Skip to main content

Correlation Between Allosteric and Orthosteric Sites

  • Chapter
  • First Online:
Protein Allostery in Drug Discovery

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1163))

Abstract

Correlation between an allosteric site and its orthosteric site refers to the phenomenon that perturbations like ligand binding, mutation, or posttranslational modifications at the allosteric site leverage variation in the orthosteric site. Understanding this kind of correlation not only helps to disclose how information is transmitted in allosteric regulation but also provides clues for allosteric drug discovery. This chapter starts with an overview of correlation studies on allosteric and orthosteric sites and then introduces recent progress in evolutionary and simulation-based dynamic studies. Discussions and perspectives on future directions are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amor BRC, Schaub MT, Yaliraki SN, Barahona M (2016) Prediction of allosteric sites and mediating interactions through bond-to-bond propensities. Nat Commun 7:12477–12477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Atilgan C, Okan OB, Atilgan AR (2012) Network-based models as tools hinting at nonevident protein functionality. Ann Rev Biophys 41(1):205–225

    Article  CAS  Google Scholar 

  3. Bahar I, Lezon TR, Yang L-W, Eyal E (2010) Global dynamics of proteins: bridging between structure and function. Ann Rev Biophys 39(1):23–42

    Article  CAS  Google Scholar 

  4. David P, Orna R, Kimberly AR (2017) An evolution-based strategy for engineering allosteric regulation. Phys Biol 14(2):025002

    Article  CAS  Google Scholar 

  5. Gasper PM, Fuglestad B, Komives EA, Markwick PRL, McCammon JA (2012) Allosteric networks in thrombin distinguish procoagulant vs. anticoagulant activities. Proc Natl Acad Sci U S A 109(52):21216–21222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamic proteins? Proteins 57(3):433–443

    Article  CAS  PubMed  Google Scholar 

  7. Guo J, Zhou H-X (2016) Protein allostery and conformational dynamics. Chem Soc Rev 116(11):6503–6515

    Article  CAS  Google Scholar 

  8. Halabi N, Rivoire O, Leibler S, Ranganathan R (2009) Protein sectors: evolutionary units of three-dimensional structure. Cell 138(4):774–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hilser VJ, Wrabl JO, Motlagh HN (2012) Structural and energetic basis of allostery. Ann Rev Biophys 41(1):585–609

    Article  CAS  Google Scholar 

  10. Kalescky R, Liu J, Tao P (2015) Identifying key residues for protein allostery through rigid residue scan. Indian J Chem A 119(9):1689–1700

    CAS  Google Scholar 

  11. Kalescky R, Zhou H, Liu J, Tao P (2016) Rigid residue scan simulations systematically reveal residue entropic roles in protein allostery. Plos Comput Biol 12(4):e1004893

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Katkar HH, Davtyan A, Durumeric AEP, Hocky GM, Schramm AC, De La Cruz EM, Voth GA (2018) Insights into the cooperative nature of ATP hydrolysis in actin filaments. Biophys J 115(8):1589–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Keul ND, Oruganty K, Schaper Bergman ET, Beattie NR, McDonald WE, Kadirvelraj R, Gross ML, Phillips RS, Harvey SC, Wood ZA (2018) The entropic force generated by intrinsically disordered segments tunes protein function. Nature 563(7732):584–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kobus M, Nguyen PH, Stock G (2011) Coherent vibrational energy transfer along a peptide helix. J Chem Phys 134(12):124518

    Article  PubMed  CAS  Google Scholar 

  15. Kornev AP (2018) Self-organization, entropy and allostery. Biochem Soc T 46(3):587–597

    Article  CAS  Google Scholar 

  16. Kornev AP, Taylor SS (2015) Dynamics-driven allostery in protein kinases. Trends Biochem Sci 40(11):628–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumawat A, Chakrabarty S (2017) Hidden electrostatic basis of dynamic allostery in a PDZ domain. Proc Natl Acad Sci U S A 114(29):E5825–E5834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kundu S, Melton JS, Sorensen DC, Phillips GN (2002) Dynamics of proteins in crystals: comparison of experiment with simple models. Biophys J 83(2):723–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. La Sala G, Decherchi S, De Vivo M, Rocchia W (2017) Allosteric communication networks in proteins revealed through pocket crosstalk analysis. ACS Cent Sci 3(9):949–960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Lee J, Natarajan M, Nashine VC, Socolich M, Vo T, Russ WP, Benkovic SJ, Ranganathan R (2008) Surface sites for engineering allosteric control in proteins. Science 322(5900):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. LeVine MV, Weinstein H (2014) NbIT – a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter LeuT. Plos Comput Biol 10(5):e1003603

