Skip to main content

3D SIP-CESE MHD Model on Triangular Prism Grids

  • Chapter
  • First Online:
Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere

Part of the book series: Atmosphere, Earth, Ocean & Space ((AEONS))

  • 989 Accesses

Abstract

This chapter describes the 3D Solar-Interplanetary space-time Conservation Element and Solution Element (SIP-CESE) MHD model and its application on the solar wind study. SIP-CESE MHD model is established on pentahedral cells with each cell a triangular prism composed of two triangular bases and three rectangular sides. The basic principle as well as the implementation detail of the CESE numerical scheme are presented. Two examples are given to illustrate the validity and capacity of modeling solar wind: (i) two-dimensional coronal dynamical structure with multipole magnetic fields and (ii) three-dimensional coronal dynamical structure, using measured solar surface magnetic fields and the empirical values of the plasma properties on the solar surface as the initial conditions for the set of MHD equations, and then the relaxation method to achieve a quasi-steady state. These examples show that the MHD model possesses the ability to model the Sun-Earth environment. Finally, the evolution of the large-scale coronal magnetic structure during solar cycle 23 is investigated by the SIP-CESE MHD model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altschuler MD, Newkirk G (1969) Magnetic fields and the structure of the solar corona. I: methods of calculating coronal fields. Solar Phys 9:131–149. https://doi.org/10.1007/BF00145734

    Article  ADS  Google Scholar 

  2. Biesecker DA, Thompson BJ, Gibson SE, Alexander D, Fludra A, Gopalswamy N, Hoeksema JT, Lecinski A, Strachan L (1999) Synoptic sun during the first whole sun month campaign: August 10 to September 8, 1996. J Geophys Res 104:9679–9690. https://doi.org/10.1029/1998JA900056

    Article  Google Scholar 

  3. Bilyeu D, Yu STJ (2013) A 3D Unstructured-mesh Euler solver based on the fourth-order CESE method, American Institute of Aeronautics and Astronautics, San Diego, CA. Fluid dynamics and co-located conferences. AIAA, p 3071.https://doi.org/10.2514/6.2013-307110.2514/6.2013-3071

  4. Bilyeu D, Chen YY, Yu STJ (2011) High-order CESE methods for the Euler equations. American Institute of Aeronautics and Astronautics, Orlando, Florida. Aerospace sciences meetings. AIAA, p 298. https://doi.org/10.2514/6.2011-29810.2514/6.2011-298

  5. Bilyeu D, Chen YY, Yu ST (2012) A two-dimensional fourth-order CESE method for the Euler equations on triangular unstructured meshes. American Institute of Aeronautics and Astronautics, Nashville, Tennessee. Aerospace sciences meetings. AIAA, p 0293. https://doi.org/10.2514/6.2012-29310.2514/6.2012-293

  6. Blazek J (2005) Computational fluid dynamics: principles and applications, 2nd edn. Elsevier, Amsterdam

    MATH  Google Scholar 

  7. Chang CL (2006) Time-accurate, unstructured mesh Navier-Stokes computations with the CESE method. AIAA, P 4780

    Google Scholar 

  8. Chang CL, Venkatachari BS, Cheng G (2013) Time-accurate local time stepping and high-order space time cese methods for multi-dimensional flows using unstructured meshes, American Institute of Aeronautics and Astronautics, San Diego, CA. Fluid dynamics and co-located conferences. AIAA, P 3069. https://doi.org/10.2514/6.2013-306910.2514/6.2013-3069

  9. Chang SC (1995) The method of space-time conservation element and solution element-a new approach for solving the Navier-Stokes and Euler equations. J Comput Phys 119:295

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Chang SC (2010) A new approach for constructing highly stable high order CESE schemes. American Institute of Aeronautics and Astronautics, Orlando, Florida. Aerospace sciences meetings. AIAA, p 543. https://doi.org/10.2514/6.2010-54310.2514/6.2010-543

  11. Chang SC, Himansu A (1997) Application of the space-time conservation element and solution element method to one-dimensional advection-diffusion problems. NASA TM-1997-206307

    Google Scholar 

  12. Chang SC, Himansu A, Loh CY, Wang XY, Yu ST, Jorgenson PCE (1997) Robust and simple non-reflecting boundary conditions for the space-time conservation element and solution element method. NASA TM-1997-2077

    Google Scholar 

  13. Chang SC, Wang XY, Chow CY (1999) The space-time conservation element and solution element method: a new high-resolution and genuinely multidimensional paradigm for solving conservation laws. J Comput Phys 156:89–136. https://doi.org/10.1006/jcph.1999.6354

