Skip to main content

Mammalian Neurotransmitter Are Important Signals Mediating Plant Morphogenesis

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

In spite of their lack of central organized nervous system, plants possess many of the same signaling compounds which are employed in the mammalian nervous system and commonly referred to as neurotransmitters or neuromodulators. These include classes such as the indoleamines, melatonin and serotonin, and the catecholamines, dopamine, epinephrine (adrenaline), and norepinephrine (noradrenaline) and acetylcholine. These compounds, since their discoveries in plants, have been found to play important and diverse roles in plant life, including organogenesis, growth and development, flowering and reproduction, sensing environmental cues, and survival against a myriad of environmental stresses. This chapter will provide an overview of the roles these compounds play in plant life, and the mechanisms by which these compounds serve to mediate and direct growth, reproduction, and morphogenesis in plants and the as yet unidentified receptors for these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuña-Castroviejo D, Escames G, Venegas C, Díaz-Casado ME, Lima-Cabello E, López LC, Rosales-Corral S, Tan DX, Reiter RJ (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell Mol Life Sci 71:2997–3025

    Article  PubMed  CAS  Google Scholar 

  • Adil M, Abbasi BH, Khan T (2015) Interactive effects of melatonin and light on growth parameters and biochemical markers in adventitious roots of Withania somnifera L. Plant Cell Tissue Organ Cult 123:405–412

    Article  CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2007) Melatonin promotes adventitious- and lateral root regeneration in etiolated hypocotyls of Lupinus albus L. J Pineal Res 42:147–152

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2009) Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. J Pineal Res 46:58–63

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2019) Melatonin: a new plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48

    Article  CAS  PubMed  Google Scholar 

  • Askar A, Rubach K, Schormüller J (1972) Dünnschichtchromatographische Trennung der in Bananen vorkommenden Amin-Fraktion. Chem Microbiol Technol Lebensm 1:187–190

    CAS  Google Scholar 

  • Back K, Tan D-X, Reiter RJ (2016) Melatonin biosynthesis in plants: multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J Pineal Res 61:426–437

    Article  CAS  PubMed  Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2014) Role of melatonin in alleviating cold stress in Arabidopsis thaliana. J Pineal Res 56:238–245

    Article  CAS  PubMed  Google Scholar 

  • Bajwa VS, Shukla MR, Sherif SM, Murch SJ, Saxena PK (2015) Identification and characterization of serotonin as an anti-browning compound of apple and pear. Postharvest Biol Technol 110:183–189

    Article  CAS  Google Scholar 

  • Bamel K, Gupta R, Gupta SC (2016) Acetylcholine suppresses shoot formation and callusing in leaf explants of in vitro raised seedlings of tomato, Lycopersicon esculentum Miller var. Pusa Ruby. Plant Signal Behav 11:e1187355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barlow RB, Dixon RO (1973) Choline acetyltransferase in the nettle Urtica dioica L. Biochem J 132:15–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beri V, Gupta R (2007) Acetylcholinesterase inhibitors neostigmine and physostigmine inhibit induction of alpha-amylase activity during seed germination in barley, Hordeum vulgare var. Jyoti. Life Sci 80:2386–2388

    Article  CAS  PubMed  Google Scholar 

  • Boccalandro HE, González CV, Wunderlin DA, Silva MF (2011) Melatonin levels, determined by LC-ESI-MS/MS, fluctuate during the day/night cycle in Vitis vinifera cv Malbec: evidence of its antioxidant role in fruits. J Pineal Res 51:226–232

    Article  CAS  PubMed  Google Scholar 

  • Bowden K, Brown BG, Batty JE (1954) 5-Hydroxytryptamine: its occurrence in cowhage. Nature 174:925–926

    Article  CAS  PubMed  Google Scholar 

  • Buelow DW, Gisvold O (1944) A phytochemical investigation of Hermidium alipes. J Am Pharm Assoc 3:270–274

    Article  Google Scholar 

  • Byeon Y, Back K (2014) An increase in melatonin in transgenic rice causes pleiotropic phenotypes, including enhanced seedling growth, delayed flowering, and low grain yield. J Pineal Res 56:408–414

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Park S, Kim Y-S, Park DH, Lee S, Back K (2012) Light-regulated melatonin biosynthesis in rice during the senescence process in detached leaves. J Pineal Res 53:107–111

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Park S, Back K (2013a) Cellular localization and kinetics of the rice melatonin biosynthetic enzymes SNAT and ASMT. J Pineal Res 56:107–114

    Article  PubMed  CAS  Google Scholar 

  • Byeon Y, Park S, Kim Y-S, Back K (2013b) Microarray analysis of genes differentially expressed in melatonin-rich transgenic rice expressing a sheep serotonin N-acetyltransferase. J Pineal Res 55:357–363

    CAS  PubMed  Google Scholar 

  • Byeon Y, Lee HY, Lee K, Back K (2014a) A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants. J Pineal Res 57:147–154

    Article  CAS  PubMed  Google Scholar 

  • Byeon Y, Yool Lee H, Choi D-W, Back K (2014b) Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts. J Exp Bot 66:709–717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cassone VM (1990) Effects of melatonin on vertebrate circadian systems. Trends Neurosci 13:457–464

    Article  CAS  PubMed  Google Scholar 

  • Chandok MR, Sopory SK (1994) 5-Hydroxytryptamine affects turnover of polyphosphoinositides in maize and stimulates nitrate reductase in the absence of light. FEBS Lett 356:39–42

    Article  CAS  PubMed  Google Scholar 

  • Chen Q, Qi W, Reiter RJ, Wei W, Wang BM (2009) Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J Plant Physiol:324–328

    Article  CAS  PubMed  Google Scholar 

  • Chhabra N, Malik CP (1978) Influence of spectral quality of light on pollen tube elongation in Arachis hypogaea. Ann Bot 42:1109–1117

    Article  Google Scholar 

  • Csaba G, Pal K (1982) Effects of insulin, triiodothyronine, and serotonin on plant seed development. Protoplasma 110:20–22

    Article  CAS  Google Scholar 

  • Cybulski N (1895) O funkcji nadnercza. Gazeta Lekarska 12:299–308

    Google Scholar 

  • Dai Y-R, Michaels PJ, Flores HE (1993) Stimulation of ethylene production by catecholamines and phenylethylamine in potato cell suspension cultures. Plant Growth Regul 12:219–222

