Skip to main content

Auto-Ignition of Hydrogen-Rich Syngas-Related Fuels in a Turbulent Shear Layer

  • Chapter
  • First Online:
Innovations in Sustainable Energy and Cleaner Environment

Abstract

The development of low carbon footprint and clean energy technologies is essential to resolve the concerns of climate change and diminishing fossil fuel resources. Hydrogen-enriched fuel blends offer a route to decarbonise existing technologies. The current work presents an experimental and numerical study of fuel reactivity changes by the gradual enhancement of methane or carbon monoxide/air mixtures with hydrogen on the auto-ignition in a turbulent shear layer formed between a fuel jet and a stream of hot combustion products. Flame stabilisation in such turbulent shear layers is a key consideration for the operation of gas turbines where the injected fuel interacts with (re-circulating) hot combustion products. The study covers a total of 34 fuel-lean premixed binary fuel blends over a wide range of H\(_2\)/CH\(_4\) and H\(_2\)/CO compositions. The lift-off height of a vitiated jet flame was used to quantify the impact of mixture reactivity on flame stability using chemiluminescence measurements. Selected experimental data were compared with 2D parabolic RANS calculations using a transported PDF approach closed at the joint-scalar level combined with detailed chemistry. The computations show good agreement with the experimental data over a wide range of conditions. The results consistently show a notable difference between blending H\(_2\) with CO or CH\(_4\). Comparatively small amounts of added CH\(_4\) cause a noticeable decline in mixture reactivity while a CO content of up to 50% shows only a modest impact. The data provide a consistent and unique database detailing the reactivity of hydrogen-rich syngas-related fuel blends in a turbulent flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lieuwen T, Yang V, Yetter R (eds) (2009) Synthesis gas combustion: fundamentals and applications. CRC Press, Boca Raton. https://doi.org/10.1201/9781420085358

    Book  Google Scholar 

  2. Daniele S, Jansohn P, Mantzaras J, Boulouchos K (2011) Turbulent flame speed for syngas at gas turbine relevant conditions. Proc Comb Inst 33(2):2937–2944. https://doi.org/10.1016/j.proci.2010.05.057

    Article  Google Scholar 

  3. Milosavljevic VD, Lindstedt RP, Cornwell MD, Gutmark EJ, Váos EM (2006) Combustion instabilities near the lean extinction limit. In: Yu KH, Whitelaw JH, Witton JJ, Roy G (eds) Advances in combustion and noise control. Cranfield University Press, pp 149–165

    Google Scholar 

  4. Hampp F, Shariatmadar S, Lindstedt RP (2018) Quantification of low Damköhler number turbulent premixed flames. Proc Comb Inst. https://doi.org/10.1016/j.proci.2018.06.079 (in press)

    Article  Google Scholar 

  5. Hampp F, Lindstedt RP (2017) Quantification of combustion regime transitions in premixed turbulent DME flames. Combust Flame 182:248–268. https://doi.org/10.1016/j.combustflame.2017.04.006

    Article  Google Scholar 

  6. Hampp F, Lindstedt RP (2017) Strain distribution on material surfaces during combustion regime transitions. Proc Comb Inst 36(2):1911–1918. https://doi.org/10.1016/j.proci.2016.07.018

    Article  Google Scholar 

  7. Korb B, Kawauchi S, Wachtmeister G (2016) Influence of hydrogen addition on the operating range, emissions and efficiency in lean burn natural gas engines at high specific loads. Fuel 164:410–418. https://doi.org/10.1016/j.fuel.2015.09.080

    Article  Google Scholar 

  8. Zhang B, Ji C, Wang S (2016) Performance of a hydrogen-enriched ethanol engine at unthrottled and lean conditions. Energy Convers Manage 114:68–74. https://doi.org/10.1016/j.enconman.2016.01.073

    Article  Google Scholar 

  9. Amrouche F, Erickson PA, Park JW, Varnhagen S (2016) An experimental evaluation of ultra-lean burn capability of a hydrogen-enriched ethanol-fuelled Wankel engine at full load condition. Int J Hydrogen Energy 41(42):19231–19242. https://doi.org/10.1016/j.ijhydene.2016.07.267

    Article  Google Scholar 

  10. Bell SR, Gupta M (1997) Extension of the lean operating limit for natural gas fueling of a spark ignited engine using hydrogen blending. Combust Sci Technol 123(1–6):23–48. https://doi.org/10.1080/00102209708935620

