of tyrosine kinase activity of ZAP-70. Cell 129(4):735–746. https://doi.org/10.1016/j.cell.2007.03.039

    Article  CAS  PubMed  Google Scholar 

  38. Kannan N, Neuwald AF, Taylor SS (2008) Analogous regulatory sites within the alphaC-beta4 loop regions of ZAP-70 tyrosine kinase and AGC kinases. Biochim Biophys Acta 1784(1):27–32. https://doi.org/10.1016/j.bbapap.2007.09.007

    Article  CAS  PubMed  Google Scholar 

  39. Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S (2008) Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134(5):793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ogawa A, Takayama Y, Sakai H, Chong KT, Takeuchi S, Nakagawa A, Nada S, Okada M, Tsukihara T (2002) Structure of the carboxyl-terminal Src kinase, Csk. J Biol Chem 277(17):14351–14354. https://doi.org/10.1074/jbc.C200086200

    Article  CAS  PubMed  Google Scholar 

  41. Kemp BE, Bylund DB, Huang TS, Krebs EG (1975) Substrate specificity of the cyclic AMP-dependent protein kinase. Proc Natl Acad Sci U S A 72(9):3448–3452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zetterqvist O, Ragnarsson U, Humble E, Berglund L, Engstrom L (1976) The minimum substrate of cyclic AMP-stimulated protein kinase, as studied by synthetic peptides representing the phosphorylatable site of pyruvate kinase (type L) of rat liver. Biochem Biophys Res Commun 70(3):696–703

    Article  CAS  PubMed  Google Scholar 

  43. Yaffe MB, Leparc GG, Lai J, Obata T, Volinia S, Cantley LC (2001) A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat Biotechnol 19(4):348–353. https://doi.org/10.1038/86737

    Article  CAS  PubMed  Google Scholar 

  44. Pinna LA, Ruzzene M (1996) How do protein kinases recognize their substrates? Biochim Biophys Acta 1314(3):191–225

    Article  CAS  PubMed  Google Scholar 

  45. Kettenbach AN, Wang T, Faherty BK, Madden DR, Knapp S, Bailey-Kellogg C, Gerber SA (2012) Rapid determination of multiple linear kinase substrate motifs by mass spectrometry. Chem Biol 19(5):608–618. https://doi.org/10.1016/j.chembiol.2012.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kemp BE, Pearson RB (1991) Design and use of peptide substrates for protein kinases. Methods Enzymol 200:121–134

    Article  CAS  PubMed  Google Scholar 

  47. Biondi RM, Nebreda AR (2003) Signalling specificity of Ser/Thr protein kinases through docking-site-mediated interactions. Biochem J 372(Pt 1):1–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gavin AC, Nebreda AR (1999) A MAP kinase docking site is required for phosphorylation and activation of p90(rsk)/MAPKAP kinase-1. Curr Biol 9(5):281–284

    Article  CAS  PubMed  Google Scholar 

  49. Kallunki T, Deng T, Hibi M, Karin M (1996) c-Jun can recruit JNK to phosphorylate dimerization partners via specific docking interactions. Cell 87(5):929–939

    Article  CAS  PubMed  Google Scholar 

  50. Xu B, Stippec S, Robinson FL, Cobb MH (2001) Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking. J Biol Chem 276(28):26509–26515

    Article  CAS  Google Scholar 

  51. Lisa MN, Gil M, Andre-Leroux G, Barilone N, Duran R, Biondi RM, Alzari PM (2015) Molecular basis of the activity and the regulation of the eukaryotic-like S/T protein kinase PknG from Mycobacterium tuberculosis. Structure 23(6):1039–1048. https://doi.org/10.1016/j.str.2015.04.001

    Article  CAS  PubMed  Google Scholar 

  52. Engh RA, Bossemeyer D (2002) Structural aspects of protein kinase control-role of conformational flexibility. Pharmacol Ther 93(2-3):99–111