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Chang SC, Himansu A, Loh CY, Wang XY, Yu ST (2003) Robust and simple non-reflecting boundary conditions for the Euler equations-a new approach based on the space-time CE/SE method. NASA TM-2003-212495

    Google Scholar 

  15. Feng XS, Hu YQ, Wei FS (2006) Modeling the resistive MHD by the CESE method. Solar Phys 235:235–257. https://doi.org/10.1007/s11207-006-0040-6

    Article  ADS  Google Scholar 

  16. Feng XS, Zhou YF, Wu ST (2007) A novel numerical implementation for solar wind modeling by the modified conservation element/solution element method. Astrophys J 655:1110

    Article  ADS  Google Scholar 

  17. Forsyth RJ, Balogh A, Smith EJ, Gosling JT (1997) Ulysses observations of the northward extension of the heliospheric current sheet. Geophys Res Lett 24:3101–3104. https://doi.org/10.1029/97GL03099

    Article  ADS  Google Scholar 

  18. Girish TE, Prabhakaran Nayar SR (1988) North-south asymmetry in the heliospheric current sheet and the IMF sector structure. Solar Phys 116:369–376. https://doi.org/10.1007/BF00157484

  19. Godunov SK (1959) A difference method for numerical calculation of discontinuous solutions of the equations of hydrodynamics. Mat Sb 47(3):271–306

    Google Scholar 

  20. Groth CPT, De Zeeuw DL, Gombosi TI, Powell KG (2000) Global three-dimensional MHD simulation of a space weather event: CME formation, interplanetary propagation, and interaction with the magnetosphere. J Geophys Res 105:25053–25078. https://doi.org/10.1029/2000JA900093

    Article  Google Scholar 

  21. Harten A, Lax P, Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25(1):35–61

    Article  MathSciNet  MATH  Google Scholar 

  22. Hoeksema JT, Wilcox JM, Scherrer PH (1982) Structure of the heliospheric current sheet in the early portion of sunspot cycle 21. J Geophys Res 87:10331–10338, https://doi.org/10.1029/JA087iA12p10331

    Article  ADS  Google Scholar 

  23. Hoeksema JT, Wilcox JM, Scherrer PH (1983) The structure of the heliospheric current sheet: 1978–1982. J Geophys Res 88:9910–9918. https://doi.org/10.1029/JA088iA12p09910

    Article  ADS  Google Scholar 

  24. Hu X, Khoo B (2004) Kinetic energy fix for low internal energy flows. J Comput Phys 193(1):243–259. https://doi.org/10.1016/j.jcp.2003.08.007

    Article  ADS  MATH  Google Scholar 

  25. Hu YQ, Feng XS (2006) Numerical study for the bursty nature of spontaneous fast reconnection. Solar Phys 238:329–345. https://doi.org/10.1007/s11207-006-0212-4

    Article  ADS  MathSciNet  Google Scholar 

  26. Hu YQ, Wu ST (1984) A full-implicit-continuous-eulerian (FICE) scheme for multidimensional transient magnetohydrodynamic (MHD) flows. J Comput Phys 55:33–64. https://doi.org/10.1016/0021-9991(84)90014-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hu YQ, Feng XS, Wu ST, Song WB (2008) Three-dimensional MHD modeling of the global corona throughout solar cycle 23. J Geophys Res 113(A12):A03106

    ADS  Google Scholar 

  28. Hundhausen AJ (1972) Coronal expansion and solar wind. Springer, New York

    Chapter  Google Scholar 

  29. Leveque RJ (2002) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    Google Scholar 

  30. Li JQ, Wei FS, Feng XS (2001) Numerical simulation of asymmetric corona with multi-streamer structures. Geophys Res Lett 28(7):1359–1362. https://doi.org/10.1029/2000GL012062

    Article  ADS  Google Scholar 

  31. Linker JA, Mikić Z, Biesecker DA, Forsyth RJ, Gibson SE, Lazarus AJ, Lecinski A, Riley P, Szabo A, Thompson BJ (1999) Magnetohydrodynamic modeling of the solar corona during whole sun month. J Geophys Res 104:9809–9830. https://doi.org/10.1029/1998JA900159

    Article  Google Scholar 

  32. Lionello R, Linker JA, Mikić Z (2009) Multispectral emission of the sun during the first whole sun month: magnetohydrodynamic simulations. Astrophys J 690:902–912. https://doi.org/10.1088/0004-637X/690/1/902

