Skip to main content

Abstract

Host resistance in crucifers to powdery mildews is multilayered, and multi-components both at pre- and post-penetration stages. The intricate immune responses are evolved through accumulation of ROS, H2O2, deposition of callose, pectin, cellulose, waxes, silicon, ion fluxes, formation of papilla, cell wall apposition, phenolic compounds, over expression of R-genes, PR proteins, protein phosphorylation, biosynthesis of phytoalexins, fungal enzymes inhibiters, chito-octamers, triggering of HR, induction of SAR, and non-host resistance mechanisms. These cytoskeleton components have very important and crucial functional, and structural roles in host resistance to powdery mildew pathogens of crucifers. Defenses are activated either through SA signaling, and simultaneous perception of ethylene, and jasmonic acid (JA). The over expression of several R-genes in crucifers –powdery mildew host pathosystem induces host resistance. MLO genes encoding seven-trans-membrane, calmodulin-binding protein confers broad spectrum resistance to adapted powdery mildews of Arabidopsis. edr mutants of Arabidopsis have a general link between SA mediated resistance, mitochondrial function, and programmed cell death. pmr mutants confer resistance to powdery mildew through altered cell wall composition of host. Increased SA enhances the expression of RPW 8.1, and RPW 8.2 leading to HR, or SHL, and resistance. Bj NPR1 gene activates SAR to confer broad spectrum resistance to powdery mildew of B. juncea. At ROP regulated At RLCK V1 A3 has a role in basal resistance to powdery mildews. The At MLO2, At MLO6, and At MLO12 triple mutants are resistance to G. orontii. CPR5 controls resistance to powdery mildews, and PCD in response to infection by E. cruciferarum. There is a role of WRKY transcription factors, and over expression of R-genes like PMR, MLO, PEN, EDR, MAPK, MAPK 65-3, NPR1, PAD3, PAD4, ED5, SNARE, RLCKs, and KDL (At CEP1) to confer R to powdery mildews of crucifers. Higher levels of camalexin contribute to the enhanced R to powdery mildew in Cyp83 a1-3 mutants of Arabidopsis. SR1 plays a critical role in powdery mildew resistance by regulating EIN3, and NDR1 expression. There is harmonous coordination between transcriptional regulation, and resistance to powdery mildews. The application of Trichoderma harzianum and its CF induces (ISR) resistance in crucifers. Mechanisms of non-host R in crucifers to powdery mildews have been unrevealed which is strong and durable. Non-host resistance is PEN-gene-mediated at pre- invasion, and controlled by genes EDS1, PAD4, and SAG (101) at post-invasion of powdery mildew pathogens. In cabbage, R to powdery mildew is controlled by a single dominant gene with modifiers. A single R gene controls R to powdery mildew in HC-1, and PCC-2 with complete dominance. In Arabidopsis, R to PM is polygenic, and based on R-gene RPW8 or on combination of RPW 8 gene complex loci. Powdery mildew resistance genes of Arabidopsis have been mapped on chromosomes II (RPW1), III (RPW2, RPW3, RPW7, RPW8), IV (RPW4), and V (RPW 5, RPW 6). In rapeseed gamma rays mutagenic plants exhibit R to powdery mildew due to an increase in concentration of unsaturated fatty acids with 18 carbon atoms. Induction of glucosinolates, and camalexin plays important roles for resistance to powdery mildew of crucifers. Camalexin biosynthesis, and accumulation are affected by WRKY 18, WRKY 40 transcription factor of Arabidopsis, and enhances upon G. orontii infection to confer resistance. Transfer of powdery mildew resistance to B. oleracea from B. carinata through embryo rescue has been confirmed. Major gene sources of resistance against powdery mildew of crucifers have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham V (1993) Transfer of resistance to powdery mildew from Brassica carinata to Indian mustard (B. juncea). In: Natl Symp on Oilseed Research and Development in India. Status and Strategies Abstr. August 2–5, 1993, Hyderabad, pp 86

    Google Scholar 

  • Acevedo-Garcia J, Kusch S, Panstruga R (2014) Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytol 204:273–281

    CAS  PubMed  Google Scholar 

  • Acevedo-Garcia J, Gruner K, Reinstaedler A, Kemen A, Kemen E, Cao L, Takken FLW, Reitz MU, Schafer P, O'Connell RJ, Kusch S, Kuhn H, Panstruga R (2017) The powdery mildew-resistant Arabidopsis mlo2 mlo6 mlo12 triple mutant displays altered infection phenotypes with diverse types of phytopathogens. Sci Rep 7:–9319

    Google Scholar 

  • Adam L, Somerville SC (1996) Genetic characterization of five powdery mildew disease resistance loci in Arabidopsis thaliana. Plant J 9:341–356

    CAS  PubMed  Google Scholar 

  • Adam L, Ellwood S, Wilson I, Saenz G, Xiao S, Oliver RP, Turner JG, Somerville S (1999) Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. Mol Plant-Microbe Interact 12:1031–1043

    CAS  PubMed  Google Scholar 

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    CAS  PubMed  Google Scholar 

  • Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: roles in signaling and plant defense. Mol Plant-Microbe Interact 21:507–517

    CAS  PubMed  Google Scholar 

  • Ahloowalia B, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204

    Google Scholar 

  • Aist JR (1976) Papillae and related wound plugs of plant cells. Annu Rev Phytopathol 14:145–163

    Google Scholar 

  • Ali S, Mir ZA, Tyagi A, Mehari H, Meena RP, Bhat JA, Yadav P, Papalou P, Rawat S, Grover A (2017) Over expression of NPR1 in Brassica juncea confers broad spectrum resistance to fungal pathogens. Front in Plant Sci 8:1693

    Google Scholar 

  • Alkooranee JT, Yin Y, Aledan TR, Jiang Y, Lu G, Wu J, Li M (2015) Systemic resistance to powdery mildew in Brassica napus (AACC) and Raphanus alboglabra (RRCC) by Trichoderma harzianum TH12. PLoS One 10(11):e0142177

    PubMed  PubMed Central  Google Scholar 

  • Alvarez ME (2000) Salicylic acid in the machinery of hypersensitive cell death and disease resistance. Plant Mol Biol 44:429–442

    CAS  PubMed  Google Scholar 

  • An Q, Huckelhoven R, Kogel KH, van Bel AJ (2006) Multi-vesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8:1009–1019

    CAS  PubMed  Google Scholar 

  • Andersson MX, Kourtchenko O, Dangl JL, Mackey D, Ellerstrom M (2006) Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance responses in Arabidopsis thaliana. Plant J 47:947–959

    CAS  PubMed  Google Scholar 

  • Antico CJ, Colon C, Banks T, Ramonell KM (2012) Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. Front Biol 7:48–56

    CAS  Google Scholar 

  • Aravind L, Koonin EV (1999) Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain. J Mol Biol 285:1353–1361

    CAS  PubMed  Google Scholar 

  • Asai T, Tena G, Plotnikova J, Willmann MR, Chiu WL, Gomez-Gomez L, Boller T, Ausubel FM, Sheen J (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983