    Article  CAS  PubMed  Google Scholar 

  53. Cheetham GM, Knegtel RM, Coll JT, Renwick SB, Swenson L, Weber P, Lippke JA, Austen DA (2002) Crystal structure of aurora-2, an oncogenic serine/threonine kinase. J Biol Chem 277(45):42419–42422. https://doi.org/10.1074/jbc.C200426200

    Article  CAS  PubMed  Google Scholar 

  54. Hubbard SR, Wei L, Ellis L, Hendrickson WA (1994) Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372(6508):746–754. https://doi.org/10.1038/372746a0

    Article  CAS  PubMed  Google Scholar 

  55. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867

    Article  CAS  PubMed  Google Scholar 

  56. Panjarian S, Iacob RE, Chen S, Engen JR, Smithgall TE (2013) Structure and dynamic regulation of Abl kinases. J Biol Chem 288(8):5443–5450. https://doi.org/10.1074/jbc.R112.438382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Arencibia JM, Pastor-Flores D, Bauer AF, Schulze JO, Biondi RM (2013) AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim Biophys Acta 1834(7):1302–1321. https://doi.org/10.1016/j.bbapap.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  58. Hindie V, Stroba A, Zhang H, Lopez-Garcia LA, Idrissova L, Zeuzem S, Hirschberg D, Schaeffer F, Jorgensen TJD, Engel M, Alzari PM, Biondi RM (2009) Structure and allosteric effects of low molecular weight activators on the protein kinase PDK1. Nat Chem Biol 5(10):758–764. https://doi.org/10.1038/nchembio.208

    Article  CAS  PubMed  Google Scholar 

  59. Hauge C, Antal TL, Hirschberg D, Doehn U, Thorup K, Idrissova L, Hansen K, Jensen ON, Jorgensen TJ, Biondi RM, Frodin M (2007) Mechanism for activation of the growth factor-activated AGC kinases by turn motif phosphorylation. EMBO J 26(9):2251–2261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang H, Neimanis S, Lopez-Garcia LA, Arencibia JM, Amon S, Stroba A, Zeuzem S, Proschak E, Stark H, Bauer AF, Busschots K, Jorgensen TJ, Engel M, Schulze JO, Biondi RM (2014) Molecular mechanism of regulation of the atypical protein kinase C by N-terminal domains and an allosteric small compound. Chem Biol 21(6):754–765. https://doi.org/10.1016/j.chembiol.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  61. Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, Downes CP, Alessi DR (1999) PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 9(8):393–404

    Article  CAS  PubMed  Google Scholar 

  62. Biondi RM, Cheung PC, Casamayor A, Deak M, Currie RA, Alessi DR (2000) Identification of a pocket in the PDK1 kinase domain that interacts with PIF and the C-terminal residues of PKA. EMBO J 19(5):979–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR (2001) The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J 20(16):4380–4390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Engel M, Hindie V, Lopez-Garcia LA, Stroba A, Schaeffer F, Adrian I, Imig J, Idrissova L, Nastainczyk W, Zeuzem S, Alzari PM, Hartmann RW, Piiper A, Biondi RM (2006) Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO J 25(23):5469–5480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Busschots K, Lopez-Garcia LA, Lammi C, Stroba A, Zeuzem S, Piiper A, Alzari PM, Neimanis S, Arencibia JM, Engel M, Schulze JO, Biondi RM (2012) Substrate-selective inhibition of protein kinase PDK1 by small compounds that bind to the PIF-pocket allosteric docking site. Chem Biol 19(9):1152–1163. https://doi.org/10.1016/j.chembiol.2012.07.017