    Article  ADS  Google Scholar 

  33. Loh CY (2003) On a non-reflecting boundary condition for hyperbolic conservation laws. AIAA, p 3975

    Google Scholar 

  34. Luhmann JG, Li Y, Arge CN, Gazis PR, Ulrich R (2002) Solar cycle changes in coronal holes and space weather cycles. J Geophys Res (Space Phys) 107:1154. https://doi.org/10.1029/2001JA007550

    Article  Google Scholar 

  35. McComas DJ, Bame SJ, Barraclough BL, Feldman WC, Funsten HO, Gosling JT, Riley P, Skoug R, Balogh A, Forsyth R, Goldstein BE, Neugebauer M (1998) Ulysses’ return to the slow solar wind. Geophys Res Lett 25:1–4. https://doi.org/10.1029/97GL03444

    Article  ADS  Google Scholar 

  36. Mikić Z, Linker JA, Schnack DD, Lionello R, Tarditi A (1999) Magnetohydrodynamic modeling of the global solar corona. Phys Plasmas 6:2217–2224. https://doi.org/10.1063/1.873474

    Article  ADS  Google Scholar 

  37. Mitchell AR, Griffiths DF (1980) The finite difference method in partial differential equations. A Wiley-Interscience Publication, Chichester, Wiley

    Google Scholar 

  38. Neugebauer M, Forsyth RJ, Galvin AB, Harvey KL, Hoeksema JT, Lazarus AJ, Lepping RP, Linker JA, Mikic Z, Steinberg JT, von Steiger R, Wang YM, Wimmer-Schweingruber RF (1998) Spatial structure of the solar wind and comparisons with solar data and models. J Geophys Res 103:14587–14600. https://doi.org/10.1029/98JA00798

    Article  Google Scholar 

  39. Pletcher RH, Tannehill JC, Anderson DA (2012) Computational fluid mechanics and heat transfer, 3rd edn. CRC Press, London

    MATH  Google Scholar 

  40. Powell KG, Roe PL, Linde TJ, Gombosi TI, De Zeeuw DL (1999) A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J Comput Phys 154:284–309. https://doi.org/10.1006/jcph.1999.6299

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Riley P, Linker JA, Mikić Z, Lionello R, Ledvina SA, Luhmann JG (2006) A comparison between global solar magnetohydrodynamic and potential field source surface model results. Astrophys J 653:1510–1516. https://doi.org/10.1086/508565

    Article  ADS  Google Scholar 

  42. Roe P (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2):357–372. https://doi.org/10.1016/0021-9991(81)90128-5

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Sanderson TR, Appourchaux T, Hoeksema JT, Harvey KL (2003) Observations of the sun’s magnetic field during the recent solar maximum. J Geophys Res (Space Phys) 108:1035. https://doi.org/10.1029/2002JA009388

  44. Schatten KH, Wilcox JM, Ness NF (1969) A model of interplanetary and coronal magnetic fields. Solar Phys 6:442–455. https://doi.org/10.1007/BF00146478

  45. Sheeley NR, Wang YM, Hawley SH, Brueckner GE, Dere KP, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Paswaters SE, Socker DG, St Cyr OC, Wang D, Lamy PL, Llebaria A, Schwenn R, Simnett GM, Plunkett S, Biesecker DA (1997) Measurements of flow speeds in the corona between 2 and 30 R\(_{\bigodot }\). Astrophys J 484:472–478

    Google Scholar 

  46. Shen H, Parsani M (2018) Positivity-preserving CE/SE schemes forsolving thecompressible euler and navierąvstokes equations on hybrid unstructuredmeshes. Comput Phys Commun 232:165–176. https://doi.org/10.1016/j.cpc.2018.05.011

    Article  ADS  MathSciNet  Google Scholar 

  47. Shen H, Wen CY (2016) A characteristic space-time conservation element and solution element method for conservation laws ii. multidimensional extension. J Comput Phys 305:775–792. https://doi.org/10.1016/j.jcp.2015.11.017

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Shen H, Wen CY, Liu K, Zhang D (2015a) Robust high-order space-time conservative schemes for solving conservation laws on hybrid meshes. J Comput Phys 281:375–402. https://doi.org/10.1016/j.jcp.2014.10.023

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Shen H, Wen CY, Zhang DL (2015b) A characteristic space-time conservation element and solution element method for conservation laws. J Comput Phys 288:101–118. https://doi.org/10.1016/j.jcp.2015.02.018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Shen H, Wen CY, Parsani M, Shu CW (2017) Maximum-principle-satisfying space-time conservation element and solution element scheme applied to compressible multifluids. J Comput Phys 330:668–692. https://doi.org/10.1016/j.jcp.2016.10.036