    Article  CAS  Google Scholar 

  • Das R, Sopory SK (1985) Evidence of regulation of calcium uptake by phytochrome in maize protoplasts. Biochem Biophys Res Comm 128:1455–1460

    Article  CAS  PubMed  Google Scholar 

  • De Luca V, Marineau C, Brisson N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Natl Acad Sci USA 86:2582–2586

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekhuijzen HM (1973) The effect of acetylcholine on growth and on growth inhibition by CCC in wheat seedlings. Planta 111:149–156

    Article  CAS  PubMed  Google Scholar 

  • Dettbarn WD (1962) Acetylcholinesterase activity in Nitella. Nature 194:1175–1176

    Article  CAS  PubMed  Google Scholar 

  • Dharmawardhana P, Ren L, Amarasinghe V, Moncao M, Thomason J, Ravenscroft D, McCouch S, Ware D, Jaiswal P (2013) A genome scale metabolic network for rice and accompanying analysis of tryptophan, auxin and serotonin biosynthesis regulation under biotic stress. Rice 29:15

    Article  Google Scholar 

  • Di Sansebastiano G-P, Fornaciari S, Barozzi F, Piro G, Arru L (2014) New insights on plant cell elongation: a role for acetylcholine. Int J Mol Sci 15:4565–4582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding F, Wang M, Liu B, Zhang S (2017) Exogenous melatonin mitigates photoinhibition by accelerating non-photochemical quenching in tomato seedlings exposed to moderate light during chilling. Front Plant Sci 8:244

    PubMed  PubMed Central  Google Scholar 

  • Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995) Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18:28–31

    Article  CAS  PubMed  Google Scholar 

  • Emmelin N, Feldberg W (1947) The mechanism of the sting of the common nettle (Urtica urens). J Physiol 106:440–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erland LAE, Saxena PK (2018) Melatonin in morphogenesis. In Vitro Cell Dev Biol Plant 54:3–24

    Article  CAS  Google Scholar 

  • Erland LAE, Murch SJ, Reiter RJ, Saxena PK (2015) A new balancing act: the many roles of melatonin and serotonin in plant growth and development. Plant Signal Behav 10:e1096469–e1096415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erland LAE, Turi CE, Saxena PK (2016a) Serotonin: an ancient molecule and an important regulator of plant processes. Biotechnol Adv 8:1347–1361

    Article  CAS  Google Scholar 

  • Erland LAE, Chattopadhyay A, Jones AMP, Saxena PK (2016b) Melatonin in plants and plant culture systems: variability, stability and efficient quantification. Front Plant Sci 7:108

    Article  Google Scholar 

  • Erland LAE, Shukla MR, Singh AS, Murch SJ, Saxena PK (2018) Melatonin and serotonin: mediators in the symphony of plant morphogenesis. J Pineal Res 64:e12452

    Article  CAS  Google Scholar 

  • Ernst M, Hartmann E (1980) Biochemical characterization of an acetylcholine-hydrolyzing enzyme from bean seedlings. Plant Physiol 65:447–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans ML (1972) Promotion of cell elongation in Avena coleoptiles by acetylcholine. Plant Physiol 50(3):414–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Facchini PJ, De Luca V (1994) Differential and tissue-specific expression of a gene family for tyrosine/dopa decarboxylase in opium poppy. J Biol Chem 269:26684–26690

    CAS  PubMed  Google Scholar 

  • Facchini PJ, Huber-Allanach KL, Tari LW (2000) Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation and metabolic engineering applications. Phytochemistry 54:121–138

    Article  CAS  PubMed  Google Scholar 

  • Fan J, Hu Z, Xie Y, Chan Z, Chen K, Amombo E, Chen L, Fu J (2015) Alleviation of cold damage to photosystem II and metabolisms by melatonin in Bermudagrass. Front Plant Sci 6:36

    Article  Google Scholar 

  • Galvão VC, Horrer D, Küttner F, Schmid M (2012) Spatial control of flowering by DELLA proteins in Arabidopsis thaliana. Development 139:4072–4082

    Article  PubMed  CAS  Google Scholar 

  • Gatineau F, Fouché JG, Kevers C, Hausman JF, Gaspar T (1997) Quantitative variations of indolyl compounds including IAA, IAA-aspartate and serotonin in walnut microcuttings during root induction. Biol Plant 39:131–137

    Article  CAS  Google Scholar 

  • Gomes BR, de Siqueira-Soares RC, Dos Santos WD, Marchiosi R, Soares AR, Ferrarese-Filho O (2014) The effects of dopamine on antioxidant enzymes activities and reactive oxygen species levels in soybean roots. Plant Signal Behav 9:e977704

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gong B, Yan Y, Wen D, Shi Q (2017) Hydrogen peroxide produced by NADPH oxidase: a novel downstream signaling pathway in melatonin-induced stress tolerance in Solanum lycopersicum. Physiol Plant 160:396–409

    Article  CAS  PubMed  Google Scholar 

  • Greppin H, Horwitz B (1975) Floral induction and the effect of red and far-red preillumination on the light-stimulated bioelectric response of spinach leaves. Z Pflanzenphysiol 75:243–249

    Article  Google Scholar 

  • Greppin H, Horwitz BA, Horwitz LP (1973) Light-stimulated bioelectric response of spinach leaves and photoperiodic induction. Z Pflanzenphysiol 68:336–345

    Article  Google Scholar 

  • Grosse W, Artigas F (1983) Incorporation of N-15 ammonia into serotonin in cotyledons of maturing walnuts. Z Naturforsch C J Biosci 38:1057–1058

    Article  Google Scholar 

  • Guidotti BB, Gomes BR, de Siqueira-Soares RC, Soares AR, Ferrarese-Filho O (2013) The effects of dopamine on root growth and enzyme activity in soybean seedlings. Plant Signal Behav 8:e25477–e25478

    Article  PubMed  PubMed Central  Google Scholar 

  • Hadačová V, Hofman J, de Almeida RM, Vacková K, Kutáček M, Klozová E (1981) Choliae esterases and choline acetyltransferase in the seeds of Allium altaicum (Pall.) Reyse. Biol Plant 23:220–227