    Article  CAS  PubMed  Google Scholar 

  66. Rettenmaier TJ, Sadowsky JD, Thomsen ND, Chen SC, Doak AK, Arkin MR, Wells JA (2014) A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proc Natl Acad Sci U S A 111(52):18590–18595. https://doi.org/10.1073/pnas.1415365112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Frodin M, Jensen CJ, Merienne K, Gammeltoft S (2000) A phosphoserine-regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. EMBO J 19(12):2924–2934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dettori R, Sonzogni S, Meyer L, Lopez-Garcia LA, Morrice NA, Zeuzem S, Engel M, Piiper A, Neimanis S, Frodin M, Biondi RM (2009) Regulation of the interaction between protein kinase C-related protein kinase 2 (PRK2) and its upstream kinase, 3-phosphoinositide-dependent protein kinase 1 (PDK1). J Biol Chem 284(44):30318–30327. https://doi.org/10.1074/jbc.M109.051151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Biondi RM, Komander D, Thomas CC, Lizcano JM, Deak M, Alessi DR, van Aalten DM (2002) High resolution crystal structure of the human PDK1 catalytic domain defines the regulatory phosphopeptide docking site. EMBO J 21(16):4219–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Frodin M, Antal TL, Dummler BA, Jensen CJ, Deak M, Gammeltoft S, Biondi RM (2002) A phosphoserine/threonine-binding pocket in AGC kinases and PDK1 mediates activation by hydrophobic motif phosphorylation. EMBO J 21(20):5396–5407

    Article  PubMed  PubMed Central  Google Scholar 

  71. Yang J, Cron P, Thompson V, Good VM, Hess D, Hemmings BA, Barford D (2002) Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 9(6):1227–1240

    Article  CAS  PubMed  Google Scholar 

  72. Chu N, Salguero AL, Liu AZ, Chen Z, Dempsey DR, Ficarro SB, Alexander WM, Marto JA, Li Y, Amzel LM, Gabelli SB, Cole PA (2018) Akt Kinase Activation Mechanisms Revealed Using Protein Semisynthesis. Cell 174(4):897–907.e814. https://doi.org/10.1016/j.cell.2018.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lin K, Lin J, Wu WI, Ballard J, Lee BB, Gloor SL, Vigers GP, Morales TH, Friedman LS, Skelton N, Brandhuber BJ (2012) An ATP-site on-off switch that restricts phosphatase accessibility of Akt. Sci Signal 5(223):ra37. https://doi.org/10.1126/scisignal.2002618

    Article  PubMed  Google Scholar 

  74. Grodsky N, Li Y, Bouzida D, Love R, Jensen J, Nodes B, Nonomiya J, Grant S (2006) Structure of the catalytic domain of human protein kinase C beta II complexed with a bisindolylmaleimide inhibitor. Biochemistry 45(47):13970–13981. https://doi.org/10.1021/bi061128h

    Article  CAS  PubMed  Google Scholar 

  75. Boguth CA, Singh P, Huang CC, Tesmer JJG (2010) Molecular basis for activation of G protein-coupled receptor kinases. EMBO J 29(19):3249–3259. https://doi.org/10.1038/emboj.2010.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Bayliss R, Sardon T, Vernos I, Conti E (2003) Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12(4):851–862

    Article  CAS  PubMed  Google Scholar 

  77. Schulze JO, Saladino G, Busschots K, Neimanis S, Suss E, Odadzic D, Zeuzem S, Hindie V, Herbrand AK, Lisa MN, Alzari PM, Gervasio FL, Biondi RM (2016) Bidirectional allosteric communication between the ATP-binding site and the regulatory PIF pocket in PDK1 protein kinase. Cell Chem Biol 23(10):1193–1205. https://doi.org/10.1016/j.chembiol.2016.06.017

    Article  CAS  PubMed  Google Scholar 

  78. Stegert MR, Tamaskovic R, Bichsel SJ, Hergovich A, Hemmings BA (2004) Regulation of NDR2 protein kinase by multi-site phosphorylation and the S100B calcium-binding protein. J Biol Chem 279(22):23806–23812. https://doi.org/10.1074/jbc.M402472200