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Steinolfson RS, Suess ST, Wu ST (1982) The steady global corona. Astrophys J 255:730–742. https://doi.org/10.1086/159872

    Article  ADS  Google Scholar 

  52. Svalgaard L, Duvall TL Jr, Scherrer PH (1978) The strength of the Sun’s polar fields. Solar Phys 58:225–239. https://doi.org/10.1007/BF00157268

    Article  ADS  Google Scholar 

  53. Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin

    Book  MATH  Google Scholar 

  54. Toro EF, Spruce M, Speares W (1994) Restoration of the contact surface in the HLL-Riemann solver. Shock Waves 4(1):25–34. https://doi.org/10.1007/BF01414629

    Article  ADS  MATH  Google Scholar 

  55. Tóth G, van der Holst B, Sokolov IV, De Zeeuw DL, Gombosi TI, Fang F, Manchester WB, Meng X, Najib D, Powell KG, Stout QF, Glocer A, Ma YJ, Opher M (2012) Adaptive numerical algorithms in space weather modeling. J Comput Phys 231:870–903. https://doi.org/10.1016/j.jcp.2011.02.006

    Article  ADS  MathSciNet  Google Scholar 

  56. Usmanov AV (1996) A global 3-D MHD solar wind model with Alfvén waves. In: Winterhalter D, Gosling JT, Habbal SR, Kurth WS, Neugebauer M (eds) American Institute of Physics Conference Series, vol 382, pp 141–144, https://doi.org/10.1063/1.51468

  57. Usmanov AV, Goldstein ML (2003) A tilted-dipole MHD model of the solar corona and solar wind. J Geophys Res (Space Physics) 108:1354. https://doi.org/10.1029/2002JA009777

  58. Usmanov AV, Goldstein ML, Besser BP, Fritzer JM (2000) A global MHD solar wind model with WKB Alfvén waves: comparison with Ulysses data. J Geophys Res 105:12675–12696. https://doi.org/10.1029/1999JA000233

    Article  Google Scholar 

  59. Venkatachari BS, Cheng G, Chang SC (2009) Development of a higher order CESE scheme for transient viscous flows, American Institute of Aeronautics and Astronautics, San Antonio, Texas. Fluid dynamics and co-located conferences. AIAA, p 3984. https://doi.org/10.2514/6.2009-398410.2514/6.2009-3984

  60. Wang AH, Wu ST, Suess ST, Poletto G (1993) A two-dimensional MHD global coronal model - Steady-state streamers. Solar Phys 147:55–71. https://doi.org/10.1007/BF00675487

    Article  ADS  Google Scholar 

  61. Wang AH, Wu ST, Suess ST (1913) Poletto G (1998) Global model of the corona with heat and momentum addition. J Geophys Res 103:1913–1922. https://doi.org/10.1029/97JA01770

    Article  Google Scholar 

  62. Wang XY (2015) A Summary of the space-time consevation element and solution element (CESE) method. NASA TM-2015-218743

    Google Scholar 

  63. Wang XY, Chang SC (1999) A 2D non-splitting unstructured triangular mesh euler solver based on the space-time conservation element and solution element method. Comput Fluid Dyn J 8(2):309–325

    Google Scholar 

  64. Wang YM, Sheeley NR Jr (1992) On potential field models of the solar corona. Astrophys J 392:310–319. https://doi.org/10.1086/171430

    Article  ADS  Google Scholar 

  65. Wang YM, Sheeley NR Jr, Howard RA, Kraemer JR, Rich NB, Andrews MD, Brueckner GE, Dere KP, Koomen MJ, Korendyke CM, Michels DJ, Moses JD, Paswaters SE, Socker DG, Wang D, Lamy PL, Llebaria A, Vibert D, Schwenn R, Simnett GM (1997) Origin and evolution of coronal streamer structure during the 1996 minimum activity phase. Astrophys J 485:875–889

    Google Scholar 

  66. Wang YM, Lean J, Sheeley NR Jr (2000a) The long-term variation of the Sun’s open magnetic flux. Geophys Res Lett 27:505–508. https://doi.org/10.1029/1999GL010744

    Article  ADS  Google Scholar 

  67. Wang YM, Sheeley NR Jr, Rich NB (2000b) Evolution of coronal streamer structure during the rising phase of solar cycle 23. Geophys Res Lett 27:149–152. https://doi.org/10.1029/1999GL010698