    Article  Google Scholar 

  • Hartmann E (1977) Influence of acetylcholine and light on the bioelectric potential of bean (Phaseolus vulgaris L.) hypocotyl hook. Plant Cell Physiol 18:1203–1207

    Article  CAS  Google Scholar 

  • Hartmann E (1979) Attempts to demonstrate incorporation of labelled precursors into acetylcholine by Phaseolus vulgaris seedlings. Phytochemistry 18:1643–1646

    Article  CAS  Google Scholar 

  • Hartmann E, Gupta R (1989) Acetylcholine as a signaling system in plants. In: Boss WF, Morre DJ (eds) . Plant biology second messengers in plant growth and development, New York, pp 257–288

    Google Scholar 

  • Hartmann E, Grasmück I, Lehrbach N, Müller R (1980) The influence of acetylcholine and choline on the incorporation of phosphate into phospholipids of etiolated bean hypocotyl hooks. Z Pflanzenphysiol 97:377–389

    Article  CAS  Google Scholar 

  • Hattori A, Migitaka H, Iigo M, Itoh M, Yamamoto K, Ohtani-Kaneko R, Suzuki T, Reiter RJ (1995) Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem Mol Biol Int 35:627–634

    CAS  PubMed  Google Scholar 

  • Hernández IG, Gomez FJV, Cerutti S, Arana MV, Silva MF (2015) Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiol Biochem 94:191–196

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Ruiz J, Arnao MB (2008) Melatonin stimulates the expansion of etiolated lupin cotyledons. Plant Growth Regul 55:29–34

    Article  CAS  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2004) Melatonin: a growth-stimulating compound present in lupin tissues. Planta 220:140–144

    Article  PubMed  CAS  Google Scholar 

  • Hernández-Ruiz J, Cano A, Arnao MB (2005) Melatonin acts as a growth-stimulating compound in some monocot species. J Pineal Res 39:137–142

    Article  PubMed  CAS  Google Scholar 

  • Hoshino T (1979) Simulation of acetylcholine action by β-indole acetic acid in inducing diurnal change of floral response to chilling under continuous light in Lemna gibba G3. Plant Cell Physiol 20:43–50

    CAS  Google Scholar 

  • Hoshino T (1983) Effects of acetylcholine on the growth of the Vigna seedling. Plant Cell Physiol 24:551–556

    Article  CAS  Google Scholar 

  • Hoshino T, Oota Y (1978) The occurrence of acetylcholine in Lemna gibba G3. Plant Cell Physiol 19:769–776

    Article  CAS  Google Scholar 

  • Hourmant A, Rapt F, Morzadec J-M, Féray A, Caroff J (1998) Involvement of catecholic compounds in morphogenesis of in vitro potato plants effect of methylglyoxal-bis (guanylhydrazone). J Plant Physiol 152:64–69

    Article  CAS  Google Scholar 

  • Hu W, Kong H, Guo Y, Zhang Y, Ding Z, Tie W, Yan Y, Huang Q, Peng M, Shi H, Guo A (2016) Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of cassava. Front Plant Sci 7:138–112

    Google Scholar 

  • Huang YM, Kao CH (1992) Calcium in the regulation of corn leaf senescence by light. Bot Bull Acad Sin 33:161–165

    CAS  Google Scholar 

  • Jaffe MJ (1968) Phytochrome-mediated bioelectric potentials in mung bean seedlings. Science 162:1016–1017

    Article  CAS  PubMed  Google Scholar 

  • Jaffe MJ (1970) Evidence for the regulation of phytochrome-mediated processes in bean roots by the neurohumor, acetylcholine. Plant Physiol 46:768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe MJ (1972) Acetylcholine as a native metabolic regulator of phytochrome-mediated processes in bean roots. Recent Adv Phytochem 5:81–104

    Article  CAS  Google Scholar 

  • Jaffe MJ (1976) Phytochrome-controlled acetylcholine synthesis at the endoplasmic reticulum. In: Smith H (ed) Light and plant development. Butterworths, London, pp 333–344

    Chapter  Google Scholar 

  • Jaffe MJ, Thoma L (1973) Rapid phytochrome-mediated changes in the uptake by bean roots of sodium acetate 1-14C and their modification by cholinergic drugs. Planta 113:283–291

    Article  CAS  PubMed  Google Scholar 

  • Janas KM, Posmyk MM (2013) Melatonin, an underestimated natural substance with great potential for agricultural application. Acta Physiol Plant 35:3285–3292

    Article  CAS  Google Scholar 

  • Jones MPA, Cao J, O’Brien R, Murch SJ, Saxena PK (2007) The mode of action of thidiazuron: auxins, indoleamines, and ion channels in the regeneration of Echinacea purpurea L. Plant Cell Rep 26:1481–1490

    Article  CAS  PubMed  Google Scholar 

  • Kamisaka S (1979) Catecholamine stimulation of the gibberellin action that induces lettuce hypocotyl elongation. Plant Cell Physiol 20:1199–1207

    Article  CAS  Google Scholar 

  • Kanazawa K, Sakakibara H (2000) High content of dopamine, a strong antioxidant, in Cavendish banana. J Agric Food Chem 48:844–848

    Article  CAS  PubMed  Google Scholar 

  • Kandeler R (1972) The effect of acetylcholine on the photoperiodic control of flowering in Lemnaceae. Z Pflanzenphysiol 67:86–92

    Article  CAS  Google Scholar 

  • Kang S, Kang K, Lee K, Back K (2007) Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice. Planta 227:263–272

    Article  CAS  PubMed  Google Scholar 

  • Kang K, Kang S, Lee K, Park M, Back K (2008) Enzymatic features of serotonin biosynthetic enzymes and serotonin biosynthesis in plants. Plant Signal Behav 3:389–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang K, Kim Y-S, Park S, Back K (2009) Senescence-induced serotonin biosynthesis and its role in delaying senescence in rice leaves. Plant Physiol 150:1380–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasturi R (1978) De novo synthesis of acetylcholinesterase in roots of Pisum sativum. Phytochemistry 17:647–649

    Article  CAS  Google Scholar 

  • Kaur A, Thukral AK (1990) Effect of animal hormones on the growth, protein and sugar contents of Vigna unguiculata L. seedlings. Indian J Plant Physiol 33:259–261