    CAS  PubMed  Google Scholar 

  • Assaad FF, Qiu JL, Youngs H, Ehrhardt D, Zimmerli L, Kalde M, Wanner G, Peck SC, Edwards H, Ramonell K, Somerville CR, Thordal-Christensen H (2004) The PEN1 syntaxin defines a novel cellular compartment upon fungal attack and is required for the timely assembly of papillae. Mol Biol Cell 15:5118–5129

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auld D, Heikkinen M, Erickson D, Sernyk J, Romero J (1992) Rapeseed mutants with reduced levels of polyunsaturated fatty acids and increased levels of oleic acid. Crop Sci 32:657–662

    CAS  Google Scholar 

  • Ausubel FM (2005) Are innate immune signaling pathways in plants and animals conserved? Nature Immunol 6:973–979

    CAS  Google Scholar 

  • Azevedo C, Betsuyaku S, Peart J, Takahashi A, Noel L, Sadanandom A, Casais C, Parker J, Shirasu K (2006) Role of SGT1 in resistance protein accumulation in plant immunity. EMBO J 25:2007–2016

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai YL, van der Hulst R, Bonnema G, Marcel BC, Meijer-Dekens F, Niks RE, Lindhout P (2005) Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant-Microbe Interact 18:354–362

    CAS  PubMed  Google Scholar 

  • Bak S, Feyereisen R (2001) The involvement of two p450 enzymes, CYP83B1 and CYP83A1, in auxin homeostasis and glucosinolate biosynthesis. Plant Physiol 127:108–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bak S, Beisson F, Bishop G, Hamberger B, Hofer R, Paquette S, Werck-Reichhart D (2011) Cytochromes p450. Arabidopsis Book 9:e0144

    PubMed  PubMed Central  Google Scholar 

  • Bakshi M, Oelmuller R (2014) WRKY transcription factors: Jack of many trades in plants. Plant Signal Behav 9:e27700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baluska F, Bacigalova K, Oud JL, Hauskrecht M, Kubica S (1995) Rapid reorganization of microtubular cytoskeleton accompanies early changes in nuclear ploidy and chromatin structure in post-mitotic cells of barley leaves infected with powdery mildew. Protoplasma 185:140–151

    Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    CAS  PubMed  Google Scholar 

  • Bayer M, Nawy T, Giglione C, Galli M, Meinnel T, Lukowitz W (2009) Paternal control of embryonic patterning in Arabidopsis thaliana. Science 323:1485–1488

    CAS  PubMed  Google Scholar 

  • Beckers GJM, Jaskiewicz M, Liu Y, Underwood WR, He SY, Zhang S, Conrath U (2009) Mitogen-activated protein kinases 3 and 6 are required for full priming of stress responses in Arabidopsis thaliana. Plant Cell 21:944–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bednarek P (2012) Chemical warfare or modulators of defence responses-the function of secondary metabolites in plant immunity. Curr Opinion Plant Biol 15:407–414

    CAS  Google Scholar 

  • Bednarek P, Osbourn A (2009) Plant–microbe interactions: chemical diversity in plant defense. Science 324:746–748

    CAS  PubMed  Google Scholar 

  • Bednarek P, Pislewska-Bednarek M, Svatos A, Schneider B, Doubsky J, Mansurova M, Humphry M, Consonni C, Panstruga R, Sanchez-Vallet A, Molina A, Schulze-Lefert P (2009) A glucosinolate metabolism pathway in living plant cells mediates broad-spectrum antifungal defense. Science 323:101–106

    CAS  PubMed  Google Scholar 

  • Beekwilder J, van Leeuwen W, van Dam NM, Bertossi M, Grandi V, Mizzi L, Soloviev M, Szabados L, Molthoff JW, Schipper B, Verbocht H, de Vos RCH, Morandini P, Arts MGM, Bovy A (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS One 3:e2068

    PubMed  PubMed Central  Google Scholar 

  • Beers EP, Jones AM, Dickerman AW (2004) The S8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Phytochemistry 65:43–58

    CAS  PubMed  Google Scholar 

  • Belanger RR, Bushnell WR, Dik AJ, Carver TLW (2002) The powdery mildews: a comprehensive treatise. (St. Paul: Am Phytopathol Soc (APS Press)

    Google Scholar 

  • Belanger RR, Benhamou N, Menzies JG (2003) Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93:402–412

    CAS  PubMed  Google Scholar 

  • Bell CJ, Ecker JR (1994) Assignment of 30 microsatellite markers to the linkage map of Arabidopsis. Genomics 19:137–144

    CAS  PubMed  Google Scholar 

  • Berken A (2006) ROPs in the spotlight of plant signal transduction. Cell Mol Life Sci 63:2446–2459

    CAS  PubMed  Google Scholar 

  • Bethke G, Unthan T, Uhrig JF, Poschl Y, Gust AA, Scheel D, Lee J (2009) Flg22 regulates the release of an ethylene response factor substrate from MAP kinase 6 in Arabidopsis thaliana via ethylene signaling. Proc Natl Acad Sci U S A 106:8067–8072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhat RA, Miklis M, Schmelzer E, Schulze-Lefert P, Panstruga R (2005) Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain. Proc Natl Acad Sci U S A 102:3135–3140

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bittel P, Robatzek S (2007) Microbe-associated molecular patterns (MAMPs) probe plant immunity. Curr Opinion Plant Biol 10:335–341

    CAS  Google Scholar 

  • Boch J, Verbsky ML, Robertson TL, Larkin JC, Kunkel BN (1998) Analysis of resistance gene-mediated defense responses in Arabidopsis thaliana plants carrying a mutation in CPR5. Mol Plant-Microbe Interact 11:1196–1206

    CAS  Google Scholar 

  • Bohlenius H, Morch SM, Godfrey D, Nielsen ME, Thordal-Christensen H (2010) The multi-vesicular body-localized GTPase ARFA1b/1c is important for callose deposition and ROR2 syntaxin-dependent pre-invasive basal defense in barley. Plant Cell 22:3831–3844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Ann Rev Plant Biol 60:379–406

    CAS  Google Scholar 

  • Bottcher C, Westphal L, Schmotz C, Prade E, Scheel D, Glawischnig E (2009) The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. Plant Cell 21:1830–1845

    PubMed  PubMed Central  Google Scholar 

  • Bowling SA, Clarke JD, Liu Y, Klessig DF, Dong X (1997) The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1- independent resistance. Plant Cell 9:1573–1584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bracker CE (1968) Ultra-structure of the haustorial apparatus of Erysiphe graminis and its relationship to the epidermal cell of barley. Phytopathology 58:12–30

    Google Scholar 

  • Brininstool G, Kasili R, Simmons LA, Kirik V, Hulskamp M, Larkin JC (2008) Constitutive Expressor of pathogenesis-related genes 5 affects cell wall biogenesis and trichome development. BMC Plant Biol 8:58