    Article  Google Scholar 

  11. Ma F, Wang Y, Liu H, Li Y, Wang J, Zhao S (2007) Experimental study on thermal efficiency and emission characteristics of a lean burn hydrogen enriched natural gas engine. Int J Hydrogen Energy 32(18):5067–5075. https://doi.org/10.1016/j.ijhydene.2007.07.048

    Article  Google Scholar 

  12. Wang J, Huang Z, Tang C, Zheng J (2010) Effect of hydrogen addition on early flame growth of lean burn natural gas–air mixtures. Int J Hydrogen Energy 35(13):7246–7252. https://doi.org/10.1016/j.ijhydene.2010.01.004

    Article  Google Scholar 

  13. Frenillot JP, Cabot G, Cazalens M, Renou B, Boukhalfa MA (2009) Impact of H\(_2\) addition on flame stability and pollutant emissions for an atmospheric kerosene/air swirled flame of laboratory scaled gas turbine. Int J Hydrogen Energy 34(9):3930–3944. https://doi.org/10.1016/j.ijhydene.2009.02.059

    Article  Google Scholar 

  14. Lieuwen T, McDonell V, Santavicca D, Sattelmayer T (2008) Burner development and operability issues associated with steady flowing syngas fired combustors. Combust Sci Technol 180(6):1169–1192. https://doi.org/10.1080/00102200801963375

    Article  Google Scholar 

  15. Lowesmith BJ, Mumby C, Hankinson G, Puttock JS (2011) Vented confined explosions involving methane/hydrogen mixtures. Int J Hydrogen Energy 36(3):2337–2343. https://doi.org/10.1016/j.ijhydene.2010.02.084

    Article  Google Scholar 

  16. Salzano E, Cammarota F, Di Benedetto A, Di Sarli V (2012) Explosion behavior of hydrogen–methane/air mixtures. J Loss Prev Process Ind 25(3):443–447. https://doi.org/10.1016/j.jlp.2011.11.010

    Article  Google Scholar 

  17. Ma Q, Zhang Q, Chen J, Huang Y, Shi Y (2014) Effects of hydrogen on combustion characteristics of methane in air. Int J Hydrogen Energy 39(21):11291–11298. https://doi.org/10.1016/j.ijhydene.2014.05.030

    Article  Google Scholar 

  18. Hampp F, Lindstedt RP (2016) Fractal grid generated turbulence–a bridge to practical combustion applications. In: Sakai Y, Vassilicos C (eds) Fractal flow design: how to design bespoke turbulence and why. Springer International Publishing, Cham, pp 75–102. https://doi.org/10.1007/978-3-319-33310-6_3

    Chapter  Google Scholar 

  19. Tang C, Zhang Y, Huang Z (2014) Progress in combustion investigations of hydrogen enriched hydrocarbons. Renew Sustain Energy Rev 30:195–216. https://doi.org/10.1016/j.rser.2013.10.005

    Article  Google Scholar 

  20. Lieuwen T, McDonell V, Petersen E, Santavicca D (2008) Fuel flexibility influences on premixed combustor blowout, flashback, autoignition, and stability. J Eng Gas Turbines Power 130(1):011506–011506–10. https://doi.org/10.1115/1.2771243

    Article  Google Scholar 

  21. Li T, Hampp F, Lindstedt RP (2018) Experimental study of turbulent explosions in hydrogen enriched syngas related fuels. Process Saf Environ Prot 116:663–676. https://doi.org/10.1016/j.psep.2018.03.032

    Article  Google Scholar 

  22. Li T, Hampp F, Lindstedt RP (2018) The impact of hydrogen enrichment on the flow field evolution in turbulent explosions. Submitted to Comb Flame

    Google Scholar 

  23. Zhang Y, Shen W, Fan M, Zhang H, Li S (2014) Laminar flame speed studies of lean premixed H\(_2\)/CO/air flames. Combust Flame 161(10):2492–2495. https://doi.org/10.1016/j.combustflame.2014.03.016

    Article  Google Scholar 

  24. Donohoe N, Heufer A, Metcalfe WK, Curran HJ, Davis ML, Mathieu O, Plichta D, Morones A, Petersen EL, Güthe F (2014) Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures. Combust Flame 161(6):1432–1443. https://doi.org/10.1016/j.combustflame.2013.12.005

    Article  Google Scholar 

  25. Messaoudani Zl, Rigas F, Binti Hamid MD, Che Hassan CR (2016) Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: a critical review. Int J Hydrogen Energy 41(39):17511–17525. https://doi.org/10.1016/j.ijhydene.2016.07.171

    Article  Google Scholar 

  26. Mastorakos E, Baritaud TA, Poinsot TJ (1997) Numerical simulations of autoignition in turbulent mixing flows. Combust Flame 109(1):198–223. https://doi.org/10.1016/S0010-2180(96)00149-6