    Article  ADS  Google Scholar 

  68. Wang YM, Sheeley NR, Andrews MD (2002) Polarity reversal of the solar magnetic field during cycle 23. J Geophys Res (Space Physics) 107:1465. https://doi.org/10.1029/2002JA009463

    Article  Google Scholar 

  69. Wei FS, Feng XS, Cai HC, Zhou QJ (2003) Global distribution of coronal mass outputs and its relation to solar magnetic field structures. J Geophys Res (Space Physics) 108:1238. https://doi.org/10.1029/2002JA009439

  70. Wu ST, Wang AH, Guo WP (1996) Numerical boundary conditions for solar magnetic hydrodynamic flows using the method of characteristics. Astrophys Space Sci 243:149. https://doi.org/10.1007/BF00644045

    Article  ADS  MATH  Google Scholar 

  71. Wu ST, Wang AH, Liu Y, Hoeksema JT (2006) Data-driven magnetohydrodynamic model for active region evolution. Astrophys J 652:800–811. https://doi.org/10.1086/507864

    Article  ADS  Google Scholar 

  72. Yang Y, Feng XS, Jiang CW (2017) A high-order CESE scheme with a new divergence-free method for MHD numerical simulation. J Comput Phys 349:561–581. https://doi.org/10.1016/j.jcp.2017.08.019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. Yang Y, Feng XS, Jiang CW (2018a) An upwind CESE scheme for 2D and 3D MHD numerical simulation in general curvilinear coordinates. J Comput Phys 371:850–869. https://doi.org/10.1016/j.jcp.2018.05.014

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Yang Y, Feng XS, Jiang CW, Manchester WB (2018b) A study of the emergence of flux rope from the solar convection zone into the atmosphere by using a novel numerical method. Phys Plasmas 25(9):090702. https://doi.org/10.1063/1.5044646

    Article  ADS  Google Scholar 

  75. Yu ST, Chang SC (1997) Treatment of stiff source terms in conservation laws by the method of space-time conservation element/solution element. AIAA paper, P 0435

    Google Scholar 

  76. Zhang JH, Wei FS (1993) A time-dependent solution of transonic, trans-Alfvén MHD flow in the solar meridian. Sci China Math 36(1):83. https://doi.org/10.1360/ya1993-36-1-83

  77. Zhang MJ, Yu ST (2003) Calculation of the ideal MHD equations by the CESE method without special treatment for the divergence-free constraint of magnetic field. AIAA paper, p 0324

    Google Scholar 

  78. Zhang MJ, Lin SC, Yu ST (2002) Application of the CE/SE method to the ideal MHD equations. AIAA paper, p 3888

    Google Scholar 

  79. Zhang X, Shu CW (2010) On maximum-principle-satisfying high order schemes for scalar conservation laws. J Comput Phys 229(9):3091–3120. https://doi.org/10.1016/j.jcp.2009.12.030

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. Zhang ZC, Yu ST (1999) Shock capturing without Riemann solver-A modified space-time CE/SE method for conservation laws. AIAA paper, p 0904

    Google Scholar 

  81. Zhang ZC, Yu ST, Chang SC, Himansu A, Jorgenson PCE (1999) A modified space-time conservation element and solution element method for Euler and Navier-Stokes equations. AIAA paper, p 3277

    Google Scholar 

  82. Zhang ZC, Yu ST, Wang XY, Chang SC, Himansu A, Jorgenson PCE (2000) The CE/SE method for Navier-Stokes equations using unstructured meshes for flow at all speeds. AIAA paper, p 393

    Google Scholar 

  83. Zhang ZC, Yu STJ, Chang SC (2002) A space-time conservation element and solution element method for solving the two- and three-dimensional unsteady Euler equations using quadrilateral and hexahedral meshes. J Comput Phys 175:168–199. https://doi.org/10.1006/jcph.2001.6934

    Article  ADS  MATH  Google Scholar 

  84. Zhao XP, Hoeksema JT, Liu Y, Scherrer PH (2006) Success rate of predicting the heliospheric magnetic field polarity with Michelson Doppler Imager (MDI) synoptic charts. J Geophys Res (Space Physics) 111:A10108. https://doi.org/10.1029/2005JA011576

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueshang Feng .