    Article  CAS  PubMed  Google Scholar 

  79. Ultanir SK, Hertz NT, Li G, Ge WP, Burlingame AL, Pleasure SJ, Shokat KM, Jan LY, Jan YN (2012) Chemical genetic identification of NDR1/2 kinase substrates AAK1 and Rabin8 Uncovers their roles in dendrite arborization and spine development. Neuron 73(6):1127–1142. https://doi.org/10.1016/j.neuron.2012.01.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cook D, Hoa LY, Gomez V, Gomez M, Hergovich A (2014) Constitutively active NDR1-PIF kinase functions independent of MST1 and hMOB1 signalling. Cell Signal 26(8):1657–1667. https://doi.org/10.1016/j.cellsig.2014.04.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lopez-Garcia LA, Schulze JO, Frohner W, Zhang H, Suss E, Weber N, Navratil J, Amon S, Hindie V, Zeuzem S, Jorgensen TJ, Alzari PM, Neimanis S, Engel M, Biondi RM (2011) Allosteric regulation of protein kinase PKCzeta by the N-terminal C1 domain and small compounds to the PIF-pocket. Chem Biol 18(11):1463–1473. https://doi.org/10.1016/j.chembiol.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  82. Wu WI, Voegtli WC, Sturgis HL, Dizon FP, Vigers GP, Brandhuber BJ (2010) Crystal structure of human AKT1 with an allosteric inhibitor reveals a new mode of kinase inhibition. PLoS One 5(9):e12913. https://doi.org/10.1371/journal.pone.0012913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS, Kotani H (2010) MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther 9(7):1956–1967. https://doi.org/10.1158/1535-7163.MCT-09-1012

    Article  CAS  PubMed  Google Scholar 

  84. Politz O, Siegel F, Barfacker L, Bomer U, Hagebarth A, Scott WJ, Michels M, Ince S, Neuhaus R, Meyer K, Fernandez-Montalvan AE, Liu N, von Nussbaum F, Mumberg D, Ziegelbauer K (2017) BAY 1125976, a selective allosteric AKT1/2 inhibitor, exhibits high efficacy on AKT signaling-dependent tumor growth in mouse models. Int J Cancer 140(2):449–459. https://doi.org/10.1002/ijc.30457

    Article  CAS  PubMed  Google Scholar 

  85. Ebner M, Lucic I, Leonard TA, Yudushkin I (2017) PI(3,4,5)P3 engagement restricts Akt activity to cellular membranes. Mol Cell 65(3):416–431.e416. https://doi.org/10.1016/j.molcel.2016.12.028

    Article  CAS  PubMed  Google Scholar 

  86. Liu P, Wang Z, Wei W (2014) Phosphorylation of Akt at the C-terminal tail triggers Akt activation. Cell Cycle 13(14):2162–2164. https://doi.org/10.4161/cc.29584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Clement E, Inuzuka H, Nihira NT, Wei W, Toker A (2018) Skp2-dependent reactivation of AKT drives resistance to PI3K inhibitors. Sci Signal 11(521). https://doi.org/10.1126/scisignal.aao3810

    Article  PubMed  PubMed Central  Google Scholar 

  88. Stroba A, Schaeffer F, Hindie V, Lopez-Garcia L, Adrian I, Frohner W, Hartmann RW, Biondi RM, Engel M (2009) 3,5-Diphenylpent-2-enoic acids as allosteric activators of the protein kinase PDK1: structure-activity relationships and thermodynamic characterization of binding as paradigms for PIF-binding pocket-targeting compounds. J Med Chem 52(15):4683–4693. https://doi.org/10.1021/jm9001499

    Article  CAS  PubMed  Google Scholar 

  89. Frohner W, Lopez-Garcia LA, Neimanis S, Weber N, Navratil J, Maurer F, Stroba A, Zhang H, Biondi RM, Engel M (2011) 4-benzimidazolyl-3-phenylbutanoic acids as novel Pif-Pocket-targeting allosteric inhibitors of protein kinase PKCzeta. J Med Chem 54(19):6714–6723. https://doi.org/10.1021/jm2005892