    Article  Google Scholar 

  27. Gkagkas K, Lindstedt RP (2007) Transported PDF modelling with detailed chemistry of pre- and auto-ignition in CH\(_4\)/air mixtures. Proc Comb Inst 31(1):1559–1566. https://doi.org/10.1016/j.proci.2006.08.078

    Article  Google Scholar 

  28. Hilbert R, Thévenin D (2002) Autoignition of turbulent non-premixed flames investigated using direct numerical simulations. Combust Flame 128(1):22–37. https://doi.org/10.1016/S0010-2180(01)00330-3

    Article  Google Scholar 

  29. Cabra R, Myhrvold T, Chen JY, Dibble RW, Karpetis AN, Barlow RS (2002) Simultaneous laser raman-rayleigh-lif measurements and numerical modeling results of a lifted turbulent H\(_2\)/N\(_2\) jet flame in a vitiated coflow. Proc Comb Inst 29(2):1881–1888. https://doi.org/10.1016/S1540-7489(02)80228-0

    Article  Google Scholar 

  30. Cabra R (2004) Turbulent jet flames into a vitiated coflow. Technical report, California University, Berkeley. https://ntrs.nasa.gov/search.jsp?R=20040042477

  31. Masri AR, Cao R, Pope SB, Goldin GM (2004) Pdf calculations of turbulent lifted flames of H\(_2\)/N\(_2\) fuel issuing into a vitiated co-flow. Combust Theory Modell 8(1):1–22. https://doi.org/10.1088/1364-7830/8/1/001

    Article  Google Scholar 

  32. Cao RR, Pope SB, Masri AR (2005) Turbulent lifted flames in a vitiated coflow investigated using joint PDF calculations. Combust Flame 142(4):438–453. https://doi.org/10.1016/j.combustflame.2005.04.005

    Article  Google Scholar 

  33. O’Loughlin W, Masri AR (2011) A new burner for studying auto-ignition in turbulent dilute sprays. Combust Flame 158(8):1577–1590. https://doi.org/10.1016/j.combustflame.2010.12.021

    Article  Google Scholar 

  34. Medwell PR, Masri AR, Pham PX, Dally BB, Nathan GJ (2014) Temperature imaging of turbulent dilute spray flames using two-line atomic fluorescence. Exp Fluids 55(11):1840. https://doi.org/10.1007/s00348-014-1840-3

    Article  Google Scholar 

  35. Williams A, Shcherbik D, Bibik O, Lubarsky E, Zinn BT (2015) Autoignition of a jet-a fuel spray in a high temperature vitiated air flow. ASME Turbo Expo: Power for Land, Sea, and Air, Volume 4A: Combustion, Fuels and EmissionsASME Turbo Expo: Power for Land, Sea, and Air, Volume 4A: Combustion, Fuels and Emissions p V04AT04A021 https://doi.org/10.1115/GT2015-42199

  36. Mastorakos E (2017) Forced ignition of turbulent spray flames. Proc Comb Inst 36(2):2367–2383. https://doi.org/10.1016/j.proci.2016.08.044

    Article  Google Scholar 

  37. Tang Q, Xu J, Pope SB (2000) Probability density function calculations of local extinction and no production in piloted-jet turbulent methane/air flames. Proc Comb Inst 28(1):133–139. https://doi.org/10.1016/S0082-0784(00)80204-0

    Article  Google Scholar 

  38. Lindstedt RP, Louloudi SA, Váos EM (2000) Joint scalar probability density function modeling of pollutant formation in piloted turbulent jet diffusion flames with comprehensive chemistry. Proc Comb Inst 28(1):149–156. https://doi.org/10.1016/S0082-0784(00)80206-4

    Article  Google Scholar 

  39. Lindstedt RP, Louloudi SA (2002) Joint scalar transported probability density function modeling of turbulent methanol jet diffusion flames. Proc Comb Inst 29(2):2147–2154. https://doi.org/10.1016/S1540-7489(02)80261-9

    Article  Google Scholar 

  40. Gkagkas K, Lindstedt RP (2009) The impact of reduced chemistry on auto-ignition of H\(_2\) in turbulent flows. Combust Theory Modell 13(4):607–643. https://doi.org/10.1080/13647830902928524

    Article  MATH  Google Scholar 

  41. Scholte TG, Vaags PB (1959) Burning velocities of mixtures of hydrogen, carbon monoxide and methane with air. Combust Flame 3:511–524. https://doi.org/10.1016/0010-2180(59)90057-4