    CAS  Google Scholar 

  • Khurana JP, Tamot BK, Maheshwari N, Maheshwari SC (1987) Role of catecholamines in promotion of flowering in a short-day duckweed, Lemna paucicostata 6746. Plant Physiol 85:10–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Seo H, Park C, Park WJ (2016) Examination of the auxin hypothesis of phytomelatonin action in classical auxin assay systems in maize. J Plant Physiol 190:67–71

    Article  CAS  PubMed  Google Scholar 

  • Kirshner RL, White JM, Pike CS (1975) Control of bean bud ATP levels by regulatory molecules and phytochrome. Physiol Plant 34:373–377

    Article  CAS  Google Scholar 

  • Kolar J, Johnson CH, Machackova I (2003) Exogenously applied melatonin (N-acetyl-5-methoxytryptamine) affects flowering of the short-day plant Chenopodium rubrum. Physiol Plant 118:605–612

    Article  CAS  Google Scholar 

  • Kołodziejczyk I, Bałabusta M, Szewczyk R, Posmyk MM (2015) The levels of melatonin and its metabolites in conditioned corn (Zea mays L.) and cucumber (Cucumis sativus L.) seeds during storage. Acta Physiol Plant 37:105–111

    Article  CAS  Google Scholar 

  • Kong K-H, Lee J-L, Park H-J, Cho S-H (1998) Purification and characterization of the tyrosinase isozymes of pine needles. Biochem Mol Biol Int 45:717–724

    CAS  PubMed  Google Scholar 

  • Korkmaz A, Değer Ö, Cuci Y (2014) Profiling the melatonin content in organs of the pepper plant during different growth stages. Sci Hortic 172:242–247

    Article  CAS  Google Scholar 

  • Korkmaz A, Yakupoglu G, Köklü Ş, Cuci Y, Kocacinar F (2017) Determining diurnal and seasonal changes in melatonin andtryptophan contents of eggplant (Solanum melongena L.). Turk J Bot 41:356–366

    Article  CAS  Google Scholar 

  • Kostir J, Klenha J, Vyroba VJR (1965) The effect of acetylcholine on seed germination in agricultural plants. Rost Vyroba Praha 12:1239–1279

    Google Scholar 

  • Koyama FC, Carvalho TLG, Alves E, da Silva HB, de Azevedo MF, Hemerly AS, Garcia CR (2013) The structurally related auxin and melatonin tryptophan-derivatives and their roles in Arabidopsis thaliana and in the human malaria parasite Plasmodium falciparum. J Eukaryot Microbiol 60:646–651

    Article  CAS  PubMed  Google Scholar 

  • Kuklin AI, Conger BV (1995) Enhancement of somatic embryogenesis in orchardgrass leaf cultures by epinephrine. Plant Cell Rep 14:641–644

    Article  CAS  PubMed  Google Scholar 

  • Kulma A, Szopa J (2007) Catecholamines are active compounds in plants. Plant Sci 172:433–440

    Article  CAS  Google Scholar 

  • Lawson VR, Brady RM, Campbell A, Knox GD, Walls RL (1978) Interaction of acetylcholine chloride with IAA, GA 3 and red light in the growth of excised apical coleoptile segments. Bull Torrey Bot Club 105:187

    Article  CAS  Google Scholar 

  • Lazár D, Murch SJ, Beilby MJ, Al Khazaaly S (2013) Exogenous melatonin affects photosynthesis in characeae Chara australis. Plant Signal Behav 8:e23279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee H-J, Back K (2016) 2-Hydroxymelatonin promotes the resistance of rice plant to multiple simultaneous abiotic stresses (combined cold and drought). J Pineal Res:1–48

    Google Scholar 

  • Lee HY, Back K (2017) Melatonin is required for H2O2- and NO-mediated defense signaling through MAPKKK3 and OXI1 in Arabidopsis thaliana. J Pineal Res 62:e12379

    Article  CAS  Google Scholar 

  • Lei Q, Wang L, Tan D-X, Zhao Y, Zheng XD, Chen H, Li QT, Zuo BX, Kong J (2013) Identification of genes for melatonin synthetic enzymes in “Red Fuji” apple (Malus domestica Borkh.cv.Red) and their expression and melatonin production during fruit development. J Pineal Res 55:443–451

    CAS  PubMed  Google Scholar 

  • Lembeck F, Skofitsch G (1984) Distribution of serotonin in Juglans regia seeds during ontogenetic development and germination. Z Pflanzenphysiol 114:349–353

    Article  CAS  Google Scholar 

  • Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W (1958) Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc 80:2587–2587

    Article  CAS  Google Scholar 

  • Li C, Tan D-X, Liang D, Chang C, Jia D, Ma F (2015) Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J Exp Bot 66:669–680

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX, Chen SY, Chu C (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59:91–101

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Li A, Yu H, Li W, Liang C, Guo S, Zhang R, Chu C (2017) Melatonin regulates root architecture by modulating auxin response in rice. Front Plant Sci 8:89–12

    Google Scholar 

  • Litwinczuk W, Wadas-Boron M (2009) Development of highbush blueberry (Vaccinium corymbosum hort. non L.) in vitro shoot cultures under the influence of melatonin. Acta Sci Pol Hort Cult 8:3–12

    Google Scholar 

  • Maheshwari SC, Gupta R and Gharyal PK (1982) Cholinesterases in plants. In: Sen SP (ed) Recent developments in plant science. New Delhi, pp 145–160

    Google Scholar 

  • Manchester LC, Tan DX, Reiter RJ, Park W, Monis K, Qi W (2000) High levels of melatonin in the seeds of edible plants: possible function in germ tissue protection. Life Sci 67:3023–3029

    Article  CAS  PubMed  Google Scholar 

  • Manchester LC, Coto-Montes A, Boga JA, Andersen LP, Zhou Z, Galano A, Vriend J, Tan DX, Reiter RJ (2015) Melatonin: an ancient molecule that makes oxygen metabolically tolerable. J Pineal Res 59:403–419

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Schlauch K, Tam R, Cortes D, Torres MA, Shulaev V, Dangl JL, Mittler R (2009) The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli. Sci Signal 2:ra45

    PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trend Plant Sci 16:300–309

    Article  CAS  Google Scholar 

  • Miyawaki T, Matsumoto S, Takahashi W, Tanaka O (2014) Effect of heat-treated noradrenaline on flowering in Lemna. Biosci Biotechnol Biochem 77:1586–1588

    Article  CAS  Google Scholar 

  • Momonoki YS (1992) Occurrence of acetylcholine-hydrolyzing activity at the stele-cortex interface. Plant Physiol 99:130–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momonoki YS (1997) Asymmetric distribution of acetylcholinesterase in gravistimulated maize seedlings. Plant Physiol 114:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Momonoki YS, Hineno C, Noguchi K (1998) Acetylcholine as a signaling system to environmental stimuli in plants. III. Asymmetric solute distribution controlled by ACh in gravistimulated maize seedlings. Plant Prod Sci 1:83–88

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee I (1980) The effect of acetylcholine on hypocotyl elongation in soybean. Plant Cell Physiol 21:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, David A, Yadav S, Baluska F, Bhatla SC (2014) Salt stress-induced seedling growth inhibition coincides with differential distribution of serotonin and melatonin in sunflower seedling roots and cotyledons. Physiol Plant 152:714–728

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Saxena PK (2002a) Mammalian neurohormones: potential significance in reproductive physiology of St. John’s wort (Hypericum perforatum L.)? Naturwissenschaften 89:555–560

    CAS  PubMed  Google Scholar 

  • Murch SJ, Saxena PK (2002b) Melatonin: a potential regulator of plant growth and development? In Vitro Cell Dev Biol Plant 38:531–536

    Article  CAS  Google Scholar 

  • Murch SJ, Saxena PK (2004) Role of indoleamines in regulation of morphogenesis in in vitro cultures of St. John’s wort (Hypericum perforatum L.). Acta Hortic 629:425–432

    Article  CAS  Google Scholar 

  • Murch SJ, Krishnaraj S, Saxena PK (2000) Tryptophan is a precursor for melatonin and serotonin biosynthesis in in vitro regenerated St. John’s wort (Hypericum perforatum L. cv. Anthos) plants. Plant Cell Rep 19:698–704

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Campbell SSB, Saxena PK (2001) The role of serotonin and melatonin in plant morphogenesis: Regulation of auxin-induced root organogenesis in in vitro-cultured explants of St. John’s Wort (Hypericum perforatum L.). In Vitro Cell Dev Biol Plant 37:786–793

    Article  CAS  Google Scholar 

  • Murch SJ, Alan AR, Cao J, Saxena PK (2009) Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47:277–283

    Article  CAS  PubMed  Google Scholar 

  • Murch SJ, Hall BA, Le CH, Saxena PK (2010) Changes in the levels of indoleamine phytochemicals during véraison and ripening of wine grapes. J Pineal Res 49:95–100

    CAS  PubMed  Google Scholar 

  • Okatani A, Ikegami T, Takahashi W, Tanaka O (2014) Induction and promotion of flowering by heat-treated catecholamines in Lemna paucicostata. Biosci Biotechnol Biochem 74:2339–2341

    Article  CAS  Google Scholar 

  • Oota Y (1977) Removal by chemicals of photoperiodic light requirements of Lemna gibba G3. Plant Cell Physiol 18:95–105

    Article  CAS  Google Scholar 

  • Oota Y, Hoshino T (1974) Diurnal change in temperature sensitivity Lemna gibba G3 induced by acetylcholine in continuous light. Plant Cell Physiol 15:1063–1072

    CAS  Google Scholar 

  • Park S, Back K (2012) Melatonin promotes seminal root elongation and root growth in transgenic rice after germination. J Pineal Res 53:385–389

    Article  CAS  PubMed  Google Scholar 

  • Park S, Byeon Y, Back K (2013) Functional analyses of three ASMT gene family members in rice plants. J Pineal Res 55:409–415

    CAS  PubMed  Google Scholar 

  • Park S, Byeon Y, Lee HY, Kim YS, Ahn T, Back K (2014) Cloning and characterization of a serotonin N-acetyltransferase from a gymnosperm, loblolly pine (Pinus taeda). J Pineal Res 57:348–355

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Ortíz-Castro R, Méndez-Bravo A, Macías-Rodríguez L, López-Bucio J (2011) Serotonin, a tryptophan-derived signal conserved in plants and animals, regulates root system architecture probably acting as a natural auxin inhibitor in Arabidopsis thaliana. Plant Cell Physiol 52:490–508

    Article  CAS  PubMed  Google Scholar 

  • Pelagio-Flores R, Muñoz Parra E, Ortíz-Castro R, López-Bucio J (2012) Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling. J Pineal Res 53:279–288

    Article  CAS  PubMed  Google Scholar 

  • Penel C, Darimont E, Greppin H, Gaspar TH (2008) Effect of acetylcholine on growth and isoperoxidases of the lentil (Lens culinaris) root. Biol Plant 18:293–298

    Article  Google Scholar 

  • Pickles VR, Sutcliffe JF (1955) The effects of 5-hydroxytryptamine, indole-3-acetic acid, and some other substances, on pigment effusion, sodium uptake, and potassium efflux, by slices of red beetroot in vitro. Biochim Biophys Acta 17:244–251

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Kuran H, Marciniak K, Janas KM (2008) Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations. J Pineal Res 45:24–31

    Article  CAS  PubMed  Google Scholar 

  • Posmyk MM, Bałabusta M, Wieczorek M, Sliwinska E, Janas KM (2009) Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J Pineal Res 46:214–223

    Article  CAS  PubMed  Google Scholar 

  • Protacio CM, Dai Y-R, Lewis EF, Flores HE (1992) Growth stimulation by catecholamines in plant tissue/organ cultures. Plant Physiol 98:89–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian Y, Tan D-X, Reiter RJ, Shi H (2015) Comparative metabolomic analysis highlights the involvement of sugars and glycerol in melatonin-mediated innate immunity against bacterial pathogen in Arabidopsis. Sci Rep 5:15815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghuram N, Sopory SK (1995) Evidence for some common signal-transduction events for opposite regulation of nitrate reductase and phytochrome-I gene-expression by light. Plant Mol Biol 29:25–35

    Article  CAS  PubMed  Google Scholar 

  • Raghuram N, Sopory S (1999) Roles of nitrate, nitrite and ammonium ion in phytochrome regulation of nitrate reductase gene expression in maize. IUBMB Life 47:239–249

    Article  CAS  Google Scholar 

  • Ramakrishna A, Giridhar P, Ravishankar GA (2009) Indoleamines and calcium channels influence morphogenesis in in vitro cultures of Mimosa pudica L. Plant Signal Behav 4:1136–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna A, Giridhar P, Jobin M, Paulose CS, Ravishankar GA (2011) Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora P ex Fr. Plant Cell Tissue Organ Cult 108:267–278

    Article  CAS  Google Scholar 

  • Regula I (1986) The presence of serotonin in the embryo of black walnut (Juglans nigra). Acta Bot Croat 45:91–95

    CAS  Google Scholar 

  • Reiter RJ, Poeggeler B, Tan D-X, Chen D-L, Manchester LC, Guerrero JM (1993) Antioxidant capacity of melatonin: a novel action not requiring a receptor. Neuroendocrinol Lett 15:103–116

    CAS  Google Scholar 

  • Reiter R, Tan D-X, Zhou Z, Cruz MH, Fuentes-Broto L, Galano A (2015) Phytomelatonin: assisting plants to survive and thrive. Molecules 20:7396–7437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiter RJ, Mayo JC, Tan DX, Sainz RM, Alatorre-Jimenez M, Qin L (2016) Melatonin as an antioxidant: under promises but over delivers. J Pineal Res 61:253–278

    Article  CAS  PubMed  Google Scholar 

  • Reynolds JD, Kimbrough TD, Weekley LB (1985) The effect of light quality on 5-hydroxyindole metabolism in leaves of Sedum morganianum (Crassulaceae). Biochem Physiol Pflanzen 180:345–351

    Article  CAS  Google Scholar 

  • Roshchina VV (1990) Regulation of chloroplast reactions by secondary metabolites acetylcholine and biogenic amines. Acta Bot Croat 49:29–35

    CAS  Google Scholar 

  • Roshchina VV (2001a) Molecular-cellular mechanisms in pollen allelopathy. Allelopath J 8:11–28

    Google Scholar 

  • Roshchina VV (2001b) Neurotransmitters in plant life. Science Publishers, Enfield

    Book  Google Scholar 

  • Roshchina VV (2005) Contractile proteins in chemical signal transduction in plant microspores. Biol Bull Russ Acad Sci 32:229–233

    Article  CAS  Google Scholar 

  • Roshchina VV (2006) Chemical signaling in plant microspore cells. Biol Bull Russ Acad Sci 33:332–338

    Article  CAS  Google Scholar 

  • Roshchina VV, Melnikova EV (1998) Allelopathy and plant reproductive cells: participation of acetylcholine and histamine in signaling in the interactions of pollen and pistil. Allelopathy J 5:171–182

    Google Scholar 

  • Roshchina VV, Mukhin EN (1985a) Acetylcholinesterase activity in chloroplasts and acetylcholine effects on photochemical reactions. Photosynthetica 19:164–171

    CAS  Google Scholar 

  • Roshchina VV, Mukhin EN (1985b) Acetylcholine action on the photochemical reactions of pea chloroplasts. Plant Sci 42:95–98

    Article  CAS  Google Scholar 

  • Roshchina VV, Yashin VA (2014) Neurotransmitters catecholamines and histamine in allelopathy: plant cells as models in fluorescence microscopy. Allelopathy J 24:1–15

    Google Scholar 

  • Rueffer M, Zenk MH (1987) Distant precursors of benzylisoquinoline alkaloids and their enzymatic formation. Z Naturforsch 42c:319–332

    Article  Google Scholar 

  • Rush MD, Kutchan TM, Coscia CJ (1985) Correlation of the appearance of morphinan alkaloids and laticifer cells in germinating Papaver bracteatum seedlings. Plant Cell Rep 4:237–240

    Article  CAS  PubMed  Google Scholar 

  • Sagane Y, Nakagawa T, Yamamoto K, Michikawa S, Oguir S, Momonoki YS (2005) Molecular characterization of maize acetylcholinesterase. A novel enzyme family in the plant kingdom. Plant Physiol 138:1359–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Barcelo EJ, Mediavilla MD, Vriend J, Reiter RJ (2016) COP1 and COP9 signalosome, evolutionarily conserved photomorphogenic proteins as possible targets of melatonin. J Pineal Res 61:41–51

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou V, Dimassi-Theriou K, Therios I, Koukourikou-Petridou M (2012a) Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiol Biochem 61:162–168

    Article  CAS  PubMed  Google Scholar 

  • Sarropoulou VN, Therios IN, Dimassi-Theriou KN (2012b) Melatonin promotes adventitious root regeneration in in vitro shoot tip explants of the commercial sweet cherry rootstocks CAB-6P (Prunus cerasus L.), Gisela 6 (P. cerasus × P. canescens), and MxM 60 (P. avium × P. mahaleb). J Pineal Res 52:38–46

    Article  CAS  PubMed  Google Scholar 

  • Sarrou E, Therios I, Dimassi-Theriou K (2014) Melatonin and other factors that promote rooting and sprouting of shoot cuttings in Punica granatum cv. Wonderful. Turk J Bot 38:293–301

    Article  CAS  Google Scholar 

  • Shi H, Chan Z (2014) The cysteine2/histidine2-type transcription factor ZINC FINGER OF ARABIDOPSIS THALIANA 6-activated C-REPEAT-BINDING FACTOR pathway is essential for melatonin-mediated freezing stress resistance in Arabidopsis. J Pineal Res 57:185–191

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Reiter RJ, Tan D-X, Chan Z (2014) INDOLE-3-ACETIC ACID INDUCIBLE 17positively modulates natural leaf senescence through melatonin-mediated pathway in Arabidopsis. J Pineal Res 58:26–33

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Jiang C, Ye T, Tan DX, Reiter RJ, Zhang H, Liu R, Chan Z (2015a) Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot 66:681–694

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Tan D-X, Reiter RJ, Ye T, Yang F, Chan Z (2015b) Melatonin induces class A1 heat-shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. J Pineal Res 58:335–342

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wang X, Tan D-X, Reiter RJ, Chan Z (2015c) Comparative physiological and proteomic analyses reveal the actions of melatonin in the reduction of oxidative stress in Bermuda grass (Cynodon dactylon (L). Pers.). J Pineal Res 59:120–131

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wei Y, He C (2016a) Melatonin-induced CBF/DREB1s are essential for diurnal change of disease resistance and CCA1 expression in Arabidopsis. Plant Physiol Biochem 100:150–155

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Wei Y, Wang Q, Reiter RJ, He C (2016b) Melatonin mediates the stabilization of DELLA proteins to repress the floral transition in Arabidopsis. J Pineal Res 60:373–379

    Article  CAS  PubMed  Google Scholar 

  • Skirycz A, Swiedrych A, Szopa J (2005) Expression of human dopamine receptor in potato (Solanum tuberosum) results in altered tuber carbon metabolism. BMC Plant Biol 5:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol 11:118–130

    CAS  PubMed  Google Scholar 

  • Sliwiak J, Dauter Z, Jaskolski M (2016) Crystal structure of Hyp-1, a Hypericum perforatum PR-10 protein, in complex with melatonin. Front Plant Sci 7:668

    Article  PubMed  PubMed Central  Google Scholar 

  • Smallman BN, Maneckjee A (1981) The synthesis of acetylcholine by plants. Biochem J 194:361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steward FC, Bidwell RGS (1958) Nitrogen metabolism, respiration, and growth of cultured plant tissue: PART IV. The impact of growth on protein metabolism and respiration of carrot tissue explants. General discussion of results. J Exp Bot 9:285–305

    Article  CAS  Google Scholar 

  • Steward FC, Bidwell RGS, Yemm EW (1958) Nitrogen metabolism, respiration, and growth of cultured plant tissue: part i. experimental design, techniques, and recorded data: Part II. The interpretation of specific activity data in tracer experiments: Part III. Nitrogen metabolism and respiration of carrot tissue explants as revealed by experiments with C14-labelled substrates. J Exp Bot 1:11–51

    Article  Google Scholar 

  • Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Li R, Weeda S, Zhao B, Ren S, Guo YD (2015) Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. J Exp Bot 66:657–668

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Zhang N, Wang J, Cao Y, Li X, Zhang H, Zhang L, Tan DX, Guo YD (2016) A label-free differential proteomics analysis reveals the effect of melatonin in promoting fruit ripening and anthocyanin accumulation upon post-harvest in tomatoes. J Pineal Res. 61:138–153

    Article  CAS  PubMed  Google Scholar 

  • Swiedrych A, Stachowiak J, Szopa J (2004) The catecholamine potentiates starch mobilization in transgenic potato tubers. Plant Physiol Biochem 42:103–109

    Article  CAS  PubMed  Google Scholar 

  • Szafrańska K, Glińska S, Janas KM (2012) Ameliorative effect of melatonin on meristematic cells of chilled and re-warmed Vigna radiata roots. Biol Plant 57:91–96

    Article  CAS  Google Scholar 

  • Szafrańska K, Reiter RJ, Posmyk MM (2016) Melatonin application to Pisum sativum L. seeds positively influences the function of the photosynthetic apparatus in growing seedlings during paraquat-induced oxidative stress. Front Plant Sci 7:789–712

    Article  Google Scholar 

  • Szopa J, Wilczynski G, Fiehn O, WEnczel A, Willmitzer L (2001) Identification and quantification of catecholamines in potato plants (Solarium tuberosum) by GC-MS. Phytochemistry 58:315–320

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Di Mascio P, Martinez GR, Prado FM, Reiter RJ (2007) Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J 21:1724–1729

    Article  CAS  PubMed  Google Scholar 

  • Tan D-X, Hardeland R, Manchester LC, Paredes SD, Korkmaz A, Sainz RM, Mayo JC, Fuentes-Broto L, Reiter RJ (2009) The changing biological roles of melatonin during evolution: from an antioxidant to signals of darkness, sexual selection and fitness. Biol Rev 85:607–623

    PubMed  Google Scholar 

  • Tan D-X, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D, Reiter RJ (2012) Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res 54:127–138

    Article  PubMed  CAS  Google Scholar 

  • Tan D-X, Hardeland R, Back K, Manchester LC, Alatorre-Jimenez MA, Reiter RJ (2016) On the significance of an alternate pathway of melatonin synthesis via 5-methoxytryptamine: comparisons across species. J Pineal Res 61:27–40

    Article  CAS  PubMed  Google Scholar 

  • Tanada T (1972) On the involvement of acetylcholine in phytochrome action. Plant Physiol 49:860–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tezuka T, Akita I, Yoshino N, Suzuki Y (2007) Regulation of self-incompatibility by acetylcholine and cAMP in Lilium longiflorum. J Plant Physiol 164:878–885

    Article  CAS  PubMed  Google Scholar 

  • Tiryaki I, Keles H (2012) Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. J Pineal Res 52:332–339

    Article  CAS  PubMed  Google Scholar 

  • Toriyama H (1978) Observational and experimental studies of the meristem of leguminous plants. I. Effects of acetylcholine, red light and far-red light upon the protoplasts of root tip meristem. Cytologia 43:325–337

    Article  Google Scholar 

  • Tretyn A (1987) Influence of red light and acetylcholine on 45Ca2+ uptake by oat coleoptile cells. Cell Biol Int Rep 11:887–896

    Article  CAS  Google Scholar 

  • Tretyn A, Kendrick RE (1991) Acetylcholine in plants: Presence, metabolism and mechanism of action. Bot Rev 57:33–73

    Article  Google Scholar 

  • Tretyn A, Kopcewicz J, Ślesak E (1988) Interaction of light and the cholinergic system in the regulation of seed germination. Biol Plant 30:338–342

    Article  CAS  Google Scholar 

  • Turi CE, Axwik KE, Smith A, Saxena PK, Murch SJ (2014) Galanthamine, an anticholinesterase drug, effects plant growth and development in Artemisia tridentate Nutt. via modulation of auxin and neutrotransmitter signaling. Plant Signal Behav 9:e28645

    Article  PubMed  PubMed Central  Google Scholar 

  • Udenfriend S, Lovenberg W, Sjoerdsma A (1959) Physiologically active amines in common fruits and vegetables. Arch Biochem Biophys 85:487–490