    Article  CAS  PubMed  Google Scholar 

  90. Wilhelm A, Lopez-Garcia LA, Busschots K, Frohner W, Maurer F, Boettcher S, Zhang H, Schulze JO, Biondi RM, Engel M (2012) 2-(3-Oxo-1,3-diphenylpropyl)malonic acids as potent allosteric ligands of the PIF pocket of phosphoinositide-dependent kinase-1: development and prodrug concept. J Med Chem 55(22):9817–9830. https://doi.org/10.1021/jm3010477

    Article  CAS  PubMed  Google Scholar 

  91. Sugita Y, Okamoto Y (1999) Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 314(1–2):141–151. https://doi.org/10.1016/S0009-2614(99)01123-9

    Article  CAS  Google Scholar 

  92. Bonomi M, Parrinello M (2010) Enhanced Sampling in the well-tempered ensemble. Phys Rev Lett 104(19). https://doi.org/10.1103/Physrevlett.104.190601

  93. Abdel-Halim M, Abadi AH, Engel M (2018) Design and synthesis of novel 1,3,5-triphenyl pyrazolines as potential anti-inflammatory agents through allosteric inhibition of protein kinase Czeta (PKCzeta). MedChemComm 9(6):1076–1082. https://doi.org/10.1039/c8md00100f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Abdel-Halim M, Diesel B, Kiemer AK, Abadi AH, Hartmann RW, Engel M (2014) Discovery and optimization of 1,3,5-trisubstituted pyrazolines as potent and highly selective allosteric inhibitors of protein kinase C-zeta. J Med Chem 57(15):6513–6530. https://doi.org/10.1021/jm500521n

    Article  CAS  PubMed  Google Scholar 

  95. Arencibia JM, Frohner W, Krupa M, Pastor-Flores D, Merker P, Oellerich T, Neimanis S, Schmithals C, Koberle V, Suss E, Zeuzem S, Stark H, Piiper A, Odadzic D, Schulze JO, Biondi RM (2017) An allosteric inhibitor scaffold targeting the PIF-pocket of atypical protein kinase C isoforms. ACS Chem Biol 12(2):564–573. https://doi.org/10.1021/acschembio.6b00827

    Article  CAS  PubMed  Google Scholar 

  96. Eyers PA, Erikson E, Chen LG, Maller JL (2003) A novel mechanism for activation of the protein kinase Aurora A. Curr Biol 13(8):691–697. https://doi.org/10.1016/S0960-9822(03)00166-0

    Article  CAS  PubMed  Google Scholar 

  97. Janecek M, Rossmann M, Sharma P, Emery A, Huggins DJ, Stockwell SR, Stokes JE, Tan YS, Almeida EG, Hardwick B, Narvaez AJ, Hyvonen M, Spring DR, McKenzie GJ, Venkitaraman AR (2016) Allosteric modulation of AURKA kinase activity by a small-molecule inhibitor of its protein-protein interaction with TPX2. Sci Rep 6:28528. https://doi.org/10.1038/srep28528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Asteriti IA, Daidone F, Colotti G, Rinaldo S, Lavia P, Guarguaglini G, Paiardini A (2017) Identification of small molecule inhibitors of the Aurora-A/TPX2 complex. Oncotarget 8(19):32117–32133. https://doi.org/10.18632/oncotarget.16738

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bayliss R, Burgess SG, McIntyre PJ (2017) Switching Aurora-A kinase on and off at an allosteric site. FEBS J 284(18):2947–2954. https://doi.org/10.1111/febs.14069

    Article  CAS  PubMed  Google Scholar 

  100. Panicker RC, Coyne AG, Srinivasan R (2017) Allosteric targeting of Aurora A kinase using small molecules: a step forward towards next generation medicines? Curr Med Chem. https://doi.org/10.2174/0929867324666170727120315

    Article  CAS  PubMed  Google Scholar 

  101. Carlino L, Christodoulou MS, Restelli V, Caporuscio F, Foschi F, Semrau MS, Costanzi E, Tinivella A, Pinzi L, Lo Presti L, Battistutta R, Storici P, Broggini M, Passarella D, Rastelli G (2018) Structure-activity relationships of hexahydrocyclopenta[c]quinoline derivatives as allosteric inhibitors of CDK2 and EGFR. ChemMedChem 13(24):2627–2634. https://doi.org/10.1002/cmdc.201800687

    Article  CAS  PubMed  Google Scholar 

  102. Komander D, Kular GS, Bain J, Elliott M, Alessi DR, Van Aalten DM (2003) Structural basis for UCN-01 (7-hydroxystaurosporine) specificity and PDK1 (3-phosphoinositide-dependent protein kinase-1) inhibition. Biochem J 375(Pt 2):255–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Axten JM, Blackledge CW, Brady GP, Feng Y, Grant SW, Medina JR, Milller WH, Romeril SP (2010) Preparation of 6-(4-pyrimidinyl)-1H-indazole derivatives as PDK1 inhibitors. PCT Int Appl WO 2010059658

    Google Scholar 

  104. Najafov A, Sommer EM, Axten JM, Deyoung MP, Alessi DR (2011) Characterization of GSK2334470, a novel and highly specific inhibitor of PDK1. Biochem J 433(2):357–369. https://doi.org/10.1042/BJ20101732

    Article  CAS  PubMed  Google Scholar 

  105. Richards MW, Burgess SG, Poon E, Carstensen A, Eilers M, Chesler L, Bayliss R (2016) Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc Natl Acad Sci U S A 113(48):13726–13731. https://doi.org/10.1073/pnas.1610626113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gustafson WC, Meyerowitz JG, Nekritz EA, Chen J, Benes C, Charron E, Simonds EF, Seeger R, Matthay KK, Hertz NT, Eilers M, Shokat KM, Weiss WA (2014) Drugging MYCN through an allosteric transition in Aurora kinase A. Cancer Cell 26(3):414–427. https://doi.org/10.1016/j.ccr.2014.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464(7287):427–430. https://doi.org/10.1038/nature08902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hatzivassiliou G, Song K, Yen I, Brandhuber BJ, Anderson DJ, Alvarado R, Ludlam MJ, Stokoe D, Gloor SL, Vigers G, Morales T, Aliagas I, Liu B, Sideris S, Hoeflich KP, Jaiswal BS, Seshagiri S, Koeppen H, Belvin M, Friedman LS et al (2010) RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature 464(7287):431–435. https://doi.org/10.1038/nature08833

    Article  CAS  PubMed  Google Scholar 

  109. Wang L, Perera BG, Hari SB, Bhhatarai B, Backes BJ, Seeliger MA, Schurer SC, Oakes SA, Papa FR, Maly DJ (2012) Divergent allosteric control of the IRE1alpha endoribonuclease using kinase inhibitors. Nat Chem Biol 8(12):982–989. https://doi.org/10.1038/nchembio.1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lombard CK, Davis AL, Inukai T, Maly DJ (2018) Allosteric Modulation of JNK Docking Site Interactions with ATP-Competitive Inhibitors. Biochemistry 57(40):5897–5909. https://doi.org/10.1021/acs.biochem.8b00776

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by DFG BI 1044/12-1, CONICET (subsidio P. UE.); ANPCyT (subsidio PICT PRH-2016-4835), ANPCyT (subsidio PICT -2016-3525), FOCEM-Mercosur (COF 03/11) and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo M. Biondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leroux, A.E., Gross, L.Z.F., Sacerdoti, M., Biondi, R.M. (2019). Allosteric Regulation of Protein Kinases Downstream of PI3-Kinase Signalling. In: Zhang, J., Nussinov, R. (eds) Protein Allostery in Drug Discovery. Advances in Experimental Medicine and Biology, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-13-8719-7_12

Download citation

Publish with us

Policies and ethics