Skip to main content

Green Analytical Chemistry: Summary of Existing Knowledge and Future Trends

  • Chapter
  • First Online:
Green Analytical Chemistry

Abstract

Analysis of recent publications in Green Analytical Chemistry shows the current trends and future needs in this area. The main issues are related to search for cheaper, more efficient, more accurate, greener and miniaturized alternatives. Miniaturization is perhaps, the most notable current trend in analytical chemistry. Rapid developments and improvements in instrumentation have led to an impressive range of benchtop technology and portable devices. In addition, an important issue that has been explored by many authors is metrics of Green Analytical Chemistry, such as Analytical Eco-Scale or Green Analytical Procedure Index. Implementation of interdisciplinary methods is an emerging trend in Green Analytical Chemistry. Employment of multicriteria decision analysis, a technique which is used in environmental management, to Green Analytical Chemistry is a very popular and common trend. Another important issue that will determine the future of Green Analytical Chemistry is education and popularization of this concept in the society. This chapter summarizes contemporary problems and gives the future perspectives of Green Analytical Chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OECD Annual Report, 2001

    Google Scholar 

  2. Anastas PT, Warner JC (1999) Green chemistry: theory and Practice. Oxford University Press, USA

    Google Scholar 

  3. Winterton N (2001) Twelve more green chemistry principles. Green Chem 3:G73–G75

    Article  Google Scholar 

  4. Anastas PT, Zimmerman JB (2003) Peer reviewed: design through the 12 principles of green engineering. Environ Sci Technol 37:94A–101A

    Article  PubMed  Google Scholar 

  5. Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, Helmy R, Schafer W, Cuff J, Pirzada Z, Zhou L (2010) Greening analytical chromatography. Trends Anal Chem 29:667–680

    Article  CAS  Google Scholar 

  6. Menke Gluckert P (1968) Proceedings of the Conference “Man and Biosphere”, UNESCO, Paris

    Google Scholar 

  7. Gałuszka A, Migaszewski Z, Namieśnik J (2013) The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practice. Trends Anal Chem 50:78–84

    Article  CAS  Google Scholar 

  8. Namieśnik J (2000) Trends in environmental analytics and monitoring. Crit Rev Anal Chem 30:221–269

    Article  Google Scholar 

  9. Castejón N, Luna P, Señoráns FJ (2018) Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents. Food Chem 244:75–82

    Article  PubMed  CAS  Google Scholar 

  10. de los Ángeles Fernández M, Boiteux J, Espino M, Gomez FV, Silva MF (2018) Natural deep eutectic solvents-mediated extractions: the way forward for sustainable analytical developments. Anal Chim Acta 1038:1–10

    Article  PubMed  CAS  Google Scholar 

  11. Hashemi B, Zohrabi P, Dehdashtian S (2018) Application of green solvents as sorbent modifiers in sorptive-based extraction techniques for extraction of environmental pollutants. Trends Anal Chem 109:50–61

    Article  CAS  Google Scholar 

  12. Mohebbi A, Yaripour S, Farajzadeh MA, Mogaddam MRA (2018) Combination of dispersive solid phase extraction and deep eutectic solvent–based air–assisted liquid–liquid microextraction followed by gas chromatography–mass spectrometry as an efficient analytical method for the quantification of some tricyclic antidepressant drugs in biological fluids. J Chromatogr A 1571:84–93

    Article  CAS  PubMed  Google Scholar 

  13. Sang J, Li B, Huang YY, Ma Q, Liu K, Li CQ (2018) Deep eutectic solvent-based extraction coupled with green two-dimensional HPLC-DAD-ESI-MS/MS for the determination of anthocyanins from Lycium ruthenicum Murr. fruit. Anal Meth 10(10):1247–1257

    Article  CAS  Google Scholar 

  14. Vieira AA, Caldas SS, Escarrone ALV, de Oliveira Arias JL, Primel EG (2018) Environmentally friendly procedure based on VA-MSPD for the determination of booster biocides in fish tissue. Food Chem 242:475–480

    Article  CAS  PubMed  Google Scholar 

  15. Yilmaz E (2018) Use of hydrolytic enzymes as green and effective extraction agents for ultrasound assisted-enzyme based hydrolytic water phase microextraction of arsenic in food samples. Talanta 189:302–307

    Article  CAS  PubMed  Google Scholar 

  16. Alañón ME, Ivanović M, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A (2019) Choline chloride derivative-based deep eutectic liquids as novel green alternative solvents for extraction of phenolic compounds from olive leaf. Arab J Chem. https://doi.org/10.1016/j.arabjc.2018.01.003 (in press)

  17. Pacheco-Fernández I, Pino V (2019) Green solvents in analytical chemistry. Curr Opin Green Sus Chem (in press)

    Google Scholar 

  18. Tobiszewski M, Zabrocka W, Bystrzanowska M (2019) Diethyl carbonate as green extraction solvent for chlorophenols determination with dispersive liquid-liquid microextraction. Anal Meth. https://doi.org/10.1039/c8ay02683a (in press)

    Article  CAS  Google Scholar 

  19. Costa VC, Guedes WN, de Santana Santos A, Nascimento MM (2018) Multivariate optimization for the development of a fast and simple ultrasound-assisted extraction procedure for multielemental determination in tea leaves by inductively coupled plasma optical emission spectrometry (ICP-OES). Food Anal Meth 11(7):2004–2012

    Article  Google Scholar 

  20. Du Y, Xia L, Xiao X, Li G, Chen X (2018) A simple one-step ultrasonic-assisted extraction and derivatization method coupling to high-performance liquid chromatography for the determination of ε-aminocaproic acid and amino acids in cosmetics. J Chromatogr A 1554:37–44

    Article  CAS  PubMed  Google Scholar 

  21. Ide AH, Nogueira JMF (2018) New-generation bar adsorptive microextraction (BAμE) devices for a better eco-user-friendly analytical approach–Application for the determination of antidepressant pharmaceuticals in biological fluids. J Pharm Biomed Anal 153:126–134

    Article  CAS  PubMed  Google Scholar 

  22. Papageorgiou M, Lambropoulou D, Morrison C, Namieśnik J, Płotka-Wasylka J (2018) Direct solid phase microextraction combined with gas chromatography–Mass spectrometry for the determination of biogenic amines in wine. Talanta 183:276–282

    Article  CAS  PubMed  Google Scholar 

  23. Piergiovanni M, Cappiello A, Famiglini G, Termopoli V, Palma P (2018) Determination of benzodiazepines in beverages using green extraction methods and capillary HPLC-UV detection. J Pharm Biomed Anal 154:492–500

    Article  CAS  PubMed  Google Scholar 

  24. Piri-Moghadam H, Gionfriddo E, Grandy JJ, Alam MN, Pawliszyn J (2018) Development and validation of eco-friendly strategies based on thin film microextraction for water analysis. J Chromatogr A 1579:20–30

    Article  CAS  PubMed  Google Scholar 

  25. Sajid M (2018) Dispersive liquid-liquid microextraction coupled with derivatization: a review of different modes, applications, and green aspects. Trends Anal Chem 106:169–182

    Article  CAS  Google Scholar 

  26. Samanidou V, Georgiadis DE, Kabir A, Furton KG (2018) Capsule phase microextraction: the total and ultimate sample preparation approach. J Chromatogr Sep Tech 9(395):1–4

    Google Scholar 

  27. Sánchez-Camargo ADP, Parada-Alonso F, Ibáñez E, Cifuentes A (2018) Recent applications of on-line supercritical fluid extraction coupled to advanced analytical techniques for compounds extraction and identification. J Sep Sci 42(1):243–257

    Article  PubMed  CAS  Google Scholar 

  28. Aguirre MÁ, Baile P, Vidal L, Canals A (2018) Metal applications of liquid-phase microextraction. Trends Anal Chem. https://doi.org/10.1016/j.trac.2018.11.032 (in press)

    Article  CAS  Google Scholar 

  29. AsliPashaki SN, Hadjmohammadi MR (2019) Air assisted-vesicle based microextraction (AAVME) as a fast and green method for the extraction and determination of phenolic compounds in M. officinalis L samples. Talanta 195:807–814

    Article  CAS  Google Scholar 

  30. Kanberoglu GS, Yilmaz E, Soylak M (2019) Developing a new and simple ultrasound-assisted emulsification liquid phase microextraction method built upon deep eutectic solvents for Patent Blue V in syrup and water samples. Microchem J 145:813–818

    Article  CAS  Google Scholar 

  31. Chaneam S, Inpota P, Saisarai S, Wilairat P, Ratanawimarnwong N, Uraisin K, Meesiri W, Nacapricha D (2018) Green analytical method for simultaneous determination of salinity, carbonate and ammoniacal nitrogen in waters using flow injection coupled dual-channel C4D. Talanta 189:196–204

    Article  CAS  PubMed  Google Scholar 

  32. Gu HW, Zhang SH, Wu BC, Chen W, Wang JB, Liu Y (2018) A green chemometrics-assisted fluorimetric detection method for the direct and simultaneous determination of six polycyclic aromatic hydrocarbons in oil-field wastewaters. Spectrochim Acta Part A: Mol Biomol Spectrosc 200:93–101

    Article  CAS  Google Scholar 

  33. Shaaban H, Mostafa A (2018) Sustainable eco-friendly ultra-high-performance liquid chromatographic method for simultaneous determination of caffeine and theobromine in commercial teas: evaluation of greenness profile Using NEMI and Eco-Scale Assessment Tools. J AOAC Int 101(6):1781–1787

    Article  CAS  PubMed  Google Scholar 

  34. Shaaban H, Mostafa A, Alhajri W, Almubarak L, AlKhalifah K (2018) Development and validation of an eco-friendly SPE-HPLC-MS method for simultaneous determination of selected parabens and bisphenol A in personal care products: Evaluation of the greenness profile of the developed method. J Liquid Chromatogr Rel Technol 41(10):621–628

    Article  CAS  Google Scholar 

  35. Elmansi H, Belal F (2019) Development of an Eco-friendly HPLC method for the simultaneous determination of three benzodiazepines using green mobile phase. Microchem J 145:330–336

    Article  CAS  Google Scholar 

  36. Agustini D, Fedalto L, Bergamini MF, Marcolino-Junior LH (2018) Microfluidic thread based electroanalytical system for green chromatographic separations. Lab Chip 18(4):670–678

    Article  CAS  PubMed  Google Scholar 

  37. Carasek E, Merib J, Mafra G, Spudeit D (2018) A recent overview of the application of liquid-phase microextraction to the determination of organic micro-pollutants. Trends Anal Chem 108:203–209

    Article  CAS  Google Scholar 

  38. Cheng H, Shen L, Liu J, Xu Z, Wang Y (2018) Coupling nanoliter high-performance liquid chromatography to inductively coupled plasma mass spectrometry for arsenic speciation. J Sep Sci 41(7):1524–1531

    Article  CAS  PubMed  Google Scholar 

  39. Kissoudi M, Samanidou V (2018) Recent advances in applications of ionic liquids in miniaturized microextraction techniques. Molecules 23(6):1–12

    Article  CAS  Google Scholar 

  40. Ibrahim AE, Hashem H, Saleh H, Elhenawee M (2018) Performance comparison between monolithic, core-shell, and totally porous particulate columns for application in greener and faster chromatography. J AOAC Int 101(6):1985–1992

    Article  CAS  PubMed  Google Scholar 

  41. Sutton AT, Fraige K, Leme GM, da Silva Bolzani V, Hilder EF, Cavalheiro AJ, Arrua RD, Funari CS (2018) Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography—searching for alternatives to organic solvents. Anal Bioanal Chem 410(16):3705–3713

    Article  CAS  PubMed  Google Scholar 

  42. Chou TY, Wang CK, Lua AC, Yang HH (2018) A simple and high throughput parallel dual immunoaffinity liquid chromatography-mass spectrometry system for urine drug testing. Anal Meth 10(8):832–835

    Article  CAS  Google Scholar 

  43. Korany MA, Mahgoub H, Haggag RS, Ragab MA, Elmallah OA (2018) Green gas chromatographic stability-indicating method for the determination of Lacosamide in tablets. Application to in-vivo human urine profiling. J Chromatogr B 1083:75–85

    Article  CAS  Google Scholar 

  44. Oliveira AS, Ballus CA, Menezes CR, Wagner R, Paniz JNG, Tischer B, Costa AB, Barin JS (2018) Green and fast determination of the alcoholic content of wines using thermal infrared enthalpimetry. Food Chem 258:59–62

    Article  CAS  PubMed  Google Scholar 

  45. Pallone JAL, Caramês ETDS, Alamar PD (2018) Green Analytical Chemistry applied in food analysis: alternative techniques. Curr Opin Food Sci 22:115–121

    Article  Google Scholar 

  46. Azcarate SM, Langhoff LP, Camiña J, Savio M (2019) A green single-tube sample preparation method for wear metal determination in lubricating oil by microwave induced plasma with optical emission spectrometry. Talanta 195:573–579

    Article  CAS  PubMed  Google Scholar 

  47. Samorì C, Costantini F, Galletti P, Tagliavini E, Abbiati M (2018) Inter-and intraspecific variability of nitrogenated compounds in gorgonian corals via application of a fast one-step analytical protocol. Chem Biodiv 15(1):1–8

    Article  CAS  Google Scholar 

  48. Sripirom J, Sim WC, Khunkaewla P, Suginta W, Schulte A (2018) Simple and economical analytical voltammetry in 15 μl volumes: paracetamol voltammetry in blood serum as a working example. Anal Chem 90(17):10105–10110

    Article  CAS  PubMed  Google Scholar 

  49. Junior RAC, Chagas AV, Felix CS, Souza RC, Silva LA, Lemos VA, Ferreira SL (2019) A closed inline system for sample digestion using 70% hydrogen peroxide and UV radiation. Determination of lead in wine employing ETAAS. Talanta 191:479–484

    Article  CAS  Google Scholar 

  50. Sajid M, Płotka-Wasylka J (2018) “Green” nature of the process of derivatization in analytical sample preparation. Trends Anal Chem 102:16–31

    Article  CAS  Google Scholar 

  51. Marć M, Kupka T, Wieczorek PP, Namieśnik J (2018) Computational modeling of molecularly imprinted polymers as a green approach to the development of novel analytical sorbents. Trends Anal Chem 98:64–78

    Article  CAS  Google Scholar 

  52. Yin XL, Gu HW, Jalalvand AR, Liu YJ, Chen Y, Peng TQ (2018) Dealing with overlapped and unaligned chromatographic peaks by second-order multivariate calibration for complex sample analysis: fast and green quantification of eight selected preservatives in facial masks. J Chromatogr A 1573:18–27

    Article  CAS  PubMed  Google Scholar 

  53. Chen FF, Sang J, Zhang Y, Sang J (2018) Development of a green two-dimensional HPLC-DAD/ESI-MS method for the determination of anthocyanins from Prunus cerasifera var. atropurpurea leaf and improvement of their stability in energy drinks. Int J Food Sci Technol 53(6):1494–1502

    Article  CAS  Google Scholar 

  54. Novo DL, Pereira RM, Costa VC, Hartwig CA, Mesko MF (2018) A novel and eco-friendly analytical method for phosphorus and sulfur determination in animal feed. Food Chem 246:422–427

    Article  CAS  PubMed  Google Scholar 

  55. Rebouças CT, Kogawa AC, Salgado HRN (2018) A new green method for the quantitative analysis of enrofloxacin by fourier-transform infrared spectroscopy. J AOAC Int 101(6):2001–2005

    Article  PubMed  CAS  Google Scholar 

  56. Souza OA, Carneiro RL, Vieira THM, Funari CS, Rinaldo D (2018) Fingerprinting Cynara scolymus L. (Artichoke) by means of a green statistically developed HPLC-PAD Method. Food Anal Meth 11(7):1977–1985

    Article  Google Scholar 

  57. Tejada-Casado C, del Olmo-Iruela M, García-Campaña AM, Lara FJ (2018) Green and simple analytical method to determine benzimidazoles in milk samples by using salting-out assisted liquid-liquid extraction and capillary liquid chromatography. J Chromatogr B 1091:46–52

    Article  CAS  Google Scholar 

  58. Pedroso TM, Schepdael AV, Salgado HRN (2019) Application of the principles of green chemistry for the development of a new and sensitive method for analysis of ertapenem sodium by capillary electrophoresis. Int J Anal Chem 2019:1–11

    Article  Google Scholar 

  59. Mazivila SJ (2018) Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review. Talanta 180:239–247

    Article  CAS  PubMed  Google Scholar 

  60. Supharoek SA, Ponhong K, Siriangkhawut W, Grudpan K (2018) Employing natural reagents from turmeric and lime for acetic acid determination in vinegar sample. J Food Drug Anal 26(2):583–590

    Article  CAS  PubMed  Google Scholar 

  61. Phadungcharoen N, Plianwong S, Srivichai C, Chanthananon N, Kaosal W, Pannil O, Opanasopit P, Ngawhirunpat T, Rojanarata T (2018) Green, fast and cheap paper-based method for estimating equivalence ratio of cationic carriers to DNA in gene delivery formulations. Eur J Pharm Sci 115:204–211

    Article  CAS  PubMed  Google Scholar 

  62. Catelani TA, Bittar DB, Pezza L, Pezza HR (2019) Determination of amino acids in gym supplements using digital images and paper platform coupled to diffuse reflectance spectroscopy and USB device. Talanta 196:523–529

    Article  CAS  PubMed  Google Scholar 

  63. Dossi N, Toniolo R, Terzi F, Sdrigotti N, Tubaro F, Bontempelli G (2018) A cotton thread fluidic device with a wall-jet pencil-drawn paper based dual electrode detector. Anal Chim Acta 1040:74–80

    Article  CAS  PubMed  Google Scholar 

  64. Sateanchok S, Wangkarn S, Saenjum C, Grudpan K (2018) A cost-effective assay for antioxidant using simple cotton thread combining paper based device with mobile phone detection. Talanta 177:171–175

    Article  CAS  PubMed  Google Scholar 

  65. de Sousa Fernandes DD, Romeo F, Krepper G, Di Nezio MS, Pistonesi MF, Centurión ME, de Araujo MCU, Diniz PHGD (2019) Quantification and identification of adulteration in the fat content of chicken hamburgers using digital images and chemometric tools. LWT 100:20–27

    Article  CAS  Google Scholar 

  66. Acevedo MSM, Lima MJ, Nascimento CF, Rocha FR (2018) A green and cost-effective procedure for determination of anionic surfactants in milk with liquid-liquid microextraction and smartphone-based photometric detection. Microchem J 143:259–263

    Article  CAS  Google Scholar 

  67. Sitanurak J, Wangdi N, Sonsa-ard T, Teerasong S, Amornsakchai T, Nacapricha D (2018) Simple and green method for direct quantification of hypochlorite in household bleach with membraneless gas-separation microfluidic paper-based analytical device. Talanta 187:91–98

    Article  CAS  PubMed  Google Scholar 

  68. Kiwfo K, Wongwilai W, Paengnakorn P, Boonmapa S, Sateanchok S, Grudpan K (2018) Noodle based analytical devices for cost effective green chemical analysis. Talanta 181:1–5

    Article  CAS  PubMed  Google Scholar 

  69. Espino M, de los Ángeles Fernández M, Gomez FJ, Boiteux J, Silva MF (2018) Green Analytical Chemistry metrics: towards a sustainable phenolics extraction from medicinal plants. Microchem J 141:438–443

    Article  CAS  Google Scholar 

  70. Fabjanowicz M, Bystrzanowska M, Namieśnik J, Tobiszewski M, Płotka-Wasylka J (2018) An analytical hierarchy process for selection of the optimal procedure for resveratrol determination in wine samples. Microchem J 142:126–134

    Article  CAS  Google Scholar 

  71. Fabjanowicz M, Kalinowska K, Namieśnik J, Płotka-Wasylka J (2018) Evaluation of green sample preparation techniques for organic compounds. Curr Green Chem 5(3):168–176

    Article  CAS  Google Scholar 

  72. Hemdan A, Magdy R, Farouk M (2018) Response surface design as a powerful tool for the development of environmentally benign HPLC methods for the determination of two antihypertensive combinations: greenness assessment by two Green Analytical Chemistry evaluation tools. J Sep Sci 41(16):3213–3223

    Article  CAS  PubMed  Google Scholar 

  73. Płotka-Wasylka J (2018) A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 181:204–209

    Article  PubMed  CAS  Google Scholar 

  74. Łuczyńska G, Pena-Pereira F, Tobiszewski M, Namieśnik J (2018) Expectation-maximization model for substitution of missing values characterizing greenness of organic solvents. Molecules 23(6):1292

    Article  PubMed Central  CAS  Google Scholar 

  75. Tobiszewski M, Orłowski A (2015) Multicriteria decision analysis in ranking of analytical procedures for aldrin determination in water. J Chromatogr A 1387:116–122

    Article  CAS  PubMed  Google Scholar 

  76. Saroj S, Shah P, Jairaj V, Rathod R (2018) Green Analytical Chemistry and quality by design: a combined approach towards robust and sustainable modern analysis. Curr Anal Chem 14(4):367–381

    Article  CAS  Google Scholar 

  77. Kurowska-Susdorf A, Zwierżdżyński M, Bevanda AM, Talić S, Ivanković A, Płotka-Wasylka J (2019) Green Analytical Chemistry: social dimension and teaching. TrAC Trends Anal Chem 111:185–196

    Article  CAS  Google Scholar 

  78. Todd PR (2009) Corporate social responsibility and global standardization: sustainable environmental management in the chemical industry. Management & Marketing 4:3–16

    Google Scholar 

  79. Krogsgaard-Larsen P, Thostrup P, Besenbacher F (2011) Scientific social responsibility: a call to arms. Angew Chem Int Edit 50:10738–10740

    Article  CAS  Google Scholar 

  80. Woodhouse EJ, Breyman S (2005) Green chemistry as social movement? Sci Technol Hum 30:199–222

    Article  Google Scholar 

  81. Eilks I, Rauch F, Ralle B, Hofstein A (2013) How to balance the chemistry curriculum between science and society. In: Eilks I, Hofstein A (eds) Teaching chemistry—a studybook. Sense, Rotterdam

    Google Scholar 

  82. Płotka-Wasylka J, Kurowska-Susdorf A, Sajid M, de la Guardia M, Namieśnik J, Tobiszewski M (2018) Green chemistry in higher education: state of the art, challenges, and future trends. Chemsuschem 11(17):2845–2858

    Article  CAS  PubMed  Google Scholar 

  83. Anastas PT, Levy IJ, Parent KE (eds) (2009) Green chemistry education: changing the course of chemistry. American Chemical Society, Washington

    Google Scholar 

  84. Pius IC, Charyulu MM, Sivaramakrishnan CK, Patil SK (1994) Recovery of plutonium from phosphate containing aqueous analytical waste solutions using macroporous anion exchange resin. J Radioanal Nucl Chem 187(1):57–65

    Article  CAS  Google Scholar 

  85. Adya VC, Sengupta A, Dhawale BA, Rajeswari B, Thulasidas SK, Godbole SV (2012) Recovery of americium from analytical solid waste containing large amounts of uranium, plutonium and silver. J Radioanal Nucl Chem 291(3):843–848

    Article  CAS  Google Scholar 

  86. Sankhe RH, Sengupta A, Mirashi NN (2014) Simultaneous recovery of plutonium and americium from assorted analytical waste solutions using extraction chromatography. J Radioanal Nucl Chem 302(1):617–622

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justyna Płotka-Wasylka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Płotka-Wasylka, J., Gałuszka, A., Namieśnik, J. (2019). Green Analytical Chemistry: Summary of Existing Knowledge and Future Trends. In: Płotka-Wasylka, J., Namieśnik, J. (eds) Green Analytical Chemistry. Green Chemistry and Sustainable Technology. Springer, Singapore. https://doi.org/10.1007/978-981-13-9105-7_15

Download citation

Publish with us

Policies and ethics