Appendix

Appendix

In this appendix, the Jacobian matrices for the fluxes \(\mathbf {F}, \mathbf {G}, \mathbf {H}\), and \(\varvec{\varPhi }\) are calculated [16].

$$ \frac{\partial \mathbf {F}}{\partial \mathbf {U}}= \begin{pmatrix} 0&{} 1&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ -u^2+(\gamma -1)\frac{u^2+v^2+w^2}{2}&{} (3-\gamma )u&{} (1-\gamma )v&{} (1-\gamma )w&{} \gamma -1&{} - \gamma B_x&{} (2-\gamma )B_y&{}(2-\gamma )B_z \\ -uv &{} v&{} u&{} 0&{} 0&{} -B_y&{} -B_x&{} 0\\ -uw &{} w&{} 0&{} u&{} 0&{} -B_z&{} 0&{} -B_x \\ F_1&{} F_2&{} F_3&{} F_4&{} F_5&{} F_6&{}F_7&{} F_8 \\ 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ -\frac{uB_y-vB_x}{\rho }&{} \frac{B_y}{\rho }&{} -\frac{B_x}{\rho }&{} 0&{} 0&{} -v&{} u&{} 0 \\ -\frac{uB_z-wB_x}{\rho }&{} \frac{B_z}{\rho }&{} 0&{} -\frac{B_x}{\rho }&{} 0&{} -w&{} 0&{} u \end{pmatrix} $$

where

$$ F_1=-\frac{\gamma eu}{\rho }+ (\gamma -1)u\left( u^2+v^2+w^2\right) +\frac{\gamma -2}{2}u\frac{B_y^2+B_z^2}{\rho }+\frac{\gamma }{2}u\frac{B_x^2}{\rho }+B_x \frac{v B_y+w B_z}{\rho }$$
$$ F_2=\gamma \frac{e}{\rho }+\frac{3}{2}(1-\gamma )u^2+\frac{1-\gamma }{2}\left( v^2+w^2\right) -\frac{\gamma -2}{2}\frac{B_y^2+B_z^2}{\rho }-\frac{\gamma }{2}\frac{B_x^2}{\rho } $$
$$ F_3=(1-\gamma )uv-\frac{B_x B_y}{\rho } $$
$$ F_4=(1-\gamma )uw-\frac{B_x B_z}{\rho },F_5=\gamma u $$
$$ F_6=-\gamma uB_x-(vB_y+wB_z) $$
$$ F_7=(2-\gamma )uB_y-vB_x $$
$$ F_8=(2-\gamma )uB_z-wB_x $$
$$ \frac{\partial \mathbf {G}}{\partial \mathbf {U}}=\begin{pmatrix} 0&{} 0&{} 1&{} 0&{} 0&{} 0&{} 0&{} 0 \\ -uv&{} v&{} u&{} 0&{} 0&{} - B_y&{} - B_x&{} 0 \\ -v^2+(\gamma -1)\frac{u^2+v^2+w^2}{2}&{} (1-\gamma )u&{} (3-\gamma )v&{} (1-\gamma )w&{} \gamma -1&{} (2-\gamma )B_x&{} - \gamma B_y&{}(2-\gamma )B_z \\ -vw&{} 0&{} w&{}v&{} 0&{} 0&{} -B_z&{} -B_y \\ G_1&{}G_2&{} G_3&{} G_4&{} G_5&{} G_6&{}G_7&{}G_8 \\ -\frac{vB_x-uB_y}{\rho }&{} -\frac{B_y}{\rho }&{} \frac{B_x}{\rho }&{} 0&{} 0&{} v&{} -u&{} 0 \\ 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \\ -\frac{vB_z-wB_y}{\rho }&{} 0&{} \frac{B_z}{\rho }&{} -\frac{B_y}{\rho }&{} 0&{} 0&{} -w&{} v \end{pmatrix} $$

where

$$ G_1=-\frac{\gamma ev}{\rho }+ (\gamma -1)v\left( u^2+v^2+w^2\right) +\frac{\gamma -2}{2}v\frac{B_x^2+B_z^2}{\rho }+\frac{\gamma }{2}v\frac{B_y^2}{\rho }+B_y \frac{u B_x+w B_z}{\rho }$$
$$ G_2=(1-\gamma )vu-\frac{B_y B_x}{\rho } $$
$$ G_3=\gamma \frac{e}{\rho }+\frac{3}{2}(1-\gamma )v^2+\frac{1-\gamma }{2}\left( u^2+w^2\right) -\frac{\gamma -2}{2}\frac{B_x^2+B_z^2}{\rho }-\frac{\gamma }{2}\frac{B_y^2}{\rho } $$
$$ G_4=(1-\gamma )vw-\frac{B_y B_z}{\rho },G_5=\gamma v $$
$$ G_6=(2-\gamma )vB_x-uB_y $$
$$ G_7=-\gamma vB_y-\left( uB_x+wB_z\right) $$
$$ G_8=(2-\gamma )vB_z-wB_y $$
$$ \frac{\partial \mathbf {H}}{\partial \mathbf {U}}=\begin{pmatrix} 0&{} 0&{} 0&{} 1&{} 0&{} 0&{} 0&{} 0 \\ -uw&{} 0&{} w&{} u&{} 0&{} -B_z&{} 0&{} -B_x \\ -vw&{} 0&{} w&{} v&{} 0&{} 0&{} -B_z&{} -B_y \\ -w^2+(\gamma -1)\frac{u^2+v^2+w^2}{2}&{} (1-\gamma )u&{} (1-\gamma )v&{} (3-\gamma )w&{} \gamma -1&{} (2-\gamma )B_x&{} (2-\gamma )B_y&{} -\gamma B_z\\ H_1&{} H_2&{} H_3&{} H_4&{}H_5&{} H_6&{} H_7&{} H_8 \\ -\frac{wB_x-uB_z}{\rho }&{} -\frac{B_z}{\rho }&{} 0&{} \frac{B_x}{\rho }&{} 0&{} w&{} 0&{} -u \\ -\frac{wB_y-vB_z}{\rho }&{} 0&{} -\frac{B_z}{\rho }&{} \frac{B_y}{\rho }&{} 0&{} 0&{} w&{} -v \\ 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0&{} 0 \end{pmatrix} $$

where

$$ H_1=-\frac{\gamma ew}{\rho }+ (\gamma -1)w\left( u^2+v^2+w^2\right) +\frac{\gamma -2}{2}w\frac{B_x^2+B_y^2}{\rho }+\frac{\gamma }{2}w\frac{B_z^2}{\rho }+B_z \frac{u B_x+v B_y}{\rho }$$
$$ H_2=(1-\gamma )wu-\frac{B_z B_x}{\rho } $$
$$ H_3=(1-\gamma )wv-\frac{B_z B_y}{\rho } $$
$$ H_4=\gamma \frac{e}{\rho }+\frac{3}{2}(1-\gamma )w^2+\frac{1-\gamma }{2}\left( u^2+v^2\right) -\frac{\gamma -2}{2}\frac{B_x^2+B_y^2}{\rho }-\frac{\gamma }{2}\frac{B_z^2}{\rho } $$
$$ H_5=\gamma w $$
$$ H_6=(2-\gamma )wB_x-uB_z $$
$$ H_7=(2-\gamma )wB_y-vB_z $$
$$ H_8=-\gamma wB_z-(uB_x+vB_y) $$
$$ \frac{\partial \varvec{\varPhi }}{\partial { \mathbf {U}} } =\mathbf {I}-\frac{\varDelta {t}}{2} \frac{\partial {\varvec{\eta }}}{\partial { \mathbf {U}}} \equiv \begin{pmatrix} 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 0 \\ a_{21}&{}\quad 1&{}\quad a_{23}&{}\quad 0 &{}\quad 0&{}\quad a_{26}&{}\quad 0&{}\quad 0\\ a_{31} &{}\quad a_{32}&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad a_{37}&{}\quad 0\\ a_{41}&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad a_{48} \\ a_{51}&{}\quad a_{52}&{}\quad a_{53}&{}\quad a_{54}&{}\quad a_{55}&{}\quad a_{56}&{}\quad a_{57}&{}\quad a_{58} \\ a_{61}&{}\quad a_{62}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1&{}\quad 0&{}\quad 0 \\ a_{71}&{}\quad 0&{}\quad a_{73}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1 &{}\quad 0\\ a_{81}&{}\quad 0 &{}\quad 0&{}\quad a_{84}&{}\quad 0&{}\quad 0&{}\quad 0&{}\quad 1 \end{pmatrix} $$

where

$$ a_{21}=-{a}_\mathrm{gra}{x}\frac{\varDelta {t}}{2}-\omega ^2 x \frac{\varDelta {t}}{2}, a_{23}=-2\omega \frac{\varDelta {t}}{2}, a_{31}=-{a}_\mathrm{gra}{y}\frac{\varDelta {t}}{2}-\omega ^2 y \frac{\varDelta {t}}{2}, a_{32}=2\omega \frac{\varDelta {t}}{2} $$
$$ a_{41}=-{a}_\mathrm{gra}{z}\frac{\varDelta {t}}{2}, a_{26}= a_{37}= a_{48}=({\nabla }\cdot {B})^{n-1/2}_{Q^*}\frac{\varDelta {t}}{2} $$
$$ a_{51}=-(\gamma -1){q}_e \left( {T_0}-\gamma (\gamma -1)\frac{{u}^2+{v}^2+{w}^2}{2}\right) \frac{\varDelta {t}}{2}-({\nabla }\cdot {B})^{n-1/2}_{Q^*} \frac{{u}{B_x}+{v}{B_y}+{w}{B_z}}{{\rho }} \frac{\varDelta {t}}{2} $$
$$ a_{52}=-\left( {a}_\mathrm{gra}{x}+ \gamma (\gamma -1)^2{q}_e{u} \right) \frac{\varDelta {t}}{2}-\omega ^2 x \frac{\varDelta {t}}{2}+({\nabla }\cdot {B})^{n-1/2}_{Q^*}\frac{{B_x}}{{\rho }}\frac{\varDelta {t}}{2} $$
$$ a_{53}=-\left( {a}_\mathrm{gra}{y}+ \gamma (\gamma -1)^2{q}_e{v} \right) \frac{\varDelta {t}}{2}-\omega ^2 y \frac{\varDelta {t}}{2}+({\nabla }\cdot {B})^{n-1/2}_{Q^*}\frac{{B_y}}{{\rho }}\frac{\varDelta {t}}{2} $$
$$ a_{54}=-\left( {a}_\mathrm{gra}{z}+ \gamma (\gamma -1)^2{q}_e{w} \right) \frac{\varDelta {t}}{2}+({\nabla }\cdot {B})^{n-1/2}_{Q^*}\frac{{B_z}}{{\rho }}\frac{\varDelta {t}}{2} $$
$$ a_{55}=1+\gamma (\gamma -1)^2{q}_e\frac{\varDelta {t}}{2} $$
$$ a_{56}=-\gamma (\gamma -1)^2{q}_e{B_x}\frac{\varDelta {t}}{2}+ \left( ({\nabla }\cdot {B})^{n-1/2}_{Q^*}{u} \right) \frac{\varDelta {t}}{2} $$
$$ a_{57}=-\gamma (\gamma -1)^2{q}_e{B_y}\frac{\varDelta {t}}{2}+ \left( ({\nabla }\cdot {B})^{n-1/2}_{Q^*}{v}\right) \frac{\varDelta {t}}{2} $$
$$ a_{58}=-\gamma (\gamma -1)^2{q}_e{B_z}\frac{\varDelta {t}}{2}+ \left( ({\nabla }\cdot {B})^{n-1/2}_{Q^*}{w} \right) \frac{\varDelta {t}}{2} $$
$$ a_{61}=-\frac{({\nabla }\cdot {B})^{n-1/2}_{Q^*} {u}}{{\rho }}\frac{\varDelta {t}}{2},a_{62}= \frac{({\nabla }\cdot {B})^{n-1/2}_{Q^*} }{{\rho }}\frac{\varDelta {t}}{2} $$
$$ a_{71}=-\frac{({\nabla }\cdot {B})^{n-1/2}_{Q^*} {v}}{{\rho }}\frac{\varDelta {t}}{2},a_{73}= \frac{({\nabla }\cdot {B})^{n-1/2}_{Q^*} }{{\rho }}\frac{\varDelta {t}}{2} $$
$$ a_{81}=-\frac{({\nabla }\cdot {B})^{n-1/2}_{Q^*} {w}}{{\rho }}\frac{\varDelta {t}}{2},a_{84}= \frac{({\nabla }\cdot {B})^{n-1/2}_{Q^*} }{{\rho }}\frac{\varDelta {t}}{2} $$

with \({a}_\mathrm{gra}=-\frac{G M_\mathrm{s}}{{r}^3}\) and \({q}_e={q}_0\exp \left[ -\frac{(r-R_\mathrm{s})^2}{\sigma _0^2}\right] \). Then, \( \left( \frac{\partial \varvec{\varPhi }}{\partial { \mathbf {U}} }\right) ^{-1} \) can be easily obtained by Mathematica.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feng, X. (2020). 3D SIP-CESE MHD Model on Triangular Prism Grids. In: Magnetohydrodynamic Modeling of the Solar Corona and Heliosphere. Atmosphere, Earth, Ocean & Space. Springer, Singapore. https://doi.org/10.1007/978-981-13-9081-4_4

Download citation

Publish with us

Policies and ethics