    PubMed  PubMed Central  Google Scholar 

  • Burr CA, Leslie ME, Orlowski SK, Chen I, Wright CE, Daniels MJ, Liljegren SJ (2011) CAST AWAY, a membrane-associated receptor-like kinase, inhibits organ abscission in Arabidopsis. Plant Physiol 156:1837–1850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buscaill P, Rivas S (2014) Transcriptional control of plant defence responses. Curr Opinion Plant Biol 20:35–46

    CAS  Google Scholar 

  • Caarls L, Pieterse CMJ, Van Wees SCM (2015) How salicylic acid takes transcriptional control over jasmonic acid signaling. Front Plant Sci 6:170. https://doi.org/10.3389/fpls.2015.00170

    Article  PubMed  PubMed Central  Google Scholar 

  • Cahill D, Rookes J, Michalczyk A, McDonald K, Drake A (2002) Microtubule dynamics in compatible and incompatible interactions of soybean hypocotyl cells with Phytophthora sojae. Plant Pathol 51:629–640

    Google Scholar 

  • Caillaud MC, Abad P, Favery B (2008a) Cytoskeleton reorganization, a key process in root-knot nematode-induced giant cell ontogenesis. Plant Signal Behav 3:816–818

    PubMed  PubMed Central  Google Scholar 

  • Caillaud MC, Lecomte P, Jammes F, Quentin M, Pagnotta S, Andrio E, de Almeida Engler J, Marfaing N, Gounon P, Abad P, Favery B (2008b) MAP65-3 microtubule-associated protein is essential for nematode-induced giant cell ontogenesis in Arabidopsis. Plant Cell 20(2):423–437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campe R, Langenbach C, Leissing F, Popescu GV, Popescu SC, Goellner K, Beckers GJM, Conrath U (2015) ABC transporter PEN3/PDR8/ABCG36 interacts with calmodulin that, like PEN3, is required for Arabidopsis non-host resistance. New Phytol 209:294–306

    PubMed  Google Scholar 

  • Cao H, Bowling SA, Gordon AS, Dong X (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell 6:1583–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63

    CAS  PubMed  Google Scholar 

  • Cao H, Li X, Dong XN (1998) Generation of broad–spectrum disease resistance by over expression of an essential regulatory gene in systemic acquired resistance. Proc Natl Acad Sci U S A 95:6531–6536

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y, Liang Y, Tanaka K, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. elife 3:e03766

    Google Scholar 

  • Carver TLW (1986) Histology of infection by E. graminis f.sp. hordei in spring barley lines with various levels of partial resistance. Plant Pathol 35:232–240

    Google Scholar 

  • Century KS, Shapiro AD, Repetti PP, Dahlbeck D, Holub E, Staskawicz BJ (1997) NDR1, a pathogen-induced component required for Arabidopsis disease resistance. Science 278:1963–1965

    CAS  PubMed  Google Scholar 

  • Chan J, Jensen CG, Jensen LC, Bush M, Lloyd CW (1999) The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci U S A 96:14931–14936

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran D, Tai YC, Hather G, Dewdney J, Denoux C, Burgess DG, Ausubel FM, Speed TP, Wildermuth MC (2009) Temporal global expression data reveal known and novel salicylate-impacted processes and regulators mediating powdery mildew growth and reproduction on Arabidopsis. Plant Physiol 149:1435–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chandran D, Inada N, Hather G, Kleindt CK, Wildermuth MC (2010) Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators. Proc Natl Acad Sci U S A 107:460–465

    CAS  PubMed  Google Scholar 

  • Chandran D, Rickert J, Cherk C, Dotson BR, Wildermuth MC (2013) Host cell ploidy underlying the fungal feeding site is a determinant of powdery mildew growth and reproduction. Mol Plant-Microbe Interact 26:537–545

    CAS  PubMed  Google Scholar 

  • Chandran D, Rickert J, Huang Y, Steinwand MA, Marr SK, Wildermuth MC (2014) A typical E2F transcriptional repressor DEL1 acts at the intersection of plant growth and immunity by controlling the hormone salicylic acid. Cell Host Microbe 15:506–513

    CAS  PubMed  Google Scholar 

  • Chelkowski J, Tyrka M, Sobkiewicz A (2003) Resistance genes in barley (Hordeum vulgare L.) and their identification with molecular markers. J Appl Genet 44:291–309

    PubMed  Google Scholar 

  • Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K (2010) Analysis of the Rac/Rop small GTPase family in rice: expression, sub-cellular localization and role in disease resistance. Plant Cell Physiol 51:585–595

    CAS  PubMed  Google Scholar 

  • Chen X, Barnaby JY, Sreedharan A, Huang X, Orbovic V, Grosser JW, Wang N, Dong X, Song WY (2013) Over–expression of the citrus gene CtNH1 confers resistance to bacterial canker disease. Physiol Mol Plant Pathol 84:115–122

    CAS  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host–microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    CAS  PubMed  Google Scholar 

  • Christiansen KM, Gu Y, Rodibaugh N, Innes RW (2011) Negative regulation of defence signalling pathways by the EDR1 protein kinase. Mol Plant Pathol 12:746–758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke JD, Volko SM, Ledford H, Ausubel FM, Dong X (2000) Roles of salicylic acid, jasmonic acid, and ethylene in cpr-induced resistance in Arabidopsis. Plant Cell 12:2175–2190

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clay NK, Adio AM, Denoux C, Jander G, Ausubel FM (2009) Glucosinolate metabolites required for an Arabidopsis innate immune response. Science 323:95–101

    CAS  PubMed  Google Scholar 

  • Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC, Schulze-Lefert P (2003) SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973–977

    CAS  PubMed  Google Scholar 

  • Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R (2006) Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nature Genet 38:716–720

    CAS  PubMed  Google Scholar 

  • Consonni C, Bednarek P, Humphry M, Francocci F, Ferrari S, Harzen A, Ver Loren van Themaat E, Panstruga R (2010) Tryptophan-derived metabolites are required for antifungal defense in the Arabidopsis mlo2 mutant. Plant Physiol 152:1544–1561

    CAS  PubMed  Google Scholar 

  • Crouzet J, Trombik T, Fraysse AS, Boutry M (2006) Organization and function of the plant pleiotropic drug resistance ABC transporter family. FEBS Lett 580:1123–1130

    CAS  PubMed  Google Scholar 

  • Dang JK, Sangwan MS, Mehta N, Kaushik CD (2000) Multiple disease resistance against four fungal foliar diseases of rapeseed-mustard. Indian Phytopathol 53(4):455–458

    Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833

    CAS  PubMed  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341:746–751

    CAS  PubMed  Google Scholar 

  • De Almeida EJ, Favery B (2011) The plant cytoskeleton remodelling in nematode induced feeding sites. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Heidelberg, pp 369–393

    Google Scholar 

  • De Almeida EJ, Favery B, Engler G, Abad P (2005) Loss of susceptibility as an alternative for nematode resistance. Curr Opinion Biotech 16:112–117

