Skip to main content

The Light Awakens! Sensing Light and Darkness

  • Chapter
  • First Online:
Sensory Biology of Plants

Abstract

In the late nineteenth century, Charles Darwin observed that ‘light exerts a powerful influence on most vegetable tissues, and there can be no doubt that it generally tends to check their growth’ (The Power of Movement in Plants, 1880). Subsequent to this seminal work, light has been recognised as an important regulator of plant growth. Over the next 150 years, research on light regulation of plant growth and development by immensely imaginative and talented researchers in various laboratories across the globe has given us tremendous insights into how light governs plant growth both at the organismal and molecular levels. The discovery of light-responsive photoreceptor proteins that are activated by red, far-red, blue/UV-A and UV-B light has helped further our understanding of how plants respond to the light that falls on the surface of the earth. This chapter brings together the recent developments in our understanding of how plants sense light by using photoreceptors and the various molecular mechanisms involved in light perception and transmission of the light signal within the plant. Furthermore, the chapter discusses recently ascribed functions of photoreceptors such as the ability of plants to distinguish their kin from non-kin through the action of phytochrome, the role(s) of cryptochrome as a magnetoreceptor and the role of phytochrome and phototropin as temperature sensors. The chapter also rekindles the debate about whether plants can have vision despite the lack of optical or light-sensitive organs such as eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad M, Galland P, Ritz T, Wiltschko R, Wiltschko W (2007) Magnetic intensity affects cryptochrome-dependent responses in Arabidopsis thaliana. Planta 225:615–624

    Article  CAS  PubMed  Google Scholar 

  • Al-Sady B, Ni W, Kircher S, Schäfer E, Quail PH (2006) Photoactivated phytochrome induces rapid PIF3 phosphorylation prior to proteasome-mediated degradation. Mol Cell 23:439–446

    Article  CAS  PubMed  Google Scholar 

  • Andrés F, Coupland G (2012) The genetic basis of flowering responses to seasonal cues. Nat Rev Genet 13:627–639

    Article  PubMed  CAS  Google Scholar 

  • Baluška F, Mancuso S (2016) Vision in plants via plant-specific ocelli? Trends Plant Sci 21:727–730

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M et al (2007) The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone. J Biol Chem 282:14916–14922

    Article  CAS  PubMed  Google Scholar 

  • Bauer D, Viczián AS, Kircher S, Nobis T, Nitschke R, Kunkel T et al (2004) Constitutive photomorphogenesis 1 and multiple photoreceptors control degradation of phytochrome interacting factor 3: a transcription factor required for light signaling in Arabidopsis. Plant Cell 16:1433–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouly J, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N et al (2007) Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states. J Biol Chem 282:9383–9391

    Article  CAS  PubMed  Google Scholar 

  • Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204–210

    Article  CAS  PubMed  Google Scholar 

  • Burgie ES, Bussell AN, Walker JM, Dubiel K, Vierstra RD (2014) Crystal structure of the photosensing module from a red/far-red light-absorbing plant phytochrome. Proc Natl Acad Sci U S A 111:10179–10184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Yao Q, Gao X, Jiang C, Harberd Nicholas P, Fu X (2016) Shoot-to-root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 26:640–646

    Article  CAS  PubMed  Google Scholar 

  • Cho HY, Tseng TS, Kaiserli E, Sullivan S, Christie JM, Briggs WR (2007) Physiological roles of the light, oxygen, or voltage domains of phototropin 1 and phototropin 2 in Arabidopsis. Plant Physiol 143:517–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999) LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide. Proc Natl Acad Sci U S A 96:8779–8783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J et al (2011) phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9:e1001076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM, Arvai AS, Baxter KJ, Heilmann M, Pratt AJ, O’Hara A et al (2012) Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges. Science 335:1492–1496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM, Blackwood L, Petersen J, Sullivan S (2015) Plant flavoprotein photoreceptors. Plant Cell Physiol 56:401–413

    Article  CAS  PubMed  Google Scholar 

  • Crepy MA, Casal JJ (2015) Photoreceptor-mediated kin recognition in plants. New Phytol 205:329–338

    Article  CAS  PubMed  Google Scholar 

  • Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie JM et al (2012) Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 31:3457–3467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demkura PV, Ballaré CL (2012) UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. Mol Plant 5:642–652