    Article  CAS  PubMed  Google Scholar 

  • Verbeek M, Vendrig JC (1977) Are acetylcholine-like cotyledon-factors involved in the growth of the cucumber hypocotyl? Z Pflanzenphysiol 83:335–340

    Article  CAS  Google Scholar 

  • Verelst WIM, Asard HAN (2004) Analysis of an Arabidopsis thaliana protein family, structurally related to cytochromes b 561 and potentially involved in catecholamine biochemistry in plants. J Plant Physiol 161:175–181

    Article  CAS  PubMed  Google Scholar 

  • Waalkes TP, Sjoerdsma A, Creveling CR, Weissbach H, Udenfriend S (1958) Serotonin, norepinephrine, and related compounds in bananas. Science 127:648–650

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Sun X, Li C, Wei Z, Liang D, Ma F (2012a) Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J Pineal Res 54:292–302

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Yin L, Liang D, Li C, Ma F, Yue Z (2012b) Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle. J Pineal Res 53:11–20

    Article  PubMed  CAS  Google Scholar 

  • Wang P, Sun X, Chang C, Feng F, Liang D, Cheng L, Ma F (2013) Delay in leaf senescence of Malus hupehensis by long-term melatonin application is associated with its regulation of metabolic status and protein degradation. J Pineal Res:424–434

    Google Scholar 

  • Wang P, Sun X, Wang N, Tan DX, Ma F (2015) Melatonin enhances the occurrence of autophagy induced by oxidative stress in Arabidopsis seedlings. J Pineal Res 58:479–489

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, An B, Wei Y, Reiter RJ, Shi H, Lu H, He C (2016) Melatonin regulates root meristem by repressing auxin synthesis and polar auxin transport in Arabidopsis. Front Plant Sci 07:1–11

    Google Scholar 

  • Weeda S, Zhang N, Zhao X, Ndip G, Guo Y, Buck GA, Fu C, Ren S (2014) Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PLoS One 9:e93462

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei W, Li Q-T, Chu Y-N, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS, Chen SY (2015) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66:695–707

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Zeng H, Hu W, Chen L, He C, Shi H (2016) Comparative transcriptional profiling of melatonin synthesis and catabolic genes indicates the possible role of melatonin in developmental and stress responses in rice. Front Plant Sci 7:676–615

    PubMed  PubMed Central  Google Scholar 

  • Wen D, Gong B, Sun S, Liu S, Wang X, Wei M, Yang F, Li Y, Shi Q (2016) Promoting roles of melatonin in adventitious root development of Solanum lycopersicum L. by regulating auxin and nitric oxide signaling. Front Plant Sci 7:787–711

    Article  Google Scholar 

  • Wolf K, Kolář J, Witters E, van Dongen W, van Onckelen H, Machackova I (2001) Daily profile of melatonin levels in Chenopodium rubrum L. depends on photoperiod. J Plant Physiol 158:1491–1493

    Article  CAS  Google Scholar 

  • Wurzinger B, Mair A, Pfister B, Teige M (2014) Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav 6:8–12

    Article  CAS  Google Scholar 

  • Xue H-W, Chen X, Mei Y (2009) Function and regulation of phospholipid signalling in plants. Biochem J 421:145–156

    Article  CAS  PubMed  Google Scholar 

  • Yunghans H, Jaffe MJ (1970) Phytochrome controlled adhesion of mung bean root tips to glass: a detailed characterization of the phenomenon. Physiol Plant 23:1004–1016

    Article  CAS  Google Scholar 

  • Yunghans H, Jaffe MJ (1972) Rapid respiratory changes due to red light or acetylcholine during the early events of phytochrome-mediated photomorphogenesis. Plant Physiol 49:1–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Zhang H-J, Zhao B, Sun QQ, Cao YY, Li R, Qu XX, Weeda S, Li L, Ren S, Reiter RJ, Guo YD (2013a) The RNA-seq approach to discriminate gene expression profiles in response to melatonin on cucumber lateral root formation. J Pineal Res 56:39–50

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Zhao B, Zhang HJ, Weeda S (2013b) Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). J Pineal Res 54(1):15–23

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-J, Zhang N, Yang R-C, Wang L, Sun QQ, Li DB, Cao YY, Weeda S, Zhao B, Ren S, Guo YD (2014) Melatonin promotes seed germination under high salinity by regulating antioxidant systems, ABA and GA 4 interaction in cucumber (Cucumis sativus L.). J Pineal Res 57:269–279

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B, Guo YD (2016) Melatonin improved anthocyanin accumulation by regulating gene expressions and resulted in high reactive oxygen species scavenging capacity in cabbage. Front Plant Sci 7:197–117

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Tan D-X, Lei Q, Chen H, Wang L, Li QT, Gao Y, Kong J (2013) Melatonin and its potential biological functions in the fruits of sweet cherry. J Pineal Res 55:79–88

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Su T, Huo L, Wei H, Jiang Y, Xu L, Ma F (2015a) Unveiling the mechanism of melatonin impacts on maize seedling growth: sugar metabolism as a case. J Pineal Res 59:255–266

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Xu L, Su T, Jiang Y, Hu L, Ma F (2015b) Melatonin regulates carbohydrate metabolism and defenses against Pseudomonas syringae pv. tomato DC3000 infection in Arabidopsis thaliana. J Pineal Res 59:109–119

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Tan DX, Allan AC, Zuo B, Zhao Y, Reiter RJ, Wang L, Wang Z, Guo Y, Zhou J, Shan D, Li Q, Han Z, Kong J (2017) Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci Rep 7:41236–41212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohar R, Izhaki I, Koplovich A, Ben-Shlomo R (2011) Phytomelatonin in the leaves and fruits of wild perennial plants. Phytochem Lett 4:222–226

    Article  CAS  Google Scholar 

  • Zuo B, Zheng X, He P, Wang L, Lei Q, Feng C, Zhou J, Li Q, Han Z, Kong J (2014) Overexpression of MzASMT improves melatonin production and enhances drought tolerance in transgenic Arabidopsis thaliana plants. J Pineal Res 57:408–417

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this work by the Natural Sciences and Engineering Research Council (NSERC) of Canada (grant number 46741).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen K. Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erland, L.A.E., Saxena, P.K. (2019). Mammalian Neurotransmitter Are Important Signals Mediating Plant Morphogenesis. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_16

Download citation

Publish with us

Policies and ethics