    Google Scholar 

  • de Jong CF, Laxalt AM, Bargmann BO, de Wit PJ, Joosten MH, Munnik T (2004) Phosphatidic acid accumulation is an early response in the Cf-4/Avr4 interaction. Plant J 39:1–12

    PubMed  Google Scholar 

  • Delaney TP, Friedrich L, Ryals JA (1995) Arabidopsis signal transduction mutant defective in chemically and biologically induced disease resistance. Proc Natl Acad Sci U S A 92:6602–6606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dempsey DA, Shah J, Klessig DF (1999) Salicylic acid and disease resistance in plants. Critical Rev Plant Sci 18:547–575

    CAS  Google Scholar 

  • De-Vos M, Van-Oosten VR, van Poecke RMP, Van Pelt JA, Pozo MJ, Mueller MJ, Buchala AJ, Metraux JP, Van Loon LC, Dicke M, Pieterse CMJ (2005) Signal signature and transcriptome changes of Arabidopsis during pathogen and insect attack. Mol Plant-Microbe Interact 18:923–937

    CAS  PubMed  Google Scholar 

  • Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R (2003) Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 56:77–88

    CAS  PubMed  Google Scholar 

  • Dewdney J, Reuber TL, Mary CW, Alessandra D, Jianping C, Lisa MS, Emma PD, Frederick MA (2000) Three unique mutants of Arabidopsis identify eds loci required for limiting growth of a biotrophic fungal pathogen. Plant J 24:205–218

    CAS  PubMed  Google Scholar 

  • Dickman MB, Fluhr R (2013) Centrality of host cell death in plant-microbe interactions. Annu Rev Phytopathol 51:543–570

    CAS  PubMed  Google Scholar 

  • Dorjgotov D, Jurca ME, Fodor-Dunai C, Szucs A, Otvos K, Klement E, Biro J, Feher A (2009) Plant rho-type (Rop) GTPase-dependent activation of receptor-like cytoplasmic kinases in vitro. FEBS Lett 583:1175–1182

    CAS  PubMed  Google Scholar 

  • Dormann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Huckelhoven R (2014) Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions. New Phytol 204:815–822

    PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    CAS  PubMed  Google Scholar 

  • Dutt M, Barthe G, Irey M, Grosser J (2015) Transgenic citrus expressing an Arabidopsis NPR1 gene exhibit enhanced resistance against huanglongbing (HLB; citrus greening). PLoS One 10:e0137134

    PubMed  PubMed Central  Google Scholar 

  • Eckey C, Korell M, Leib K, Biedenkopf D, Jansen C, Langen G, Kogel KH (2004) Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol 55:1–15

    CAS  PubMed  Google Scholar 

  • Ederli L, Dawe A, Pasqualini S, Quaglia M, Xiong L, Gehring C (2015) Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens. Front Plant Sci 6:79

    Google Scholar 

  • Eggert D, Naumann M, Reimer R, Voigt CA (2014) Nanoscale glucan polymer network causes pathogen resistance. Sci Rep 4:4159

    Google Scholar 

  • Ehness R, Ecker M, Godt DE, Roitsch T (1997) Glucose and stress independently regulate source and sink metabolism and defence mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9:1825–1841

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinger D, Voigt CA (2014a) The use of nano scale fluorescence microscopic to decipher cell wall modifications during fungal penetration. Front Plant Sci 5:270

    Google Scholar 

  • Ellinger D, Voigt CA (2014b) Callose biosynthesis in Arabidopsis with a focus on pathogen response: what we have learned within the last decade. Ann Bot 114:1349–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinger D, Naumann M, Falter C, Zwikowics C, Jamrow T, Manisseri C, Somerville SC, Voigt CA (2013) Elevated early callose deposition results in complete penetration resistance to powdery mildew in Arabidopsis. Plant Physiol 161:1433–1444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellinger D, Glockner A, Koch J, Naumann M, Sturtz V, Schutt K, Manisseri C, Somerville SC, Voigt CA (2014) Interaction of the Arabidopsis GTPase RabA4c with its effector PMR4 results in complete penetration resistance to powdery mildew. Plant Cell 26:3185–3200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis C, Karafyllidis I, Turner JG (2002a) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum, Pseudomonas syringae, and Myzus persicae. Mol Plant-Microbe Interact 15:1025–1030

    CAS  PubMed  Google Scholar 

  • Ellis C, Karafyllidis I, Wasternack C, Turner JG (2002b) The Arabidopsis mutant cev1 links cell wall signaling to jasmonate and ethylene responses. Plant Cell 14:1557–1566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Enright SM, Cipollini D (2007) Infection by powdery mildew Erysiphe cruciferarum (Erysiphaceae) strongly affects growth and fitness of Alliaria petiolata (Brassicaceae). Am J Bot 94(11):1813

    PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opinion Plant Biol 10:366–371

    CAS  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S, Somssich IE (2000) The WRKY super family of plant transcription factors. Trends Plant Sci 5:199–206

    CAS  PubMed  Google Scholar 

  • Fabro G, Di Rienzo JA, Voigt CA, Savchenko T, Dehesh K, Somerville S, Alvarez ME (2008) Genome-wide expression profiling Arabidopsis at the stage of Golovinomyces cichoracearum haustorium formation. Plant Physiol 146:1421–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falk A, Feys BJ, Frost LN, Jones JDG, Daniels MJ, Parker JE (1999) EDS1, an essential component of R genemediated disease resistance in Arabidopsis has homology to eukaryotic lipases. Proc Natl Acad Sci U S A 96:3292–3297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan J, Crooks C, Creissen G, Hill L, Fairhurst S, Doerner P, Lamb C (2011) Pseudomonas sax genes overcome aliphatic isothiocyanate-mediated non-host resistance in Arabidopsis. Science 331:1185–1188

    CAS  PubMed  Google Scholar 

  • Fauteux F, Rémus-Borel W, Menzies JG, Bélanger RR (2005) Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol Lett 249:1–6

    CAS  PubMed  Google Scholar 

  • Fauteux F, Chain F, Belzile F, Menzies JG, Bélanger RR (2006) The protective role of silicon in the Arabidopsis–powdery mildew pathosystem. Proc Natl Acad Sci U S A 103:17554–17559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kwon E, Yun BW, Wang Y, Pallas JA, Loake GJ (2005) A central role for S-nitrosothiols in plant disease resistance. Proc Natl Acad Sci U S A 102:8054–8059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feechan A, Kabbara S, Dry IB (2011) Mechanisms of powdery mildew resistance in the vitaceae family. Mol Plant Pathol 12:263–274

    PubMed  Google Scholar 

  • Ferrari S, Plotnikova JM, DeLorenzo G, Ausubel FM (2003) Arabidopsis local resistance to Botrytis cinerea involves salicylic acid and camalexin and requires EDS4 and PAD2, but not SID2, EDS5 or PAD4. Plant J 35:193–205