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lezon TR, Bahar I (2010) Using entropy maximization to understand the determinants of structural dynamics beyond native contact topology. Plos Comput Biol 6(6):e1000816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lockless SW, Ranganathan R (1999) Evolutionarily conserved pathways of energetic connectivity in protein families. Science 286(5438):295–299

    Article  CAS  PubMed  Google Scholar 

  24. Lu S, Li S, Zhang J (2014) Harnessing allostery: a novel approach to drug discovery. Med Res Rev 34(6):1242–1285

    Article  CAS  PubMed  Google Scholar 

  25. Ma X, Qi Y, Lai L (2015) Allosteric sites can be identified based on the residue–residue interaction energy difference. Proteins 83(8):1375–1384

    Article  CAS  PubMed  Google Scholar 

  26. Ma X, Meng H, Lai L (2016) Motions of allosteric and orthosteric ligand-binding sites in proteins are highly correlated. J Chem Inf Model 56(9):1725–1733

    Article  CAS  PubMed  Google Scholar 

  27. Marks DS, Hopf TA, Sander C (2012) Protein structure prediction from sequence variation. Nat Biotechnol 30:1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McClendon CL, Friedland G, Mobley DL, Amirkhani H, Jacobson MP (2009) Quantifying correlations between allosteric sites in thermodynamic ensembles. J Chem Theory Comput 5(9):2486–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McClendon CL, Hua L, Barreiro G, Jacobson MP (2012) Comparing conformational ensembles using the Kullback–Leibler divergence expansion. J Chem Theory Comput 8(6):2115–2126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meng H, Liu Y, Lai L (2015) Diverse ways of perturbing the human arachidonic acid metabolic network to control inflammation. Acc Chem Res 48(8):2242–2250

    Article  CAS  PubMed  Google Scholar 

  31. Meng H, McClendon CL, Dai Z, Li K, Zhang X, He S, Shang E, Liu Y, Lai L (2016) Discovery of novel 15-lipoxygenase activators to shift the human arachidonic acid metabolic network toward inflammation resolution. Eur J Med Chem 59(9):4202–4209

    Article  CAS  Google Scholar 

  32. Meng H, Dai Z, Zhang W, Liu Y, Lai L (2018) Molecular mechanism of 15-lipoxygenase allosteric activation and inhibition. Phys Chem Chem Phys 20(21):14785–14795

    Article  CAS  PubMed  Google Scholar 

  33. Miao Y, Nichols SE, Gasper PM, Metzger VT, McCammon JA (2013) Activation and dynamic network of the M2 muscarinic receptor. Proc Natl Acad Sci U S A 110(27):10982–10987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miao Y, Feher VA, McCammon JA (2015) Gaussian accelerated molecular dynamics: unconstrained enhanced sampling and free energy calculation. J Chem Theory Comput 11(8):3584–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mitternacht S, Berezovsky IN (2011) Binding leverage as a molecular basis for allosteric regulation. Plos Comput Biol 7(9):e1002148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Nguyen PH, Derreumaux P, Stock G (2009) Energy flow and long-range correlations in guanine-binding riboswitch: a nonequilibrium molecular dynamics study. Indian J Chem A 113(27):9340–9347

    CAS  Google Scholar 

  37. Nussinov R, Tsai C-J (2013) Allostery in disease and in drug discovery. Cell 153(2):293–305

    Article  CAS  PubMed  Google Scholar 

  38. Nussinov R, Tsai C-J, Liu J (2014) Principles of allosteric interactions in cell signaling. J Am Chem Soc 136(51):17692–17701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okazaki K-i, Koga N, Takada S, Onuchic JN, Wolynes PG (2006) Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: Structure-based molecular dynamics simulations. Proc Natl Acad Sci U S A 103(32):11844–11849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ota N, Agard DA (2005) Intramolecular signaling pathways revealed by modeling anisotropic thermal diffusion. Am J Respir Cell Mol 351(2):345–354

    CAS  Google Scholar 

  41. Panjkovich A, Daura X (2012) Exploiting protein flexibility to predict the location of allosteric sites. BMC Bioinformatics 13(1):273

    Article  PubMed  PubMed Central  Google Scholar 

  42. Panjkovich A, Daura X (2014) PARS: a web server for the prediction of Protein Allosteric and Regulatory Sites. Bioinformatics 30(9):1314–1315

    Article  CAS  PubMed  Google Scholar 

  43. Pei J, Yin N, Ma X, Lai L (2014) Systems biology brings new dimensions for structure-based drug design. J Am Chem Soc 136(33):11556–11565

    Article  CAS  PubMed  Google Scholar 

  44. Petrone P, Pande VS (2006) Can conformational change be described by only a few normal modes? Biophys J 90(5):1583–1593

    Article  CAS  PubMed  Google Scholar 

  45. Pierce LCT, Salomon-Ferrer R, de Oliveira CAF, McCammon JA, Walker RC (2012) Routine access to millisecond time scale events with accelerated molecular dynamics. J Chem Theory Comput 8(9):2997–3002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pincus D, Pandey JP, Feder ZA, Creixell P, Resnekov O, Reynolds KA (2018) Engineering allosteric regulation in protein kinases. Sci Signal 11(555). https://doi.org/10.1126/scisignal.aar3250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Qi Y, Wang Q, Tang B, Lai L (2012) Identifying allosteric binding sites in proteins with a two-state go̅ model for novel allosteric effector discovery. J Chem Theory Comput 8(8):2962–2971

    Article  CAS  PubMed  Google Scholar 

  48. Reynolds Kimberly A, McLaughlin Richard N, Ranganathan R (2011) Hot spots for allosteric regulation on protein surfaces. Cell 147(7):1564–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rivoire O, Reynolds KA, Ranganathan R (2016) Evolution-based functional decomposition of proteins. Plos Comput Biol 12(6):e1004817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Salinas VH, Ranganathan R (2018) Coevolution-based inference of amino acid interactions underlying protein function. eLife 7:e34300

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sen TZ, Feng Y, Garcia JV, Kloczkowski A, Jernigan RL (2006) The extent of cooperativity of protein motions observed with elastic network models is similar for atomic and coarser-grained models. J Chem Theory Comput 2(3):696–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA: protein complexes. Proc Natl Acad Sci U S A 106(16):6620–6625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharp K, Skinner JJ (2006) Pump-probe molecular dynamics as a tool for studying protein motion and long range coupling. Proteins 65(2):347–361

    Article  CAS  PubMed  Google Scholar 

  54. Su JG, Qi LS, Li CH, Zhu YY, Du HJ, Hou YX, Hao R, Wang JH (2014) Prediction of allosteric sites on protein surfaces with an elastic-network-model-based thermodynamic method. Phys Rev E 90(2):022719

    Article  CAS  Google Scholar 

  55. Van Wart AT, Durrant J, Votapka L, Amaro RE (2014) Weighted implementation of suboptimal paths (WISP): an optimized algorithm and tool for dynamical network analysis. J Chem Theory Comput 10(2):511–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang Q, Qi Y, Yin N, Lai L (2014) Discovery of novel allosteric effectors based on the predicted allosteric sites for Escherichia coli D-3-phosphoglycerate dehydrogenase. PLOS One 9(4):e94829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wang Q, Liberti MV, Liu P, Deng X, Liu Y, Locasale JW, Lai L (2017) Rational design of selective allosteric inhibitors of PHGDH and serine synthesis with anti-tumor activity. Cell Chem Biol 24(1):55–65

    Article  CAS  PubMed  Google Scholar 

  58. Xu Y, Wang S, Hu Q, Gao S, Ma X, Zhang W, Shen Y, Chen F, Lai L, Pei J (2018) CavityPlus: a web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res 46(W1):W374–W379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang L-W, Eyal E, Chennubhotla C, Jee J, Gronenborn AM, Bahar I (2007) Insights into equilibrium dynamics of proteins from comparison of NMR and X-ray data with computational predictions. Structure 15(6):741–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Yu M, Ma X, Cao H, Chong B, Lai L, Liu Z (2018) Singular value decomposition for the correlation of atomic fluctuations with arbitrary angle. Proteins 86(10):1075–1087

    Article  CAS  PubMed  Google Scholar 

  61. Yuan Y, Pei J, Lai L (2013) Binding site detection and druggability prediction of protein targets for structure-based drug design. Curr Pharm Design 19(12):2326–2333

    Article  CAS  Google Scholar 

  62. Zhou H, Dong Z, Tao P (2018) Recognition of protein allosteric states and residues: machine learning approaches. J Comput Chem 39(20):1481–1490

    Article  CAS  PubMed  Google Scholar 

  63. Li C, Deng X, Zhang W, Xie X, Conrad M, Liu Y, Angeli JPF, Lai L (2018) Novel allosteric activators for ferroptosis regulator glutathione peroxidase 4. J Med Chem 62(1):266–275

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luhua Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W., Xie, J., Lai, L. (2019). Correlation Between Allosteric and Orthosteric Sites. In: Zhang, J., Nussinov, R. (eds) Protein Allostery in Drug Discovery. Advances in Experimental Medicine and Biology, vol 1163. Springer, Singapore. https://doi.org/10.1007/978-981-13-8719-7_5

Download citation

Publish with us

Policies and ethics