    Article  PubMed  CAS  Google Scholar 

  • Devlin PF, Yanovsky MJ, Kay SA (2003) A genomic analysis of the shade avoidance response in Arabidopsis. Plant Physiol 133:1617–1629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley SA, File AL (2007) Kin recognition in an annual plant. Biol Lett 3:435–438

    Article  PubMed  PubMed Central  Google Scholar 

  • Favory JJ, Stec A, Gruber H, Rizzini L, Oravecz A, Funk M et al (2009) Interaction of COP1 and UVR8 regulates UV-B induced photomorphogenesis and stress acclimation in Arabidopsis. EMBO J 28:591–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin KA (2008) Shade avoidance. New Phytol 179:930–944

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C et al (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108:20231–20235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii Y, Tanaka H, Konno N, Ogasawara Y, Hamashima N, Tamura S et al (2017) Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc Natl Acad Sci U S A 114:9206–9211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianoli E (2017) Eyes in the chameleon vine? Trends Plant Sci 22:4–5

    Article  CAS  PubMed  Google Scholar 

  • Gianoli E, Carrasco-Urra F (2014) Leaf mimicry in a climbing plant protects against herbivory. Curr Biol 24:984–987

    Article  CAS  PubMed  Google Scholar 

  • Giovani B, Byrdin M, Ahmad M, Brettel K (2003) Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nat Struct Mol Biol 10:489–490

    Article  CAS  Google Scholar 

  • Goyal A, Karayekov E, Galvão VC, Ren H, Casal JJ, Fankhauser C (2016) Shade promotes phototropism through phytochrome B-controlled auxin production. Curr Biol 26:3280–3287

    Article  CAS  PubMed  Google Scholar 

  • Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot 103:1165–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta SK, Sharma S, Santisree P, Kilambi HV, Appenroth K, Sreelakshmi Y et al (2014) Complex and shifting interactions of phytochromes regulate fruit development in tomato. Plant Cell Environ 37:1688–1702

    Article  CAS  PubMed  Google Scholar 

  • Haberlandt G (1905) Die Lichtsinnesorgane der Laubblätter. W. Engelmann, Leipzig

    Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8:15–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohm T, Demarsy E, Quan CM, Petrolati LA, Preuten T, Vernoux T et al (2014) Plasma membrane H+-ATPase regulation is required for auxin gradient formation preceding phototropic growth. Mol Syst Biol 10:751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang X, Ouyang X, Yang P, Lau OS, Li G, Li J et al (2012) Arabidopsis FHY3 and HY5 positively mediate induction of COP1 transcription in response to photomorphogenic UV-B light. Plant Cell 24:4590–4606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Yang P, Ouyang X, Chen L, Deng XW (2014) Photoactivated UVR8-COP1 module determines photomorphogenic UV-B signaling output in Arabidopsis. PLoS Genet 10:e1004218

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Inoue S, Kinoshita T (2008) Blue light regulation of stomatal opening and the plasma membrane H+-ATPase. Plant Physiol 174:531–538

    Article  CAS  Google Scholar 

  • Ito S, Song YH, Imaizumi T (2012) LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis. Mol Plant 5:573–582

    Article  PubMed  CAS  Google Scholar 

  • Itoh H, Nonoue Y, Yano M, Izawa T (2010) A pair of floral regulators sets critical day length for Hd3a florigen expression in rice. Nat Genet 42:635

    Article  CAS  PubMed  Google Scholar 

  • Iwabuchi K, Minamino R, Takagi S (2010) Actin reorganization underlies phototropin-dependent positioning of nuclei in Arabidopsis leaf cells. Plant Physiol 152:1309–1319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones MA, Feeney KA, Kelly SM, Christie JM (2007) Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission. J Biol Chem 282(9):6405–6414

    Article  CAS  PubMed  Google Scholar 

  • Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T et al (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M, Torii M, Fujita A, Tainaka K (2010) FMN binding and photochemical properties of plant putative photoreceptors containing two LOV domains, LOV/LOV proteins. J Biol Chem 285:34765–34772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kircher S, Schopfer P (2012) Photosynthetic sucrose acts as cotyledon-derived long-distance signal to control root growth during early seedling development in Arabidopsis. Proc Natl Acad Sci U S A 109:11217–11221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H, Ha J, Kim S, Choi H, Kim Z, Han Y et al (2016) Stem-piped light activates phytochrome B to trigger light responses in Arabidopsis thaliana roots. Sci Signal 9:ra106