    CAS  PubMed  Google Scholar 

  • Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feys BJ, Wiermer M, Bhat RA, Moisan LJ, Medina-Escobar N, Neu C, Cabral A, Parker JE (2005) Arabidopsis senescence-associated gene101 stabilizes and signals within an enhanced disease susceptibility1 complex in plant innate immunity. Plant Cell 17:2601–2613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fotopoulos V, Gilbert MJ, Pittman JK, Marvier AC, Buchanan AJ, Sauer N, Hall JL, Williams LE (2003) The monosaccharide transporter gene, AtSTP4, and the Cell-Wall invertase, Atfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol 132:

    CAS  PubMed  PubMed Central  Google Scholar 

  • Freymark G, Diehl T, Miklis M, Romeis T, Panstruga R (2007) Antagonistic control of powdery mildew host cell entry by barley calcium-dependent protein kinases (CDPKs). Mol Plant-Microbe Interact 20:1213–1221

    CAS  PubMed  Google Scholar 

  • Friedrich L, Lawton K, Dietrich R, Willits M, Cade R, Ryals J (2001) NIM1 overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol Plant-Microbe Interact 14:1114–1124

    CAS  PubMed  Google Scholar 

  • Frye CA, Innes RW (1998) An Arabidopsis mutant with enhanced resistance to powdery mildew. Plant Cell 10:947–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frye CA, Tang D, Innes RW (2001) Negative regulation of defense responses in plants by a conserved MAPKK kinase. Proc Natl Acad Sci U S A 98:373–378

    CAS  PubMed  Google Scholar 

  • Fu Y, Gu Y, Zheng Z, Wasteneys G, Yang Z (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell 120:687–700

    CAS  PubMed  Google Scholar 

  • Fu Y, Xu T, Zhu L, Wen M, Yang Z (2009) A ROP GTPase signaling pathway controls cortical microtubule ordering and cell expansion in Arabidopsis. Curr Biol 19:1827–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ, Yan S, Saleh A, Wang W, Ruble J, Oka N, Mohan R, Spoel SH, Tada Y, Zheng N, Dong X (2012) NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486:228–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzlander M, Fricker MD, Lipka V (2016) Immobilized subpopulations of leaf epidermal mitochondria mediate PEN2-dependent pathogen entry control in Arabidopsis. Plant Cell 28:130–145

    PubMed  Google Scholar 

  • Galun M, Braun A, Frensdorff A, Galun E (1976) Hyphal walls of isolated lichen fungi: autoradiographic localization of precursor incorporation and binding of fluorescein-conjugated lections. Acta Microbiol 108:9–16

    CAS  Google Scholar 

  • Gardiner J (2013) The evolution and diversification of plant microtubule associated proteins. Plant J 75:219–229

    CAS  PubMed  Google Scholar 

  • Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27:317–341

    Google Scholar 

  • Genre A, Chabaud M, Timmers T (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghanmi D, McNally DJ, Benhamou N, Menzies JG, Belanger RR (2004) Powdery mildew of Arabidopsis thaliana: a pathosystem for exploring the role of silicon in plant–microbe interactions. Physiol Mol Plant Pathol 64:189–199

    CAS  Google Scholar 

  • Gil F, Gay JL (1977) Ultra-structural and physiological properties of the host interfacial components of haustoria of Erysiphe pisi in vivo and in vitro. Physiol Plant Pathol 10:1–4

    Google Scholar 

  • Gillmor CS, Poindexter P, Lorieau J, Sujino K, Palcic M, Somerville CR (2002) The a-glucosidase I encoded by the KNOPF gene is required for cellulose biosynthesis and embryo morphogenesis in Arabidopsis. J Cell Biol 256:1003–1013

    Google Scholar 

  • Gish LA, Clark SE (2011) The RLK/Pelle family of kinases. Plant J 66:117–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gjetting T, Carver TL, Skot L, Lyngkjaer MF (2004) Differential gene expression in individual papilla-resistant and powdery mildew-infected barley epidermal cells. Mol Plant-Microbe Interact 17:729–738

    CAS  PubMed  Google Scholar 

  • Gjetting T, Hagedorn PH, Schweizer P, Thordal-Christensen H, Carver TL, Lyngkjaer MF (2007) Single-cell transcript profiling of barley attacked by the powdery mildew fungus. Mol Plant-Microbe Interact 20:235–246

    CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  • Glazebrook J, Rogers EE, Ausubel FM (1996) Isolation of Arabidopsis mutants with enhanced disease susceptibility by direct screening. Genetics 143:973–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gollner K, Schweizer P, Bai Y, Panstruga R (2008) Natural genetic resources of Arabidopsis thaliana reveals a high prevalence and unexpected phenotypic plasticity of RPW8-mediated powdery mildew resistance. New Phytol 177:725–742

    PubMed  Google Scholar 

  • Gomez-Gómez L, Felix G, Boller T (1999) A single locus determines sensitivity to bacterial flagellin in Arabidopsis thaliana. Plant J 18:277–284

    PubMed  Google Scholar 

  • Grant M, Lamb C (2006) Systemic immunity. Curr Opinion Plant Biol 9:414–420

    CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A, Innes RW, Dangl JL (1995) Structure of the Arabidopsis RPM7 gene enabling dual specificity disease resistance. Science 269:843–846

    CAS  PubMed  Google Scholar 

  • Green JR, Carver TL, Gurr SJ (2002) The formation and function of infection and feeding structures. In: Belanger RR, Bushnell WR, Dik AJ, Carver TL (eds.) The powdery mildews: a comprehensive treatise. St Paul: APS Press, 66–82

    Google Scholar 

  • Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89–100

    CAS  PubMed  Google Scholar 

  • Gu Y, Innes RW (2011) The keep on going protein of Arabidopsis recruits the enhanced disease resistance1 protein to trans-golgi network/early endosome vesicles. Plant Physiol 155:1827–1838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu Y, Innes RW (2012) The KEEP ON GOING protein of Arabidopsis regulates intracellular protein trafficking and is degraded during fungal infection. Plant Cell 24:4717–4730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo CY, Wu GH, Xing J, Li WQ, Tang DZ, Cui BM (2013) A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. Plant Cell Report 32:687–702

    CAS  PubMed  Google Scholar 

  • Gus-Meyer S, Naton B, Hahlbrock K, Schmelzer E (1998) Local mechanical stimulation induces components of the pathogen defense response in parsley. Proc Natl Acad Sci U S A 146(1):8398–8403

    Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Ann Rev Plant Biol 57:303–333

    CAS  Google Scholar 

  • Hall D (1994) Interactions of Arabidopsis with fungal pathogens. PhD thesis. Norwich: University of East Anglia

    Google Scholar 

  • Hamada T (2014) Microtubule organization and microtubule-associated proteins in plant cells. Intl Rev Cell Mol Biol 312:1–52

    CAS  Google Scholar 

  • Hammerschmidt R (1999) Phytoalexins: what have we learned after 60 years? Annu Rev Phytopathol 37:285–306

    CAS  PubMed  Google Scholar 

  • Hansen CH, Du L, Naur P, Olsen CE, Axelsen KB, Hick AJ, Pickett JA, Halkier BA (2001) CYP83b1 is the oxime-metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J Biol Chem 276:24790–24796

    CAS  PubMed  Google Scholar 

  • Hardham AR (2013) Microtubules and biotic interactions. Plant J 75:278–289

    CAS  PubMed  Google Scholar 

  • Hardham A, Jones DA, Takemoto D (2007) Cytoskeleton and cell wall function in penetration resistance. Curr Opinion Plant Biol 106(1):342–348

    Google Scholar 

  • Hardham AR, Takemoto D, White RG (2008) Rapid and dynamic sub-cellular reorganization following mechanical stimulation of Arabidopsis epidermal cells mimics responses to fungal and oomycete attack. BMC Plant Biol 8:63

    PubMed  PubMed Central  Google Scholar 

  • Harel TM, Mehar ZHI, Rav-David D, Elad Y (2014) Systemic resistance to gray Mold induced in tomato by Benzothiadiazole and Trichoderma harzianum T39. Phytopathology 104:150–157

    CAS  PubMed  Google Scholar 

  • Heath MC (2000) Non-host resistance and nonspecific plant defences. Curr Opinion Plant Biol 3:315–319

    CAS  Google Scholar 

  • Helm M, Schmid M, Hierl G, Terneus K, Tan L, Lottspeich F, Kieliszewski MJ, Gietl C (2008) KDEL-tailed cysteine end peptidases involved in programmed cell death, inter-calation of new cells and dismantling of extension scaffolds. Am J Bot 95:1049–1062

    CAS  PubMed  Google Scholar 

  • Hemm MR, Ruegger MO, Chapple C (2003) The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15:179–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE–dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herbers K, Takahata Y, Melzer M, Mock H-P, Hajirezaei M, Sonnewald U (2000) Regulation of carbohydrate partitioning during the interaction of potato virus Y with tobacco. Mol Plant Pathol 1:51–59

    CAS  PubMed  Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25

    CAS  PubMed  Google Scholar 

  • Hierl G, Vothknecht U, Gietl C (2012) Programmed cell death in Ricinus and Arabidopsis: the function of KDEL cysteine peptidases in development. Physiol Plant 145:103–113

    CAS  PubMed  Google Scholar 

  • Hierl G, Howing T, Isono E, Lottspeich F, Gietl C (2014) Ex vivo processing for maturation of Arabidopsis KDEL-tailed cytokine endopeptidase2 (AtCEP2) pro-enzyme and its storage in endoplasmic reticulum derived organelles. Plant Mol Biol 84:605–620

    CAS  PubMed  Google Scholar 

  • Ho CMK, Hotta T, Guo F, Roberson RW, Lee YRJ, Liu B (2011) Interaction of antiparallel microtubules in the phragmoplast is mediated by the microtubule-associated protein MAP65-3 in Arabidopsis. Plant Cell 23:2909–2923

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoefle C, Huesmann C, Schultheiss H, Bornke F, Hensel G, Kumlehn J, Huckelhoven R (2011) A barley ROP GTPase ACTIVATING PROTEIN associates with microtubules and regulates entry of the barley powdery mildew fungus into leaf epidermal cells. Plant Cell 23:2422–2439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MY, Jasmine S, Ibrahim AHM, Ahmed ZF, Rahman MM, Ohtomi J (2008a) Length-weight and length-length relationships of ten small fish species from the Ganges (Bangladesh). J Appl Ichthyol 25:117–119

    Google Scholar 

  • Hossain MY, Leunda PM, Ohtomi J, Ahmed ZF, Oscoz J, Miranda R (2008b) Biological aspects of the ganges river sprat Corica soborna (Clupeidae) in the Mathabhanga river (SW Bangladesh). Cybium 32:241–246

    Google Scholar 

  • Hou CT, Forman RJ (2000) Growth inhibition of plant pathogenic fungi by hydroxy fatty acids. J Indust Microbiol Biochem 24:275–276

    CAS  Google Scholar 

  • Howing T, Huesmann C, Hoefle C, Nagel M-K, Isono E, Hueckelhoven R, Gietl C (2014) Endoplasmic reticulum KDEL-tailed cysteine endo-peptidases 1of Arabidopsis (AtCEP1) is involved in pathogen defense. Front Plant Sci 5:58. https://doi.org/10.3389/fpls.2014.00058

    Article  PubMed  PubMed Central  Google Scholar 

  • Howing T, Dann M, Hoefle C, Huckelhoven R, Gietl C (2017) Involvement of Arabidopsis thaliana endoplasmic reticulum KDEL- tailed cysteine endopeptidase 1 (AtCEP1) in powdery mildew-induced and AtCPR5-controlled cell death. PLoS One 12(8):e0183870

    PubMed  PubMed Central  Google Scholar 

  • Huang YY, Shi Y, Lei Y, Li Y, Fan J, Xu YJ, Ma XF, Zhao JQ, Xiao S, Wang WM (2014) Functional identification of multiple nucleocytoplasmic trafficking signals in the broad-spectrum resistance protein RPW8.2. Planta 239:455–468

    CAS  PubMed  Google Scholar 

  • Huckelhoven R (2005) Powdery mildew susceptibility and biotrophic infection strategies. FEMS Microbiol Lett 245:9–17

    PubMed  Google Scholar 

  • Huckelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127

    PubMed  Google Scholar 

  • Huckelhoven R, Panstruga R (2011) Cell biology of the plant-powdery mildew interaction. Curr Opinion Plant Biol 14:738–746

    Google Scholar 

  • Huckelhoven R, Eichmann R, Weis C, Hoefle C, Proels RK (2013) Genetic loss of susceptibility: a costly route to disease resistance? Plant Pathol 62(Suppl 1):56–62

    Google Scholar 

  • Huesmann C, Hoefle C, Huckelhoven R (2011) ROPGAPs of Arabidopsis limit susceptibility to powdery mildew. Plant Signal Behav 6:1691–1694

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huesmann C, Reiner T, Hoefle C, Preuss J, Jurca ME, Domoki M, Fehér A, Huckelhoven R (2012) Barley ROP binding kinase1 is involved in microtubule organization and in basal penetration resistance to the barley powdery mildew fungus. Plant Physiol 159:311–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphry M, Consonni C, Panstruga R (2006) mlo-based powdery mildew immunity: silver bullet or simply non-host resistance? Mol Plant Pathol 7:605–610

    PubMed  Google Scholar 

  • Humphry M, Bednarek P, Kemmerling B, Koh S, Stein M, Gobel U, Stuber K, Pislewska-Bednarek M, Loraine A, Schulze-Lefert P, Somerville S, Panstruga R (2010) A regulon conserved in monocot and dicot plants defines a functional module in antifungal plant immunity. Proc Natl Acad Sci U S A 107:21896–21901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphry M, Reinstadler A, Ivanov S, Bisseling T, Panstruga R (2011) Durable broad-spectrum powdery mildew resistance in pea er1 plants is conferred by natural loss-of-function mutations in PsMLO1. Mol Plant Pathol 12:866–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hussey PJ, Hawkins TJ, Igarashi H, Kaloriti D, Smertenko A (2002) The plant cytoskeleton: recent advances in the study of the plant microtubule-associated proteins MAP-65, MAP-190 and the Xenopus MAP215-like protein, MOR1. Plant Mol Biol 50:915–924

