Skip to main content

Polymeric Nanomedicine

  • Chapter
  • First Online:
Nanomedicine in Brain Diseases

Abstract

Advances in the engineering of polymeric nanomaterials and their applications in nanomedicine are enabling new strategies that have great potential to help improve our understanding and treatment of brain diseases. Based on distinctive polymeric materials, nanomedicine has been developed to an impressive stage with the ability to perform targeted delivery with temporal and spatial control. In this chapter, the various polymeric nanoparticles by which therapeutics can be delivered into the brain are introduced, and some key challenges facing translation of the researches to bedside are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release. 2016;235:34–47.

    Article  CAS  PubMed  Google Scholar 

  2. Olivier JC. Drug transport to brain with targeted nanoparticles. NeuroRx. 2005;2(1):108–19.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev. 2012;64(7):640–65.

    Article  CAS  PubMed  Google Scholar 

  4. Garcia-Garcia E, Andrieux K, Gil S, Couvreur P. Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain? Int J Pharm. 2005;298(2):274–92.

    Article  CAS  PubMed  Google Scholar 

  5. Aktas Y, Yemisci M, Andrieux K, Gursoy RN, Alonso MJ, Fernandez-Megia E, Novoa-Carballal R, Quinoa E, Riguera R, Sargon MF, et al. Development and brain delivery of chitosan-PEG nanoparticles functionalized with the monoclonal antibody OX26. Bioconjug Chem. 2005;16(6):1503–11.

    Article  CAS  PubMed  Google Scholar 

  6. Barbu E, Molnar E, Tsibouklis J, Gorecki DC. The potential for nanoparticle-based drug delivery to the brain: overcoming the blood-brain barrier. Expert Opin Drug Deliv. 2009;6(6):553–65.

    Article  CAS  PubMed  Google Scholar 

  7. Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood-brain barrier by nanoparticles. J Control Release. 2012;161(2):264–73.

    Article  CAS  PubMed  Google Scholar 

  8. Chun-Xiong Zheng YZ, Liu Y. Recent advances in self-assembled nano-therapeutics. Chinese J. Polym. Sci. 2018;36:322–46.

    Article  CAS  Google Scholar 

  9. Zhao Z, Nelson AR, Betsholtz C, Zlokovic BV. Establishment and dysfunction of the blood-brain barrier. Cell. 2015;163(5):1064–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Koo YE, Reddy GR, Bhojani M, Schneider R, Philbert MA, Rehemtulla A, Ross BD, Kopelman R. Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev. 2006;58(14):1556–77.

    Article  CAS  PubMed  Google Scholar 

  11. Furtado D, Bjornmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater. 2018;30(46):e1801362.

    Article  PubMed  CAS  Google Scholar 

  12. Letchford K, Burt H. A review of the formation and classification of amphiphilic block copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur J Pharm Biopharm. 2007;65(3):259–69.

    Article  CAS  PubMed  Google Scholar 

  13. Discher DE, Ahmed F. Polymersomes. Annu Rev Biomed Eng. 2006;8:323–41.

    Article  CAS  PubMed  Google Scholar 

  14. Ou H, Cheng T, Zhang Y, Liu J, Ding Y, Zhen J, Shen W, Xu Y, Yang W, Niu P, et al. Surface-adaptive zwitterionic nanoparticles for prolonged blood circulation time and enhanced cellular uptake in tumor cells. Acta Biomater. 2018;65:339–48.

    Article  CAS  PubMed  Google Scholar 

  15. Chen Y, Liang G. Enzymatic self-assembly of nanostructures for theranostics. Theranostics. 2012;2(2):139–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu XM, Pramoda KP, Yang YY, Chow SY, He C. Cholesteryl-grafted functional amphiphilic poly(N-isopropylacrylamide-co-N-hydroxylmethylacrylamide): synthesis, temperature-sensitivity, self-assembly and encapsulation of a hydrophobic agent. Biomaterials. 2004;25(13):2619–28.

    Article  CAS  PubMed  Google Scholar 

  17. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials. 2008;29(10):1509–17.

    Article  CAS  PubMed  Google Scholar 

  18. Shao K, Huang R, Li J, Han L, Ye L, Lou J, Jiang C. Angiopep-2 modified PE-PEG based polymeric micelles for amphotericin B delivery targeted to the brain. J Control Release. 2010;147(1):118–26.