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Kim MR, Kang M, Cha J, Han S, Nawkar GM et al (2017) The F-box protein FKF1 inhibits dimerization of COP1 in the control of photoperiodic flowering. Nat Commun 8:2259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A et al (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    Article  CAS  PubMed  Google Scholar 

  • Legris M, Nieto C, Sellaro R, Prat S, Casal JJ (2017) Perception and signalling of light and temperature cues in plants. Plant J 90:683–697

    Article  CAS  PubMed  Google Scholar 

  • Leivar P, Monte E (2014) PIFs: systems integrators in plant development. Plant Cell 26:56–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM et al (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li G, Wang H, Wang Deng X (2011) Phytochrome signaling mechanisms. The Arabidopsis Book, American Society for Plant Biologists, Rockville

    Book  Google Scholar 

  • Lian H, He S, Zhang Y, Zhu D, Zhang J, Jia K et al (2011) Blue-light-dependent interaction of cryptochrome 1 with SPA1 defines a dynamic signaling mechanism. Genes Dev 25:1023–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liedvogel M, Mouritsen H (2010) Cryptochrome-a potential magnetoreceptor: what do we know and what do we want to know? J R Soc Interface 7:S147–S162

    Article  CAS  PubMed  Google Scholar 

  • Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL et al (1995) Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1. Science 269:968–970

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang Q, Liu Y, Zhao X, Imaizumi T, Somers DE et al (2013) Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc Natl Acad Sci U S A 110:17582–17587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Robinson AJ, Henbest KB, Hogben HJ, Biskup T, Ahmad M et al (2012) Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor. Proc Natl Acad Sci U S A 109:4774–4779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei ME (2014) Magnetic field effects on plant growth, development, and evolution. Front Plant Sci 5:445

    Article  PubMed  PubMed Central  Google Scholar 

  • Mancuso S, Baluŝka F (2017) Plant ocelli for visually guided plant behavior. Trends Plant Sci 22:5–6

    Article  CAS  PubMed  Google Scholar 

  • Martínez-García JF, Gallemí M, Molina-Contreras MJ, Llorente B, Bevilaqua MRR, Quail PH (2014) The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome A and B differentiates vegetation proximity and canopy shade. PLoS One 9:e109275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuda S, Kajizuka T, Kadota A, Nishimura T, Koshiba T (2011) NPH3-and PGP-like genes are exclusively expressed in the apical tip region essential for blue-light perception and lateral auxin transport in maize coleoptiles. J Exp Bot 62:3459–3466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagatani A (2004) Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol 7:708–711

    Article  CAS  PubMed  Google Scholar 

  • Nakasako M, Zikihara K, Matsuoka D, Katsura H, Tokutomi S (2008) Structural basis of the LOV1 dimerization of Arabidopsis phototropins 1 and 2. J Mol Biol 381:718–733

    Article  CAS  PubMed  Google Scholar 

  • Nakasone Y, Zikihara K, Tokutomi S, Terazima M (2013) Photochemistry of Arabidopsis phototropin 1 LOV1: transient tetramerization. Photochem Photobiol Sci USA 12:1171–1179

    Article  CAS  Google Scholar 

  • Navarro C, Abelenda JA, Cruz-Oró E, Cuéllar CA, Tamaki S, Silva J et al (2011) Control of flowering and storage organ formation in potato by FLOWERING LOCUS T. Nature 478:119

    Article  CAS  PubMed  Google Scholar 

  • Nilsson T, Daniel G (2014) Developments in the study of soft rot and bacterial decay. In: Forest products biotechnology. CRC Press, Boca Raton, pp 47–72

    Google Scholar 

  • Occhipinti A, De Santis A, Maffei ME (2014) Magnetoreception: an unavoidable step for plant evolution? Trends Plant Sci 19:1–4

    Article  CAS  PubMed  Google Scholar 

  • Oide M, Okajima K, Nakagami H, Kato T, Sekiguchi Y, Oroguchi T et al (2018) Blue light-excited LOV1 and LOV2 domains cooperatively regulate the kinase activity of full-length phototropin2 from Arabidopsis. J Biol Chem 293:963–972