    Article  Google Scholar 

  42. Cheng RK, Oppenheim AK (1984) Autoignition in methane–hydrogen mixtures. Combust Flame 58(2):125–139. https://doi.org/10.1016/0010-2180(84)90088-9

    Article  Google Scholar 

  43. Ilbas M, Crayford AP, Yılmaz I, Bowen PJ, Syred N (2006) Laminar-burning velocities of hydrogen–air and hydrogen–methane–air mixtures: an experimental study. Int J Hydrogen Energy 31(12):1768–1779. https://doi.org/10.1016/j.ijhydene.2005.12.007

    Article  Google Scholar 

  44. Gersen S, Anikin NB, Mokhov AV, Levinsky HB (2008) Ignition properties of methane/hydrogen mixtures in a rapid compression machine. Int J Hydrogen Energy 33(7):1957–1964. https://doi.org/10.1016/j.ijhydene.2008.01.017

    Article  Google Scholar 

  45. Di Sarli V, Benedetto AD (2007) Laminar burning velocity of hydrogen–methane/air premixed flames. Int J Hydrogen Energy 32(5):637–646. https://doi.org/10.1016/j.ijhydene.2006.05.016

    Article  Google Scholar 

  46. Fotache CG, Tan Y, Sung CJ, Law CK (2000) Ignition of CO/H\(_2\)/N\(_2\) versus heated air in counterflow: experimental and modeling results. Combust Flame 120(4):417–426. https://doi.org/10.1016/S0010-2180(99)00098-X

    Article  Google Scholar 

  47. Sung CJ, Law CK (2008) Fundamental combustion properties of H\(_2\)/CO mixtures: ignition and flame propagation at elevated pressures. Combust Sci Technol 180(6):1097–1116. https://doi.org/10.1080/00102200801963169

    Article  Google Scholar 

  48. Hampp F, Lindstedt RP (2018) Quantification of external enthalpy controlled combustion at unity Damköhler number. In: Runchal AK, Gupta AK, Kushari A, De A, Aggarwal SK (eds) Energy for propulsion : a sustainable technologies approach, green energy and technology. Springer, Singapore, pp 189–215. https://doi.org/10.1007/978-981-10-7473-8_8

    Chapter  Google Scholar 

  49. Geipel P, Goh KHH, Lindstedt RP (2010) Fractal-generated turbulence in opposed jet flows. Flow Turbulence Combust 85(3):397–419. https://doi.org/10.1007/s10494-010-9288-x

    Article  MATH  Google Scholar 

  50. Elliott C, Vijayakumar V, Zink W, Hansen R (2007) National instruments LabVIEW: a programming environment for laboratory automation and measurement. J Assoc for Laboratory Automation 12(1):17–24. https://doi.org/10.1016/j.jala.2006.07.012

    Article  Google Scholar 

  51. Yu X, Zha K, Luo X, Taraza D, Jansons M (2013) Simulation and experimental measurement of CO\(_{2}\)*, OH* and CH\(_{2}\)O* chemiluminescence from an optical diesel engine fueled with n-Heptane. In: 11th international conference on engines & vehicles, SAE International. https://doi.org/10.4271/2013-24-0010

  52. García-Armingol T, Ballester J (2014) Flame chemiluminescence in premixed combustion of hydrogen-enriched fuels. Int J Hydrogen Energy 39(21):11299–11307. https://doi.org/10.1016/j.ijhydene.2014.05.109

    Article  Google Scholar 

  53. García-Armingol T, Ballester J (2014) Influence of fuel composition on chemiluminescence emission in premixed flames of CH\(_4\)/CO\(_2\)/H\(_2\)/CO blends. Int J Hydrogen Energy 39(35):20255–20265. https://doi.org/10.1016/j.ijhydene.2014.10.039

    Article  Google Scholar 

  54. Hwang W, Dec J, Sjöberg M (2008) Spectroscopic and chemical-kinetic analysis of the phases of HCCI autoignition and combustion for single- and two-stage ignition fuels. Combust Flame 154(3):387–409. https://doi.org/10.1016/j.combustflame.2008.03.019

    Article  Google Scholar 

  55. Sheinson RS, Williams FW (1973) Chemiluminescence spectra from cool and blue flames: electronically excited formaldehyde. Combust Flame 21(2):221–230. https://doi.org/10.1016/S0010-2180(73)80026-4

    Article  Google Scholar 

  56. Lindstedt RP, Ozarovsky HC (2005) Joint scalar transported PDF modeling of nonpiloted turbulent diffusion flames. Combust Flame 143(4):471–490. https://doi.org/10.1016/j.combustflame.2005.08.030