    CAS  PubMed  Google Scholar 

  • Inada N, Ueda T (2014) Membrane trafficking pathways and their roles in plant-microbe interactions. Plant Cell Physiol 55:672–686

    CAS  PubMed  Google Scholar 

  • Inada N, Higaki T, Hasezawa S (2016) Nuclear function of subclass I actin depolymerizing factor contributes to susceptibility in Arabidopsis to an adapted powdery mildew fungus. Plant Physiol 170:1420–1434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs AK, Lipka V, Burton RA, Panstruga R, Strizhov N, Schulze-Lefert P, Fincher GB (2003) An Arabidopsis callose synthase, GSL5, is required for wound and papillary callose formation. Plant Cell 15:2503–2513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs S, Zechmann B, Molitor A, Trujillo M, Petutschnig E, Lipka V, Kogel KH, Schcafer P (2011) Broad-spectrum suppression of innate immunity is required for colonization of Arabidopsis roots by the fungus Piriformospora indica. Plant Physiol 156:726–740

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MK, Rung JH, Gregersen PL, Gjetting T, Fuglsang AT, Hansen M, Joehnk N, Lyngkjaer MF, Collinge DB (2007) The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis. Plant Mol Biol 65:137–150

    CAS  PubMed  Google Scholar 

  • Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM-ATAF1, 2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880

    CAS  PubMed  Google Scholar 

  • Jiang Z, Dong X, Zhang Z (2016) Network-based comparative analysis of Arabidopsis immune responses to Golovinomyces orontii and Botrytis cinerea infections. Sci Rep 6:19149

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jirage D, Tootle TL, Reuber TL, Frost LN, Feys BJ, Parker JE, Ausubel FM, Glazebrook J (1999) Arabidopsis thaliana PAD4 encodes a lipase-like gene that is important for salicylic acid signaling. Proc Natal Accad Sci, USA 96:13583–13588

    CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329

    CAS  PubMed  Google Scholar 

  • Jorgensen JH (1992) Multigene families of powdery mildew resistance genes in locus Mlo on barley chromosome 5. Plant Breed 108:53–59

    Google Scholar 

  • Jorgensen JH (1994) Genetics of powdery mildew resistance in barley. Critical Rev PIant Sci 13:97–119

    Google Scholar 

  • Jurca ME, Bottka S, Feher A (2008) Characterization of a family of Arabidopsis receptor-like cytoplasmic kinases (RLCK class VI). Plant Cell Report 27:739–748

    CAS  Google Scholar 

  • Kachroo A, Kachroo P (2009) Fatty acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176

    CAS  PubMed  Google Scholar 

  • Kawano Y, Kaneko-Kawano T, Shimamoto K (2014) Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci 5:522

    PubMed  PubMed Central  Google Scholar 

  • Kehr J (2003) Single cell technology. Curr Opinion Plant Biol 6:617–621

    CAS  Google Scholar 

  • Kim H, O’Connell R, Maekawa-Yoshikawa M, Uemura T, Neumann U, Schulze-Lefert P (2014) The powdery mildew resistance protein RPW8.2 is carried on VAMP721/722 vesicles to the extrahaustorial membrane of haustorial complexes. Plant J 79:835–847

    CAS  PubMed  Google Scholar 

  • Kirik A, Mudgett MB (2009) SOBER1 phospholipase activity suppresses phosphatidic acid accumulation and plant immunity in response to bacterial effector AvrBsT. Proc Natl Acad Sci U S A 106:20532–20537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kirik V, Bouyer D, Schobinger U, Bechtold N, Herzog M, Bonneville JM, Hulskamp M (2001) CPR5 is involved in cell proliferation and cell death control and encodes a novel transmembrane protein. Curr Biol 11:1891–1895

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Rowe HC, Denby KJ (2005) Secondary metabolites influence Arabidopsis/Botrytis interactions: variation in host production and pathogen sensitivity. Plant J 44:25–36

    CAS  PubMed  Google Scholar 

  • Kobayashi I, Kobayashi Y, Hardham AR (1994) Dynamic reorganization of microtubules and microfilaments in flax cells during the resistance response to flax rust infection. Planta 61:237–247

    Google Scholar 

  • Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H (1997a) Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. Plant J 11:525–537

    CAS  Google Scholar 

  • Kobayashi Y, Yamada M, Kobayashi I, Kunoh H (1997b) Actin microfilaments are required for the expression of non-host resistance in higher plants. Plant Cell Physiol 38:725–733

    CAS  Google Scholar 

  • Koh S, Andre A, Edwards H, Ehrhardt D, Somerville S (2005) Arabidopsis thaliana sub-cellular responses to compatible Erysiphe cichoracearum infections. Plant J 44:516–529

    CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1974) Biosynthesis of a hydroxy fatty acid polymer, cutin. Identification and biosynthesis of 16-oxo-9- or 10- hydroxypalmitic acid, a novel compound in Vicia faba. Biochemistry 13:1354–1363

    CAS  PubMed  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    CAS  PubMed  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR based markers. Plant J 4:403–410

    CAS  PubMed  Google Scholar 

  • Korolev N, David DR, Elad Y (2008) The role of phytohormones in basal resistance and Trichoderma-induced systemic resistance to Botrytis cinerea in Arabidopsis thaliana. BioControl 53:667–683

    CAS  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnia SK, Saharan GS, Singh D (2000) Genetic variation for multiple disease resistance in the families of interspecific cross of Brassica juncea x Brassica carinata. Cruciferae Newslett 22:51–53

    Google Scholar 

  • Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R (2016) Biotrophy at its best: novel findings and unsolved mysteries of the Arabidopsis-powdery mildew pathosystem. Arabidopsis Book. https://doi.org/10.1199/tab.0184

    PubMed  PubMed Central  Google Scholar 

  • Kumar D (2014) Salicylic acid signaling in disease resistance. Plant Sci 228:127–134

    CAS  PubMed  Google Scholar 

  • Kumar S, Saharan GS, Singh D (2002) Inheritance of resistance in inter and intraspecific crosses of Brassica juncea and Brassica carinata to Albugo candida and Erysiphe cruciferarum. J Mycol Pl Pathol 32(1):59–63

    Google Scholar 

  • Kunkel BN (1996) A useful weed put to work: genetic analysis of disease resistance in Arabidopsis thaliana. Trends Genet 12:63–69

    CAS  PubMed  Google Scholar 

  • Kusch S, Panstruga R (2017) mlo-based resistance: An apparently universal “weapon” to defeat powdery mildew disease. Mol Plant-Microbe Interact 30:179–189

    CAS  PubMed  Google Scholar 

  • Kusch S, Pesch L, Panstruga R (2016) Comprehensive phylogenetic analysis sheds light on the diversity and origin of the MLO family of integral membrane proteins. Genom Biol Evol 8:878–895