    Article  CAS  PubMed  Google Scholar 

  • Osugi A, Itoh H, Ikeda-Kawakatsu K, Takano M, Izawa T (2011) Molecular dissection of the roles of phytochrome in photoperiodic flowering in rice. Plant Physiol 157:1128–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paik I, Yang S, Choi G (2012) Phytochrome regulates translation of mRNA in the cytosol. Proc Natl Acad Sci U S A 109:1335–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park E, Park J, Kim J, Nagatani A, Lagarias JC, Choi G (2012) Phytochrome B inhibits binding of phytochrome-interacting factors to their target promoters. Plant J 72:537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedmale UV, Liscum E (2007) Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem 282:19992–20001

    Article  CAS  PubMed  Google Scholar 

  • Pedmale UV, Huang SC, Zander M, Cole BJ, Hetzel J, Ljung K et al (2016) Cryptochromes interact directly with PIFs to control plant growth in limiting blue light. Cell 164:233–245

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer A, Mathes T, Lu Y, Hegemann P, Kottke T (2010) Blue light induces global and localized conformational changes in the kinase domain of full-length phototropin. Biochemistry 49:1024–1032

    Article  CAS  PubMed  Google Scholar 

  • Pham VN, Kathare PK, Huq E (2018) Phytochromes and phytochrome interacting factors. Plant Physiol 176:1025–1038

    Article  CAS  PubMed  Google Scholar 

  • Platt TG, Bever JD (2009) Kin competition and the evolution of cooperation. Trends Ecol Evol 24:370–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Preuten T, Hohm T, Bergmann S, Fankhauser C (2013) Defining the site of light perception and initiation of phototropism in Arabidopsis. Curr Biol 23:1934–1938

    Article  CAS  PubMed  Google Scholar 

  • Preuten T, Blackwood L, Christie JM, Fankhauser C (2015) Lipid anchoring of Arabidopsis phototropin 1 to assess the functional significance of receptor internalization: should I stay or should I go? New Phytol 206:1038–1050

    Article  CAS  PubMed  Google Scholar 

  • Rakusová H, Fendrych MÅ, Friml J (2015) Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants. Curr Opin Plant Biol 23:116–123

    Article  PubMed  CAS  Google Scholar 

  • Ritz T, Yoshii T, Foerster C, Ahmad M (2010) Cryptochrome: a photoreceptor with the properties of a magnetoreceptor? Commun Integr Biol 3:24–27

    Article  PubMed  PubMed Central  Google Scholar 

  • Rizzini L, Favory J, Cloix C, Faggionato D, O’Hara A, Kaiserli E et al (2011) Perception of UV-B by the Arabidopsis UVR8 protein. Science 332:103–106

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR et al (2001) Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci U S A 98:6969–6974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salomon M, Zacherl M, Rudiger W (1997) Phototropism and protein phosphorylation in higher plants: unilateral blue light irradiation generates a directional gradient of protein phosphorylation across the oat coleoptile. Plant Biol 110:214–216

    CAS  Google Scholar 

  • Sawa M, Nusinow DA, Kay SA, Imaizumi T (2007) FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318:261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, López-Juez E, Nagatani A, Furuya M (1993) Identification of photo-inactive phytochrome A in etiolated seedlings and photo-active phytochrome B in green leaves of the aurea mutant of tomato. Plant J 4:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Sharma S, Kharshiing E, Srinivas A, Zikihara K, Tokutomi S, Nagatani A et al (2014) A dominant mutation in the light-oxygen and voltage2 domain vicinity impairs phototropin1 signaling in tomato. Plant Physiol 164:2030–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Khanna R, Carle CM, Quail PH (2007) Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Plant Physiol 145:1043–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinclair SA, Larue C, Bonk L, Khan A, Castillo-Michel H, Stein RJ et al (2017) Etiolated seedling development requires repression of photomorphogenesis by a small cell-wall-derived dark signal. Curr Biol 27:3403–3418

    Article  CAS  PubMed  Google Scholar 

  • Song YH, Smith R, To BJ, Millar AJ, Imaizumi T (2012) FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336:1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Liu Q, Hu B, Wu W (2017) Photoreceptor PhyB involved in Arabidopsis temperature perception and heat-tolerance formation. Int J Mol Sci 18:1194

    Article  PubMed Central  CAS  Google Scholar 

  • Srinivas A, Behera RK, Kagawa T, Wada M, Sharma R (2004) High pigment1 mutation negatively regulates phototropic signal transduction in tomato seedlings. Plant Physiol 134:790–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sullivan S, Hart JE, Rasch P, Walker CH, Christie JM (2016a) Phytochrome A mediates blue-light enhancement of second-positive phototropism in Arabidopsis. Front Plant Sci 7:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Sullivan S, Takemiya A, Kharshiing E, Cloix C, Shimazaki KI, Christie JM (2016b) Functional characterization of Arabidopsis phototropin 1 in the hypocotyl apex. Plant J 88:907–920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemiya A, Sugiyama N, Fujimoto H, Tsutsumi T, Yamauchi S, Hiyama A et al (2013a) Phosphorylation of BLUS1 kinase by phototropins is a primary step in stomatal opening. Nat Commun 4:2094

    Article  PubMed  CAS  Google Scholar 

  • Takemiya A, Yamauchi S, Yano T, Ariyoshi C, Shimazaki KI (2013b) Identification of a regulatory subunit of protein phosphatase 1 which mediates blue light signaling for stomatal opening. Plant Cell Physiol 54:24–35

    Article  CAS  PubMed  Google Scholar 

  • van Gelderen K, Kang C, Pierik R (2018) Light signaling, root development, and plasticity. Plant Physiol 176:1049–1060

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang H (2015) Phytochrome signaling: time to tighten up the loose ends. Mol Plant 8:540–551

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Ma L, Li J, Zhao H, Deng XW (2001) Direct interaction of Arabidopsis cryptochromes with COP1 in light control development. Science 294:154–158

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Zuo Z, Wang X, Gu L, Yoshizumi T, Yang Z et al (2016) Photoactivation and inactivation of Arabidopsis cryptochrome 2. Science 354:343–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang Q, Han Y, Liu Q, Gu L, Yang Z et al (2017) A CRY-BIC negative-feedback circuitry regulating blue light sensitivity of Arabidopsis. Plant J 92:426–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West SA, Diggle SP, Buckling A, Gardner A, Griffin AS (2007) The social lives of microbes. Annu Rev Ecol Evol Syst 38:53–77

    Article  Google Scholar 

  • Wigge PA (2011) FT, a mobile developmental signal in plants. Curr Biol 21:R374–R378

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Yin X, Lv Y, Wu C, Zhang Y, Song T (2012) A near-null magnetic field affects cryptochrome-related hypocotyl growth and flowering in Arabidopsis. Adv Space Res 49:834–840

    Article  CAS  Google Scholar 

  • Xu P, Lian H, Wang W, Xu F, Yang H (2016) Pivotal roles of the phytochrome-interacting factors in cryptochrome signaling. Mol Plant 9:496–497

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Tang R, Cashmore AR (2001) The signaling mechanism of Arabidopsis CRY1 involves direct interaction with COP1. Plant Cell 13:2573–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin R, Skvortsova M, Loubéry S, Ulm R (2016) COP1 is required for UV-B induced nuclear accumulation of the UVR8 photoreceptor. Proc Natl Acad Sci U S A 113:E4415–E4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu X, Sayegh R, Maymon M, Warpeha K, Klejnot J, Yang H et al (2009) Formation of nuclear bodies of Arabidopsis CRY2 in response to blue light is associated with its blue light dependent degradation. Plant Cell 21:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeugner A, Byrdin M, Bouly J, Bakrim N, Giovani B, Brettel K et al (2005) Light-induced electron transfer in Arabidopsis cryptochrome-1 correlates with in vivo function. J Biol Chem 280:19437–19440

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

EK is supported by grant no. SB/EMEQ-152/2014 from the Science and Engineering Research Board, Government of India. RS and YS are supported by the Department of Biotechnology grant no. BT/COE/34/SP15209/2015 and YS is supported by grant no BT/PR6983/PBD/16/1007/2012.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharshiing, E., Sreelakshmi, Y., Sharma, R. (2019). The Light Awakens! Sensing Light and Darkness. In: Sopory, S. (eds) Sensory Biology of Plants. Springer, Singapore. https://doi.org/10.1007/978-981-13-8922-1_2

Download citation

Publish with us

Policies and ethics