    Article  Google Scholar 

  57. Lindstedt RP, Louloudi SA (2005) Joint-scalar transported PDF modeling of soot formation and oxidation. Proc Comb Inst 30(1):775–783. https://doi.org/10.1016/j.proci.2004.08.080

    Article  Google Scholar 

  58. Speziale CG, Sarkar S, Gatski TB (1991) Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach. J Fluid Mech 227:245. https://doi.org/10.1017/S0022112091000101

    Article  MATH  Google Scholar 

  59. Pope SB (1985) PDF methods for turbulent reactive flows. Prog Energy Combust Sci 11(2):119–192. https://doi.org/10.1016/0360-1285(85)90002-4

    Article  Google Scholar 

  60. Janicka J, Kolbe W, Kollmann W (1979) Closure of the transport equation for the probability density function of turbulent scalar fields. J Non-Equilib Thermodyn 4(1):47–66. https://doi.org/10.1515/jnet.1979.4.1.47

    Article  MATH  Google Scholar 

  61. Grosshandler WL (1993) RADCAL – a narrow-band model for radiation calculations in a combustion environment. Technical Report NBS TN 1402, National Bureau of Standards, Gaithersburg, MD. https://doi.org/10.6028/NIST.TN.1402

  62. Lindstedt RP, Waldheim BBO (2013) Modeling of soot particle size distributions in premixed stagnation flow flames. Proc Comb Inst 34(1):1861–1868. https://doi.org/10.1016/j.proci.2012.05.047

    Article  Google Scholar 

  63. Sutherland JW, Michael JV, Pirraglia AN, Nesbitt FL, Klemm RB (1988) Rate constant for the reaction of O(\(^3\)P) with H\(_2\) by the flash photolysis–shock tube and flash photolysis–resonance fluorescence techniques; 504 K\(\le \)T\(\le \)2495 K. Symp (Int) Combust 21(1):929–941. https://doi.org/10.1016/S0082-0784(88)80325-4

    Article  Google Scholar 

  64. Garcia CE (2018) Characterization of nanoparticles generated in reacting flows. PhD thesis, Imperial College, London

    Google Scholar 

  65. MATLAB and Statistics Toolbox 8.3 (2014) The MathWorks Inc. Natick, Massachusetts, United States

    Google Scholar 

  66. Bahrini C, Herbinet O, Glaude PA, Schoemaecker C, Fittschen C, Battin-Leclerc F (2012) Quantification of hydrogen peroxide during the low-temperature oxidation of alkanes. J Am Chem Soc 134(29):11944–11947. https://doi.org/10.1021/ja305200h

    Article  Google Scholar 

  67. Hall JM, Petersen EL (2006) An optimized kinetics model for OH chemiluminescence at high temperatures and atmospheric pressures. Int J Chem Kinet 38(12):714–724. https://doi.org/10.1002/kin.20196

    Article  Google Scholar 

  68. Nori V, Seitzman J (2008) Evaluation of Chemiluminescence as a Combustion Diagnostic Under Varying Operating Conditions. In: 46th AIAA aerospace sciences meeting and exhibit, American Institute of Aeronautics and Astronautics, Aerospace Sciences Meetings https://arc.aiaa.org/doi/10.2514/6.2008-953

  69. Spadaccini LJ, Colket MB (1994) Ignition delay characteristics of methane fuels. Prog Energy Combust Sci 20(5):431–460. https://doi.org/10.1016/0360-1285(94)90011-6

    Article  Google Scholar 

  70. Yoo SW, Law CK, Tse SD (2002) Chemiluminescent OH* and CH* flame structure and aerodynamic scaling of weakly buoyant, nearly spherical diffusion flames. Proc Comb Inst 29(2):1663–1670. https://doi.org/10.1016/S1540-7489(02)80204-8

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the ETI under the High Hydrogen project (PE02162) for the construction of some aspects of the experimental facility and the procurement of the experimental data. The contributions by Prof. H. J. Michels are also gratefully acknowledged. Support for the computational work was derived with the permission of Toyota Motor Europe NV/SA, and the authors wish to express their gratitude to Dr. K. Gkagkas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Peter Lindstedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simatos, P., Hampp, F., Lindstedt, R.P. (2020). Auto-Ignition of Hydrogen-Rich Syngas-Related Fuels in a Turbulent Shear Layer. In: Gupta, A., De, A., Aggarwal, S., Kushari, A., Runchal, A. (eds) Innovations in Sustainable Energy and Cleaner Environment. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9012-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-9012-8_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-9011-1

  • Online ISBN: 978-981-13-9012-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics