Skip to main content

EOQ Model Under Discounted Partial Advance—Partial Trade Credit Policy with Price-Dependent Demand

  • Chapter
  • First Online:
Optimization and Inventory Management

Part of the book series: Asset Analytics ((ASAN))

Abstract

The aim of this article is to investigate an inventory model with discounted partial advance payment in a single supplier–single retailer supply chain in the presence of credit period when the demand rate is price sensitive. The lengths of the credit period, advance period, as well as rate of discount on advance payment, are specified by the supplier. Conditions for unique optimal values of the decision variables, namely, the retailer’s selling price and cycle length are obtained. Optimal values of the decision variables are determined iteratively. An algorithm is developed and a numerical example is presented to demonstrate the solution algorithm. Sensitivity analysis is conducted. It is observed that optimal cycle time is affected by the two interest rates. Optimal net profit is affected by the demand rate and the discount factor. Both, the optimal cycle time, as well as the optimal net profit is affected by the supplier’s selling price and the proportion of units for which the advance payment is made. Optimal retailer’s selling price is significantly affected by the discount factor, supplier’s selling price, price elasticity of the demand function as well as the proportion of units for which advance payment is made. We also observe that the retailer’s net profit does not decrease significantly on increasing the advance period.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abad PL, Jaggi CK (2003) A joint approach for setting unit price and the length of the credit period for a seller when end demand is price sensitive. Int J Prod Econ 83(2):115–122

    Article  Google Scholar 

  2. Banerjee S, Sharma A (2010) Inventory model for seasonal demand with option to change the market. Comput Ind Eng 59(4):807–818

    Article  Google Scholar 

  3. Chang CT, Ouyang LY, Teng JT, Cheng MC (2010) Optimal ordering policies for deteriorating items using a discounted cash-flow analysis when a trade credit is linked to order quantity. Comput Ind Eng 59(4):770–777

    Article  Google Scholar 

  4. Chen LH, Kang FS (2010) Integrated inventory models considering the two-level trade credit policy and a price-negotiation scheme. Eur J Oper Res 205:47–58

    Article  Google Scholar 

  5. Chen SC, Teng JT (2014) Retailer’s optimal ordering policy for deteriorating items with maximum lifetime under supplier’s trade credit financing. Appl Math Model 38(15–16):4049–4061

    Article  Google Scholar 

  6. Chung K-J, Liao J-J (2011) The simplified solution algorithm for an integrated supplier–retailer inventory model with two-part trade credit in a supply chain system. Eur J Oper Res 213:156–165

    Article  Google Scholar 

  7. Diabat A, Taleizadeh AA, Lashgari M (2017) A lot sizing model with partial downstream delayed payment, partial upstream advance payment, and partial backordering for deteriorating items. Journal of Manufacturing Systems 45:322–342

    Article  Google Scholar 

  8. Goyal SK (1985) Economic order quantity under conditions of permissible delay in payment. J Oper Res Soc 36(4):335–338

    Article  Google Scholar 

  9. Gupta R, Bhunia A, Goyal S (2009) An application of genetic algorithm in solving an inventory model with advance payment and interval valued inventory costs. Math Comput Model 49(5):893–905

    Article  Google Scholar 

  10. Gupta R, Agrawal S, Banerjee S (2017) Buyer’s Optimal Policy for a Deterministic Inventory Model with Discounted Advance Payment and Trade Credit in a Supply Chain System. Amity Journal of Operations Management 2(1):51–64

    Google Scholar 

  11. Gupta R, Banerjee S, Agrawal S (2018) Retailer’s optimal payment decisions for price-dependent demand under partial advance payment and trade credit in different scenarios. Int J Sci Res Math Stat Sci 5(4):44–53

    Google Scholar 

  12. Ho CH, Ouyang LY, Su CH (2008) Optimal pricing, shipment and payment policy for an integrated supplier–buyer inventory model with two-part trade credit. Eur J Oper Res 187(2):496–510

    Article  Google Scholar 

  13. Hwang H, Shinn SW (1997) Retailer’s pricing and lot sizing policy for exponentially deteriorating products under the condition of permissible delay in payments. Comput Oper Res 24(6):539–547

    Article  Google Scholar 

  14. Jaggi CK, Cárdenas-Barrón LE, Tiwari S, Shafi AA (2017a) Two-warehouse inventory model for deteriorating items with imperfect quality under the conditions of permissible delay in payments. Sci Iranica Trans E, Ind Eng 24(1):390–412

    Article  Google Scholar 

  15. Jaggi CK, Tiwari S, Goel SK (2017) Credit financing in economic ordering policies for non-instantaneous deteriorating items with price dependent demand and two storage facilities. Ann Oper Res 248(1–2):253–280

    Article  Google Scholar 

  16. Khanna A, Gautam P, Jaggi CK (2017) Inventory modeling for deteriorating imperfect quality items with selling price dependent demand and shortage backordering under credit financing. Int JMath Eng Manag Sci 2(2):110–124

    Google Scholar 

  17. Lashgari M, Taleizadeh AA, Ahmadi A (2016) Partial up-stream advanced payment and partial down-stream delayed payment in a three-level supply chain. Ann Oper Res 238(1–2):329–354

    Article  Google Scholar 

  18. Maiti AK, Maiti MK, Maiti M (2009) Inventory model with stochastic lead-time and price dependent demand incorporating advance payment. Appl Math Model 33(5):2433–2443

    Article  Google Scholar 

  19. Mishra U, Tijerina-Aguilera J, Tiwari S, Cárdenas-Barrón LE (2018) Retailer’s joint ordering, pricing, and preservation technology investment policies for a deteriorating item under permissible delay in payments. Math Probl Eng

    Google Scholar 

  20. Molamohamadi Z, Arshizadeh R, Ismail N (2014) An EPQ inventory model with allowable shortages for deteriorating items under trade credit policy. Discret Dyn Nat Soc

    Google Scholar 

  21. Ouyang L, Ho C, Su C (2009) An optimization approach for joint pricing and ordering problem in an integrated inventory system with order-size dependent trade credit. Comput Ind Eng 57(3):920–930

    Article  Google Scholar 

  22. Sarkar B (2012) An EOQ model with delay in payments and time varying deterioration rate. Math Comput Model 55(3–4):367–377

    Article  Google Scholar 

  23. Shah NH, Shah DB, Patel DG (2015) Optimal transfer, ordering and payment policies for joint supplier–buyer inventory model with price-sensitive trapezoidal demand and net credit. Int J Syst Sci 46(10):1752–1761

    Article  Google Scholar 

  24. Taleizadeh AA (2014) An EOQ model with partial backordering and advance payments for an evaporating item. Int J Prod Econ 155:185–193

    Article  Google Scholar 

  25. Taleizadeh AA (2017) Lot-sizing model with advance payment pricing and disruption in supply under planned partial backordering. Int Trans Oper Res 24(4):783–800

    Article  Google Scholar 

  26. Taleizadeh AA, Lashgari M, Akram R, Heydari J (2016) Imperfect economic production quantity model with upstream trade credit periods linked to raw material order quantity and downstream trade credit periods. Appl Math Model 40(19–20):8777–8793

    Article  Google Scholar 

  27. Teng JT (2002) On the economic order quantity under conditions of permissible delay in payments. J Oper Res Soc 53:915–918

    Article  Google Scholar 

  28. Teng JT, Chang CT, Goyal SK (2005) Optimal pricing and ordering policy under permissible delay in payments. Int J Prod Econ 97(2):121–129

    Article  Google Scholar 

  29. Thangam A (2012) Optimal price discounting and lot-sizing policies for perishable items in a supply chain under advance payment scheme and two-echelon trade credits. Int. J. Production Economics 139:459–472

    Article  Google Scholar 

  30. Tiwari S, Cárdenas-Barrón LE, Khanna A, Jaggi CK (2016) Impact of trade credit and inflation on retailer’s ordering policies for non-instantaneous deteriorating items in a two-warehouse environment. Int J Prod Econ 176:154–169

    Article  Google Scholar 

  31. Wu J, Teng JT, Chan YL (2017) Inventory policies for perishable products with expiration dates and advance-cash-credit payment schemes. Int J Syst Sci: Oper Logist 1–17

    Google Scholar 

  32. Zhang Q, Tsao YC, Chen TH (2014) Economic order quantity under advance payment. Appl Math Model 38(24):5910–5921

    Article  Google Scholar 

  33. Zia NP, Taleizadeh AA (2015) A lot-sizing model with backordering under hybrid linked-to-order multiple advance payments and delayed payment. Transp Res Part E: Logist Transp Rev 82:19–37

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the anonymous reviewers for their suggestions leading to some improvement in the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snigdha Banerjee .

Editor information

Editors and Affiliations

Appendices

Appendix 1 (Sufficiency Conditions)

For Case I (T ≥ MR), the second-order derivatives with respect to T and PR are given by differentiating (4) and (5), respectively, i.e.,

$$ \frac{{\partial^{2} {\text{Net}}1\left( {{\text{T}},{\text{P}}_{\text{R}} } \right) }}{{\partial {\text{T}}^{2} }} = - \frac{{2{\text{A}}}}{{{\text{T}}^{3} }} < 0 $$
$$ \frac{{\partial^{2} {\text{Net}}1\left( {{\text{T}},{\text{P}}_{\text{R}} } \right)}}{{\partial {\text{P}}_{\text{R}}^{2} }} = - \frac{\upalpha}{2}{\text{P}}_{\text{R}}^{{ - \left( {\upbeta + 1} \right)}} \left[ {{\text{P}}_{\text{R}}^{ - 1} \left( {\upbeta + 1} \right)\left( {{\text{R}}1} \right) + \left( {\upbeta - 1} \right)\left( {2 + {\text{I}}_{\text{ER}} {\text{T}}} \right)} \right] $$

At PR* since \( \frac{\partial Net1}{{\partial P_{R} }} = 0 \), we have R1 = 0.

Since R1 = 0,

$$ \frac{{\partial^{2} {\text{Net}}1\left( {{\text{T}}, {\text{P}}_{\text{R}} } \right)}}{{\partial {\text{P}}_{\text{R}}^{2} }}\left\langle {0\,{\text{If}}\,\upbeta - 1} \right\rangle 0,\,{\text{i}}.{\text{e}}.,\,\upbeta > 1. $$

For Case II (T < MR), the second-order derivatives with respect to T and PR are given by differentiating (8) and (9), respectively, i.e.,

$$ \begin{aligned} \frac{{\partial^{2} {{\text{Net}}}2\left( {{{\text{T}}}, {{\text{P}}}_{{\text{R}}} } \right) }}{{\partial {{\text{T}}}^{{2}} }} & = - \frac{{2{{\text{A}}}}}{{{{\text{T}}}^{{3}} }} < 0 \\ \frac{{\partial^{2} {{\text{Net}}}2\left( {{{\text{T}}}, {{\text{P}}}_{{\text{R}}} } \right)}}{{\partial {{\text{P}}}_{{\text{R}}}^{{2}} }} & = - \frac{\upalpha}{2}{{\text{P}}}_{{\text{R}}}^{{ - \left( {\upbeta + 1} \right)}} [{{\text{P}}}_{{\text{R}}}^{{ - 1}} \left( {\upbeta + 1} \right)\left( {{{\text{R}}}2} \right) + \left( {\upbeta - 1} \right)\left( {2 + 2{{\text{I}}}_{{\text{ER}}} {{\text{M}}}_{{\text{R}}} - {{\text{I}}}_{{\text{ER}}} {{\text{T}}}} \right) \\ \end{aligned} $$

Since R2 = 0

$$ \frac{{\partial^{2} {\text{Net}}2\left( {{\text{T}}, {\text{P}}_{\text{R}} } \right)}}{{\partial {\text{P}}_{\text{R}}^{2} }}\left\langle {0,\,If\,\upbeta - 1} \right\rangle 0,\,{\text{i}}.{\text{e}}.,\,\upbeta > 1. $$

Appendix 2 (Determinant of the Hessian Matrix)

For Case I, T ≥ MR, we have

$$ \frac{{\partial^{2} {\text{Net}}1\left( {{\text{T}}, {\text{P}}_{\text{R}} } \right) }}{{\partial {\text{T}}^{2} }} = - \frac{{2{\text{A}}}}{{{\text{T}}^{3} }} $$
$$ \frac{{\partial^{2} {\text{Net}}1\left( {{\text{T}},{\text{P}}_{\text{R}} } \right)}}{{\partial {\text{P}}_{\text{R}}^{2} }} = - \frac{\upalpha}{2}{\text{P}}_{\text{R}}^{{ - \left( {\upbeta + 2} \right)}} \left[ {{\text{P}}_{\text{R}}^{ - 1} \left( {\upbeta + 1} \right)\left( {{\text{R}}1} \right) + \left( {2 + {\text{I}}_{\text{ER}} {\text{T}}} \right)\left( {\upbeta - 1} \right)} \right] $$

On differentiating (5), we get

$$ \begin{aligned} \frac{{\partial^{2} {{\text{Net}}}1\left( {{{\text{T}}},{{\text{P}}}_{{\text{R}}} } \right) }}{{\partial {{\text{T}}}\partial {{\text{P}}}_{{\text{R}}} }} & = \frac{\upalpha}{2} {{\text{P}}}_{{\text{R}}}^{{ - \left( {\upbeta + 1} \right)}} \left\{ { - {{\text{P}}}_{{\text{R}}} {{\text{I}}}_{{\text{ER}}} \left( {\upbeta - 1} \right)} \right. \\ & \quad \left. { +\upbeta\left\{ {{{\text{h}}} + 2{{\text{P}}}_{{\text{S}}} \left[ {\left( {1 - {{\text{A}}}_{{1}} } \right){{\text{I}}}_{{1}} - {{\text{A}}}_{{2}} \left( {{{\text{I}}}_{{1}} - {{\text{I}}}_{{\text{PR}}} } \right) + {{\text{A}}}_{{1}}\uprho{{\text{I}}}_{{\text{PR}}} } \right]} \right\}} \right\} \\ \end{aligned} $$

The determinant of this Hessian matrix for Case I is

$$ \begin{aligned} {{\text{Hessian}}}1 & = - \frac{{2{{\text{A}}}}}{{{{\text{T}}}^{{3}} }}\left\{ { - \frac{\upalpha}{2}{{\text{P}}}_{{\text{R}}}^{{ - \left( {\upbeta + 2} \right)}} \left[ {{{\text{P}}}_{{\text{R}}}^{{ - 1}} \left( {{\upbeta + 1}} \right)\left( {{{\text{R}}}1} \right) + \left( {2 + {{\text{I}}}_{{\text{ER}}} {{\text{T}}}} \right)\left( {{\upbeta - 1}} \right)} \right]} \right\} \\ & \quad - \left[ {\frac{{\upalpha}}{{2}}\,{{\text{P}}}_{{\text{R}}}^{{ - \left( {\upbeta + 1} \right)}} \left\{ { - {{\text{P}}}_{{\text{R}}} {{\text{I}}}_{{\text{ER}}} \left( {\upbeta - 1} \right) +\upbeta\left[ {{{\text{h}}} + 2{{\text{P}}}_{{\text{S}}} \left( {\left( {1 - {{\text{A}}}_{{1}} } \right){\text{I}}_{1} - {{\text{A}}}_{{2}} \left( {{{\text{I}}}_{{1} }- {{\text{I}}}_{{\text{PR}}} } \right)} \right.} \right.} \right.} \right. \\ & \quad \left. {\left. {\left. {\left( { + {{\text{A}}}_{1}\uprho{{\text{I}}}_{{\text{PR}}} } \right)} \right]} \right\}} \right]^{2} \\ \end{aligned} $$

Since R1 = 0

$$ \begin{aligned} {{\text{Hessian}}}1 & = \frac{\text{A}}{{{{\text{T}}}^{3} }}\upalpha {{\text{P}}}_{{\text{R}}}^{{ - \left( {{\upbeta + 2}} \right)}} \left( {2 + {{\text{I}}}_{{\text{ER}}} {{\text{T}}}} \right)\left( {{\upbeta - 1}} \right) \\ & \quad - \left[ {\frac{{\upalpha}}{{2}}\,{{\text{P}}}_{{\text{R}}}^{{ - \left( {{\upbeta + 1}} \right)}} } \right.\left\{ { - {{\text{P}}}_{{\text{R}}} {{\text{I}}}_{{\text{ER}}} \left( {{\upbeta - 1}} \right) +\upbeta} \right.\left[ {{{\text{h}}} + 2{{\text{P}}}_{{\text{S}}} \left( {\left( {1 - {{\text{A}}}_{{1}} } \right){{\text{I}}}_{{1}} - {{\text{A}}}_{{2}} \left( {{{\text{I}}}_{{1}} - {{\text{I}}}_{{\text{PR}}} } \right)} \right.} \right. \\ & \quad \left. {\left. {\left. {\left. { + {{\text{A}}}_{{1}}\uprho{{\text{I}}}_{{\text{PR}}} } \right)} \right]} \right\}} \right]^{2} \\ \end{aligned} $$

i.e.,

$$ {\text{Hessian}}1 = {\text{AA}} - {\text{BB}} $$

where

$$ {\text{AA}} = \frac{\text{A}}{{{\text{T}}^{3} }}\upalpha\,{\text{P}}_{\text{R}}^{{ - \left( {\upbeta + 2} \right)}} \left( {2 + {\text{I}}_{\text{ER}} {\text{T}}} \right)\left( {\upbeta - 1} \right) > 0\,{\text{if}}\,\upbeta > 1. $$
$$ {{\text{BB}}} = \left[ {\frac{\upalpha}{2}\,{{\text{P}}}_{{\text{R}}}^{{ - \left( {\upbeta + 1} \right)}} \left\{ { - {{\text{P}}}_{{\text{R}}} {{\text{I}}}_{{\text{ER}}} \left( {\upbeta - 1} \right) +\upbeta\left[ {{{\text{h}}} + 2{{\text{P}}}_{{\text{S}}} \left( {\left( {1 - {{\text{A}}}_{1} } \right){{\text{I}}}_{1} - {{\text{A}}}_{2} \left( {{\text{I}}_{1} - {{\text{I}}}_{{\text{PR}}} } \right) + {{\text{A}}}_{1}\uprho{{\text{I}}}_{{\text{PR}}} } \right)} \right]} \right\}} \right]^{2} $$

Since \( \frac{{\partial^{2} {\text{Net}}1}}{{\partial {\text{T}}^{2} }} < 0 \), the condition for joint concavity of Net1 with respect to T and PR is AA > BB.

For Case II, for T < MR, we have

$$ \frac{{\partial^{2} {\text{Net}}2\left( {{\text{T}}, {\text{P}}_{\text{R}} } \right)}}{{\partial {\text{T}}^{2} }} = \frac{{ - 2{\text{A}}}}{{{\text{T}}^{3} }} $$
$$ \frac{{\partial^{2} {{\text{Net}}}2\left( {{\text{T}},{{\text{P}}}_{{\text{R}}} } \right)}}{{\partial {{\text{P}}}_{{\text{R}}}^{2} }} = - \frac{\alpha }{2}{{\text{P}}}_{{\text{R}}}^{{ - \left( {\beta + 1} \right)}} \left[ {{\text{P}}_{{\text{R}}}^{ - 1} \left( {\beta + 1} \right)\left( {{\text{R}}2} \right) + \left( {\beta - 1} \right)\left( {2 + 2{{\text{I}}}_{{\text{ER}}} {{\text{M}}}_{{\text{R}}} - {{\text{I}}}_{{\text{ER}}} {\text{T}}} \right)} \right] $$

On differentiating (9) with respect to T, we get

$$ \frac{{\partial^{2} {{\text{Net}}}2\left( {{\text{T}},{{\text{P}}}_{{\text{R}}} } \right)}}{{\partial {{\text{T}}}\partial {{\text{P}}}_{{\text{R}}}}} = \frac{\alpha }{2}{{\text{P}}}_{{\text{R}}}^{{ - \left( {\beta + 1} \right)}} \left[ {{\text{P}}_{{\text{R}}} {{\text{I}}}_{{\text{ER}}} \left( {\beta - 1} \right) +\upbeta\left( {{\text{h}} + 2{{\text{P}}}_{{\text{S}}} {{\text{A}}}_{1}\uprho{{\text{I}}}_{{\text{PR}}}} \right)} \right] $$

The determinant of the Hessian matrix for Case II is

$$ \begin{aligned} {{\text{Hessian}}}2 & = \frac{{ - 2{{\text{A}}}}}{{{\text{T}}^{3} }}\left\{ { - \frac{\alpha }{2}{{\text{P}}}_{{\text{R}}}^{{ - \left( {\beta + 1} \right)}} \left[ {{\text{P}}_{{\text{R}}}^{ - 1} \left( {\beta + 1} \right)\left( {{\text{R}}2} \right) + \left( {\beta - 1} \right)\left( {2 + 2{{\text{I}}}_{{\text{ER}}} {{\text{M}}}_{{\text{R}}} - {{\text{I}}}_{{\text{ER}}} {{\text{T}}}} \right)} \right]} \right\} \\ & \quad - \left\{ {\frac{\alpha }{2}{{\text{P}}}_{{\text{R}}}^{{ - \left( {\beta + 1} \right)}} \left[ {{{\text{P}}}_{{\text{R}}} {{\text{I}}}_{{\text{ER}}} \left( {\beta - 1} \right) +\upbeta\left( {{\text{h}} + 2{{\text{P}}}_{{\text{S}}} {{\text{A}}}_{1}\uprho{{\text{I}}}_{{\text{PR}}} } \right)} \right]} \right\}^{2} \\ \end{aligned} $$

Since at PR2*, R2 = 0,

$$ \begin{aligned} {{\text{Hessian}}}\,2 & = \frac{{\text{A}}}{{{\text{T}}^{3} }}\alpha {{\text{P}}}_{{\text{R}}}^{{ - \left( {\beta + 1} \right)}} \left( {\beta - 1} \right)\left( {2 + 2{{\text{I}}}_{{\text{ER}}} {{\text{M}}}_{{\text{R}}} - {{\text{I}}}_{{\text{ER}}} {{\text{T}}}} \right) \\ & \quad - \left\{ {\frac{\alpha }{2}{{\text{P}}}_{{\text{R}}}^{{ - \left( {\beta + 1} \right)}} \left[ {{\text{P}}_{{\text{R}}} {{\text{I}}}_{{\text{ER}}} \left( {\beta - 1} \right) +\upbeta\left( {{\text{h}} + 2{\text{P}}_{{\text{S}}} {{\text{A}}}_{1}\uprho{{\text{I}}}_{{\text{PR}}} } \right)} \right]} \right\}^{2} \\ \end{aligned} $$

i.e.,

$$ {\text{Hessian}}2 = {\text{CC}} - {\text{DD}} $$

where

$$ {{\text{CC}}} = \frac{{\text{A}}}{{{\text{T}}^{3} }}\alpha {{\text{P}}}_{{\text{R}}}^{{ - \left( {\beta + 1} \right)}} \left( {\beta - 1} \right)\left( {2 + 2{{\text{I}}}_{{\text{ER}}} {{\text{M}}}_{{\text{R}}} - {{\text{I}}}_{{\text{ER}}} {{\text{T}}}} \right)$$
$$ {{\text{DD}}} = \left\{ {\frac{\alpha }{2}{{\text{P}}}_{{\text{R}}}^{{ - \left( {\beta + 1} \right)}} \left[ {{{\text{P}}}_{{\text{R}}} {{\text{I}}}_{{\text{ER}}} \left( {\beta - 1} \right) +\upbeta\left( {{\text{h}} + 2{{\text{P}}}_{{\text{S}}} {{\text{A}}}_{1}\uprho{{\text{I}}}_{{\text{PR}}}} \right)} \right]} \right\}^{2} $$

Since \( \frac{{\partial^{{2}} {{\text{Net}}2}}}{{{\partial {{\text{T}}}^{{2}}}} } < 0 \), the condition for concavity of Net2 is CC > DD.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, S., Gupta, R., Banerjee, S. (2020). EOQ Model Under Discounted Partial Advance—Partial Trade Credit Policy with Price-Dependent Demand. In: Shah, N., Mittal, M. (eds) Optimization and Inventory Management. Asset Analytics. Springer, Singapore. https://doi.org/10.1007/978-981-13-9698-4_13

Download citation

Publish with us

Policies and ethics