    Article  CAS  PubMed  Google Scholar 

  19. Demeule M, Regina A, Che C, Poirier J, Nguyen T, Gabathuler R, Castaigne JP, Beliveau R. Identification and design of peptides as a new drug delivery system for the brain. J Pharmacol Exp Ther. 2008;324(3):1064–72.

    Article  CAS  PubMed  Google Scholar 

  20. Bolard J, Legrand P, Heitz F, Cybulska B. One-sided action of amphotericin B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991;30(23):5707–15.

    Article  CAS  PubMed  Google Scholar 

  21. Pardridge WM. Recent developments in peptide drug delivery to the brain. Pharmacol Toxicol. 1992;71(1):3–10.

    Article  CAS  PubMed  Google Scholar 

  22. Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, Yasuda J, Obata K, Kikuchi H, Ishida T, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm. 2007;342(1-2):194–200.

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Ding L, Xu Y, Wang Y, Ping Q. Targeted delivery of doxorubicin using stealth liposomes modified with transferrin. Int J Pharm. 2009;373(1-2):116–23.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Li J, Lu Y. Enzyme therapeutics for systemic detoxification[J]. Advanced drug delivery reviews. 2015;90:24–39.

    Article  CAS  PubMed  Google Scholar 

  25. Coombes AG, Scholes PD, Davies MC, Illum L, Davis SS. Resorbable polymeric microspheres for drug delivery–production and simultaneous surface modification using PEO-PPO surfactants. Biomaterials. 1994;15(9):673–80.

    Article  CAS  PubMed  Google Scholar 

  26. Chen Y, Dalwadi G, Benson HA. Drug delivery across the blood-brain barrier. Curr Drug Deliv. 2004;1(4):361–76.

    Article  CAS  PubMed  Google Scholar 

  27. Jain KK. Nanobiotechnology-based strategies for crossing the blood-brain barrier. Nanomedicine (Lond). 2012;7(8):1225–33.

    Article  CAS  Google Scholar 

  28. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release. 2004;100(1):5–28.

    Article  CAS  PubMed  Google Scholar 

  29. Gerweck LE, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996;56(6):1194–8.

    CAS  PubMed  Google Scholar 

  30. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991–1003.

    Article  CAS  PubMed  Google Scholar 

  31. Yemisci M, Gursoy-Ozdemir Y, Caban S, Bodur E, Capan Y, Dalkara T. Transport of a caspase inhibitor across the blood-brain barrier by chitosan nanoparticles. Methods Enzymol. 2012;508:253–69.

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Jiang T, Ma M, Hu Y, Zhang J. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. Int J Pharm. 2010;386(1-2):249–55.

    Article  CAS  PubMed  Google Scholar 

  33. Yi X, Manickam DS, Brynskikh A, Kabanov AV. Agile delivery of protein therapeutics to CNS. J Control Release. 2014;190:637–63.

    Article  CAS  PubMed  Google Scholar 

  34. Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release. 1999;57(2):171–85.

    Article  CAS  PubMed  Google Scholar 

  35. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, Levy-Nissenbaum E, Radovic-Moreno AF, Langer R, Farokhzad OC. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–76.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang X, Chen G, Wen L, Yang F, Shao AL, Li X, Long W, Mu L. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur J Pharm Sci. 2013;48(4-5):595–603.

    Article  PubMed  CAS  Google Scholar 

  37. Gelperina S, Maksimenko O, Khalansky A, Vanchugova L, Shipulo E, Abbasova K, Berdiev R, Wohlfart S, Chepurnova N, Kreuter J. Drug delivery to the brain using surfactant-coated poly(lactide-co-glycolide) nanoparticles: influence of the formulation parameters. Eur J Pharm Biopharm. 2010;74(2):157–63.

    Article  CAS  PubMed  Google Scholar 

  38. Hekmatara T, Gelperina S, Vogel V, Yang SR, Kreuter J. Encapsulation of water-insoluble drugs in poly(butyl cyanoacrylate) nanoparticles. J Nanosci Nanotechnol. 2009;9(8):5091–8.

    Article  CAS  PubMed  Google Scholar 

  39. Petri B, Bootz A, Khalansky A, Hekmatara T, Muller R, Uhl R, Kreuter J, Gelperina S. Chemotherapy of brain tumour using doxorubicin bound to surfactant-coated poly(butyl cyanoacrylate) nanoparticles: revisiting the role of surfactants. J Control Release. 2007;117(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  40. Schroeder U, Sommerfeld P, Ulrich S, Sabel BA. Nanoparticle technology for delivery of drugs across the blood-brain barrier. J Pharm Sci. 1998;87(11):1305–7.

    Article  CAS  PubMed  Google Scholar 

  41. Wilson B, Samanta MK, Santhi K, Kumar KP, Paramakrishnan N, Suresh B. Poly(n-butylcyanoacrylate) nanoparticles coated with polysorbate 80 for the targeted delivery of rivastigmine into the brain to treat Alzheimer’s disease. Brain Res. 2008;1200:159–68.

    Article  CAS  PubMed  Google Scholar 

  42. Kolter M, Ott M, Hauer C, Reimold I, Fricker G. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo. J Control Release. 2015;197:165–79.

    Article  CAS  PubMed  Google Scholar 

  43. Gu Z, Biswas A, Zhao M, Tang Y. Tailoring nanocarriers for intracellular protein delivery. Chem Soc Rev. 2011;40(7):3638–55.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang L, Liu Y, Liu G, et al. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Research. 2016;9(8):2424–32.

    Article  CAS  Google Scholar 

  45. Yan M, Du J, Gu Z, Liang M, Hu Y, Zhang W, Priceman S, Wu L, Zhou ZH, Liu Z, et al. A novel intracellular protein delivery platform based on single-protein nanocapsules. Nat Nanotechnol. 2010;5(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  46. Liu C, Wen J, Meng Y, Zhang K, Zhu J, Ren Y, Qian X, Yuan X, Lu Y, Kang C. Efficient delivery of therapeutic miRNA nanocapsules for tumor suppression. Adv Mater. 2015;27(2):292–7.

    Article  PubMed  CAS  Google Scholar 

  47. Parveen S, Misra R, Sahoo SK. Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomedicine. 2012;8(2):147–66.

    Article  CAS  PubMed  Google Scholar 

  48. Dhanikula RS, Hammady T, Hildgen P. On the mechanism and dynamics of uptake and permeation of polyether-copolyester dendrimers across an in vitro blood-brain barrier model. J Pharm Sci. 2009;98(10):3748–60.

    Article  CAS  PubMed  Google Scholar 

  49. Tekade RK, Dutta T, Gajbhiye V, Jain NK. Exploring dendrimer towards dual drug delivery: pH responsive simultaneous drug-release kinetics. J Microencapsul. 2009;26(4):287–96.

    Article  CAS  PubMed  Google Scholar 

  50. Albertazzi L, Gherardini L, Brondi M, Sulis Sato S, Bifone A, Pizzorusso T, Ratto GM, Bardi G. In vivo distribution and toxicity of PAMAM dendrimers in the central nervous system depend on their surface chemistry. Mol Pharm. 2013;10(1):249–60.

    Article  CAS  PubMed  Google Scholar 

  51. Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C. Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials. 2009;30(36):6976–85.

    Article  CAS  PubMed  Google Scholar 

  52. Huang R, Ke W, Han L, Liu Y, Shao K, Ye L, Lou J, Jiang C, Pei Y. Brain-targeting mechanisms of lactoferrin-modified DNA-loaded nanoparticles. J Cereb Blood Flow Metab. 2009;29(12):1914–23.

    Article  CAS  PubMed  Google Scholar 

  53. Huang RQ, Qu YH, Ke WL, Zhu JH, Pei YY, Jiang C. Efficient gene delivery targeted to the brain using a transferrin-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Faseb j. 2007;21(4):1117–25.

    Article  CAS  PubMed  Google Scholar 

  54. Vinogradov SV. Nanogels in the race for drug delivery. Nanomedicine (Lond). 2010;5(2):165–8.

    Article  CAS  Google Scholar 

  55. Wagner V, Dullaart A, Bock AK, Zweck A. The emerging nanomedicine landscape. Nat Biotechnol. 2006;24(10):1211–7.

    Article  CAS  PubMed  Google Scholar 

  56. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49.

    Article  CAS  PubMed  Google Scholar 

  57. Azadi A, Hamidi M, Rouini MR. Methotrexate-loaded chitosan nanogels as ‘Trojan Horses’ for drug delivery to brain: preparation and in vitro/in vivo characterization. Int J Biol Macromol. 2013;62:523–30.

    Article  CAS  PubMed  Google Scholar 

  58. Vinogradov SV, Batrakova EV, Kabanov AV. Nanogels for oligonucleotide delivery to the brain. Bioconjug Chem. 2004;15(1):50–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meyers CA, Lamborn KR, Prados MD. In reference to lamborn et Al. (Neuro-oncology. 2008;10:162–170). Neuro Oncol. 2008;10(6):1171–2.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gilbertson RJ. Medulloblastoma: signalling a change in treatment. Lancet Oncol. 2004;5(4):209–18.

    Article  PubMed  Google Scholar 

  61. Pardridge WM. Non-invasive drug delivery to the human brain using endogenous blood-brain barrier transport systems. Pharm Sci Technolo Today. 1999;2(2):49–59.

    Article  CAS  Google Scholar 

  62. Hekmatara T, Bernreuther C, Khalansky AS, Theisen A, Weissenberger J, Matschke J, Gelperina S, Kreuter J, Glatzel M. Efficient systemic therapy of rat glioblastoma by nanoparticle-bound doxorubicin is due to antiangiogenic effects. Clin Neuropathol. 2009;28(3):153–64.

    Article  CAS  PubMed  Google Scholar 

  63. Beduneau A, Saulnier P, Benoit JP. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28(33):4947–67.

    Article  CAS  PubMed  Google Scholar 

  64. Su JL, Lai KP, Chen CA, Yang CY, Chen PS, Chang CC, Chou CH, Hu CL, Kuo ML, Hsieh CY, et al. A novel peptide specifically binding to interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth. Cancer Res. 2005;65(11):4827–35.

    Article  CAS  PubMed  Google Scholar 

  65. Wei Shi XC, Shi J, Chen J, Yi W. Overcoming the blood–brain barrier for glioma-targeted therapy based on an interleukin-6 receptor-mediated micelle system. RSC Adv. 2017;7:27162–9.

    Article  Google Scholar 

  66. Ksendzovsky A, Feinstein D, Zengou R, Sharp A, Polak P, Lichtor T, Glick RP. Investigation of immunosuppressive mechanisms in a mouse glioma model. J Neurooncol. 2009;93(1):107–14.

    Article  CAS  PubMed  Google Scholar 

  67. Qiao C, Yang J, Shen Q, Liu R, Li Y, Shi Y, Chen J, Shen Y, Xiao Z, Weng J, et al. Traceable nanoparticles with dual targeting and ROS response for RNAi-based immunochemotherapy of intracranial Glioblastoma treatment. Adv Mater. 2018;30(18):e1705054.

    Article  PubMed  CAS  Google Scholar 

  68. Goyal L, Muzumdar MD, Zhu AX. Targeting the HGF/c-MET pathway in hepatocellular carcinoma. Clin Cancer Res. 2013;19(9):2310–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu Y, Fan Q, Zeng F, Zhu J, Chen J, Fan D, Li X, Duan W, Guo Q, Cao Z, et al. Peptide-functionalized nanoinhibitor restrains brain tumor growth by Abrogating Mesenchymal-Epithelial Transition factor (MET) signaling. Nano Lett. 2018;18:5488–98.

    Article  CAS  PubMed  Google Scholar 

  70. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353–6.

    Article  CAS  PubMed  Google Scholar 

  71. Anand R, Gill KD, Mahdi AA. Therapeutics of Alzheimer’s disease: past, present and future. Neuropharmacology. 2014;76 Pt A:27–50.

    Article  CAS  PubMed  Google Scholar 

  72. Horwich AL. Molecular chaperones in cellular protein folding: the birth of a field. Cell. 2014;157(2):285–8.

    Article  CAS  PubMed  Google Scholar 

  73. Huang F, Wang J, Qu A, Shen L, Liu J, Liu J, Zhang Z, An Y, Shi L. Maintenance of amyloid beta peptide homeostasis by artificial chaperones based on mixed-shell polymeric micelles. Angew Chem Int Ed Engl. 2014;53(34):8985–90.

    Article  CAS  PubMed  Google Scholar 

  74. Vonghia L, Leggio L, Ferrulli A, Bertini M, Gasbarrini G, Addolorato G. Acute alcohol intoxication. Eur J Intern Med. 2008;19(8):561–7.

    Article  CAS  PubMed  Google Scholar 

  75. Liu LJ, Wang W, Zhong Z, Lin S, Lu L, Wang YT, Ma DL, Leung CH. Inhibition of TLR1/2 dimerization by enantiomers of metal complexes. Chem Commun (Camb). 2016;52(83):12278–81.

    Article  CAS  Google Scholar 

  76. Luo Q, Lin YX, Yang PP, Wang Y, Qi GB, Qiao ZY, Li BN, Zhang K, Zhang JP, Wang L, et al. A self-destructive nanosweeper that captures and clears amyloid beta-peptides. Nat Commun. 2018;9(1):1802.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Brunden KR, Trojanowski JQ, Lee VM. Advances in tau-focused drug discovery for Alzheimer’s disease and related tauopathies. Nat Rev Drug Discov. 2009;8(10):783–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu Y, An S, Li J, Kuang Y, He X, Guo Y, Ma H, Zhang Y, Ji B, Jiang C. Brain-targeted co-delivery of therapeutic gene and peptide by multifunctional nanoparticles in Alzheimer’s disease mice. Biomaterials. 2016;80:33–45.

    Article  CAS  PubMed  Google Scholar 

  80. Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, Hu Q, Song Q, Yao L, Tu Y, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem. 2013;24(6):997–1007.

    Article  CAS  PubMed  Google Scholar 

  81. Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke. 1983;14(6):924–8.

    Article  CAS  PubMed  Google Scholar 

  82. Cordonnier C, van der Flier WM. Brain microbleeds and Alzheimer’s disease: innocent observation or key player? Brain. 2011;134(Pt 2):335–44.

    Article  PubMed  Google Scholar 

  83. Agyare EK, Jaruszewski KM, Curran GL, Rosenberg JT, Grant SC, Lowe VJ, Ramakrishnan S, Paravastu AK, Poduslo JF, Kandimalla KK. Engineering theranostic nanovehicles capable of targeting cerebrovascular amyloid deposits. J Control Release. 2014;185:121–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.

    Article  PubMed  Google Scholar 

  85. Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood-brain barrier pathology in Alzheimer’s and Parkinson’s disease: implications for drug therapy. Cell Transplant. 2007;16(3):285–99.

    Article  PubMed  Google Scholar 

  86. Reale M, Iarlori C, Thomas A, Gambi D, Perfetti B, Di Nicola M, Onofrj M. Peripheral cytokines profile in Parkinson’s disease. Brain Behav Immun. 2009;23(1):55–63.

    Article  CAS  PubMed  Google Scholar 

  87. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.

    Article  PubMed  Google Scholar 

  88. Youdim MB, Bakhle YS. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol. 2006;147(Suppl 1):S287–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson’s disease: review of recent trials. Mov Disord. 2013;28(2):131–44.

    Article  CAS  PubMed  Google Scholar 

  90. Stocchi F. Continuous dopaminergic stimulation and novel formulations of dopamine agonists. J Neurol. 2011;258(Suppl 2):S316–22.

    Article  PubMed  CAS  Google Scholar 

  91. Pahuja R, Seth K, Shukla A, Shukla RK, Bhatnagar P, Chauhan LK, Saxena PN, Arun J, Chaudhari BP, Patel DK, et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano. 2015;9(5):4850–71.

    Article  CAS  PubMed  Google Scholar 

  92. Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, Kreuter J, Gelperina S, Begley D, Alyautdin RN. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target. 2009;17(8):564–74.

    Article  CAS  PubMed  Google Scholar 

  93. Kurakhmaeva KB, Voronina TA, Kapica IG, Kreuter J, Nerobkova LN, Seredenin SB, Balabanian VY, Alyautdin RN. Antiparkinsonian effect of nerve growth factor adsorbed on polybutylcyanoacrylate nanoparticles coated with polysorbate-80. Bull Exp Biol Med. 2008;145(2):259–62.

    Article  CAS  PubMed  Google Scholar 

  94. You L, Wang J, Liu T, Zhang Y, Han X, Wang T, Guo S, Dong T, Xu J, Anderson GJ, et al. Targeted brain delivery of Rabies Virus Glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in Parkinsonian Mice. ACS Nano. 2018;12(5):4123–39.

    Article  CAS  PubMed  Google Scholar 

  95. Helmschrodt C, Hobel S, Schoniger S, Bauer A, Bonicelli J, Gringmuth M, Fietz SA, Aigner A, Richter A, Richter F. Polyethylenimine nanoparticle-mediated siRNA delivery to reduce alpha-Synuclein expression in a model of Parkinson’s disease. Mol Ther Nucleic Acids. 2017;9:57–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reddy KS. Global burden of disease study 2015 provides GPS for global health 2030. Lancet. 2016;388(10053):1448–9.

    Article  PubMed  Google Scholar 

  97. Corbyn Z. Statistics: a growing global burden. Nature. 2014;510(7506):S2–3.

    Article  CAS  PubMed  Google Scholar 

  98. Krol S, Macrez R, Docagne F, Defer G, Laurent S, Rahman M, Hajipour MJ, Kehoe PG, Mahmoudi M. Therapeutic benefits from nanoparticles: the potential significance of nanoscience in diseases with compromise to the blood brain barrier. Chem Rev. 2013;113(3):1877–903.

    Article  CAS  PubMed  Google Scholar 

  99. Jin R, Yang G, Li G. Molecular insights and therapeutic targets for blood-brain barrier disruption in ischemic stroke: critical role of matrix metalloproteinases and tissue-type plasminogen activator. Neurobiol Dis. 2010;38(3):376–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Belayev L, Busto R, Zhao W, Ginsberg MD. Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res. 1996;739(1-2):88–96.

    Article  CAS  PubMed  Google Scholar 

  101. Warach S, Latour LL. Evidence of reperfusion injury, exacerbated by thrombolytic therapy, in human focal brain ischemia using a novel imaging marker of early blood-brain barrier disruption. Stroke. 2004;35(11 Suppl 1):2659–61.

    Article  PubMed  Google Scholar 

  102. Santos T, Maia J, Agasse F, Xapelli S, Ferreira L, Bernardino L. Nanomedicine boosts neurogenesis: new strategies for brain repair. Integr Biol (Camb). 2012;4(9):973–81.

    Article  CAS  Google Scholar 

  103. Karatas H, Aktas Y, Gursoy-Ozdemir Y, Bodur E, Yemisci M, Caban S, Vural A, Pinarbasli O, Capan Y, Fernandez-Megia E, et al. A nanomedicine transports a peptide caspase-3 inhibitor across the blood-brain barrier and provides neuroprotection. J Neurosci. 2009;29(44):13761–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yemisci M, Caban S, Gursoy-Ozdemir Y, Lule S, Novoa-Carballal R, Riguera R, Fernandez-Megia E, Andrieux K, Couvreur P, Capan Y, et al. Systemically administered brain-targeted nanoparticles transport peptides across the blood-brain barrier and provide neuroprotection. J Cereb Blood Flow Metab. 2015;35(3):469–75.

    Article  CAS  PubMed  Google Scholar 

  105. Panagiotou S, Saha S. Therapeutic benefits of nanoparticles in stroke. Front Neurosci. 2015;9:182.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lv W, Xu J, Wang X, Li X, Xu Q, Xin H. Bioengineered Boronic Ester modified Dextran polymer nanoparticles as reactive oxygen species responsive nanocarrier for ischemic stroke treatment. ACS Nano. 2018;21:5417–26.

    Article  CAS  Google Scholar 

  107. Banks WA. From blood-brain barrier to blood-brain interface: new opportunities for CNS drug delivery. Nat Rev Drug Discov. 2016;15(4):275–92.

    Article  CAS  PubMed  Google Scholar 

  108. Brown C. Aetiology: neighbourhood watch. Nature. 2016;540(7631):S4–s6.

    Article  CAS  PubMed  Google Scholar 

  109. Schmidt J, Metselaar JM, Wauben MH, Toyka KV, Storm G, Gold R. Drug targeting by long-circulating liposomal glucocorticosteroids increases therapeutic efficacy in a model of multiple sclerosis. Brain 126 Pt. 2003;8:1895–904.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, Y., Zheng, C., Liu, Y. (2019). Polymeric Nanomedicine. In: Xue, X. (eds) Nanomedicine in Brain Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-13-8731-9_9

Download citation

Publish with us

Policies and ethics