    Google Scholar 

  • Kwaaitaal M, Keinath NF, Pajonk S, Biskup C, Panstruga R (2010) Combined bimolecular fluorescence complementation and forster resonance energy transfer reveals ternary SNARE complex formation in living plant cells. Plant Physiol 152:1135–1147

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon C, Panstruga R, Schulze-Lefert P (2008a) Les liaisons dangereuses: immunological synapse formation in animals and plants. Trends Immunol 29:159–166

    CAS  PubMed  Google Scholar 

  • Kwon C, Neu C, Pajonk S, Yun HS, Lipka U, Humphry M, Bau S, Straus M, Kwaaitaal M, Rampelt H, El Kasmi F, Jurgens G, Parker J, Panstruga R, Lipka V, Schulze-Lefert P (2008b) Co-option of a default secretory pathway for plant immune responses. Nature 451:835–840

    CAS  PubMed  Google Scholar 

  • Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T (2011) Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. Plant Cell 23:2831–2849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lammens T, Boudolf V, Kheibarshekan L, Zalmas LP, Gaamouche T, Maes S, Vanstraelen M, Kondorosi E, La Thangue NB, Govaerts W, Inzé D, De Veylder L (2008) Atypical E2F activity restrains APC/CCCS52A2 function obligatory for endocycle onset. Proc Natl Acad Sci U S A 105:14721–14726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lapin D, Van den Ackerveken G (2013) Susceptibility to plant disease: more than a failure of host immunity. Trends Plant Sci 18:546–554

    CAS  PubMed  Google Scholar 

  • Lebel E, Heifetz P, Thorne L, Uknes S, Ryals J, Ward E (1998) Functional analysis of regulatory sequences controlling PR-1 gene expression in Arabidopsis. Plant J 16:223–233

    CAS  PubMed  Google Scholar 

  • Leborgne-Castel N, Bouhidel K (2014) Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view. Front Plant Sci 5:735

    Google Scholar 

  • Li H, Shen JJ, Zheng ZL, Lin Y, Yang Z (2001) The Rop GTPase switch controls multiple developmental processes in Arabidopsis. Plant Physiol 126:670–684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Brader G, Kariola T, Palva ET (2006) WRKY70 modulates the selection of signaling pathways in plant defense. Plant J 46:477–491

    CAS  PubMed  Google Scholar 

  • Lin W, Ma X, Shan L, He P (2013) Big roles of small kinases: the complex functions of receptor-like cytoplasmic kinases in plant immunity and development. J Integ Plant Biol 55:1188–1197

    CAS  Google Scholar 

  • Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D, Llorente F, Molina A, Parker J, Somerville S, Schulze-Lefert P (2005) Pre- and post invasion defenses both contribute to non-host resistance in Arabidopsis. Science 310:1180–1183

    CAS  PubMed  Google Scholar 

  • Lipka V, Kwon C, Panstruga R (2007) SNARE-ware: the role of SNARE-domain proteins in plant biology. Ann Rev Cell Develop Biol 23:147–174

    CAS  Google Scholar 

  • Lipka U, Fuchs R, Lipka V (2008) Arabidopsis non-host resistance to powdery mildews. Curr Opinion Plant Biol 11:404–411

    CAS  Google Scholar 

  • Liu Y, Bassham DC (2012) Autophagy: pathways for self-eating in plant cells. Ann Rev Plant Biol 63:215–237

    CAS  Google Scholar 

  • Liu H, Stone SL (2013) Cytoplasmic degradation of the Arabidopsis transcription factor ABSCISIC ACID INSENSITIVE 5 is mediated by the RING-type E3 ligase KEEP ON GOING. J Biol Chem 288:20267–20279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Holub EB, Alonso JM, Ecker JR, Fobert PR (2005) An Arabidopsis NPR1-like gene, NPR4, is required for disease resistance. Plant J 41:304–318

    CAS  PubMed  Google Scholar 

  • Liu S, Bartnikas LM, Volko SM, Ausubel FM, Tang D (2016) Mutation of the glucosinolate biosynthesis enzyme cytochrome P450 83A1 monooxygenase increases camalexin accumulation and powdery mildew resistance. Front Plant Sci 7:227

    PubMed  PubMed Central  Google Scholar 

  • Loake G, Grant M (2007) Salicylic acid in plant defence-the players and protagonists. Curr Opinion Plant Biol 10:466–472

    CAS  Google Scholar 

  • Loapez-Fernaandez MP, Maldonado S (2015) Programmed cell death in seeds of angiosperms. J Integ Plant Biol 57:996–1002

    Google Scholar 

  • Lorek J, Griebel T, Jones AM, Kuhn H, Panstruga R (2013) The role of Arabidopsis heterotrimeric G-protein subunits in MLO2 function and MAMP-triggered immunity. Mol Plant-Microbe Interact 26:991–1003

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu D, Wu S, Gao X, Zhang Y, Shan L, He P (2010) A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc Natl Acad Sci U S A 107:496–501

    CAS  PubMed  Google Scholar 

  • Lu X, Dittgen J, Piślewska-Bednarek M, Molina A, Schneider B, Svatos A, Doubský J, Schneeberger K, Weigel D, Bednarek P, Schulze-Lefert P (2015) Mutant allele-specific uncoupling of PENETRATION3 functions reveals engagement of the ATP-binding cassette transporter in distinct tryptophan metabolic pathways. Plant Physiol 168:814–827

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luna E, Pastor V, Robert J, Flors V, Mauch-Mani B, Ton J (2011) Callose deposition: a multifaceted plant defense response. Mol Plant-Microbe Interact 24:183–193

    CAS  PubMed  Google Scholar 

  • Lyngkjær MF, Newton AC, Atzema JL, Baker SJ (2000) The barley mlo -gene: an important powdery mildew resistance source. Agronomie 20:745–756

    Google Scholar 

  • Ma XF, Li Y, Sun JL, Wang TT, Fan J, Lei Y, Huang YY, Xu YJ, Zhao JQ, Xiao S, Wang WM (2014) Ectopic expression of RESISTANCE TO POWDERY MILDEW8.1 confers resistance to fungal and oomycete pathogens in Arabidopsis. Plant Cell Physiol 55:1484–1496

    CAS  PubMed  Google Scholar 

  • Maeda K, Houjyou Y, Komatsu T, Hori H, Kodaira T, Ishikawa A (2009) AGB1 and PMR5 contribute to PEN2-mediated pre-invasion resistance to Magnaporthe oryzae in Arabidopsis thaliana. Mol Plant-Microbe Interact 22:1331–1340

    CAS  PubMed  Google Scholar 

  • Maekawa T, Kufer TA, Schulze-Lefert P (2011) NLR functions in plant and animal immune systems: so far and yet so close. Nat Immun 12:817–826

    CAS  Google Scholar 

  • Maekawa T, Kracher B, Vernaldi S, Ver Loren van Themaat E, Schulze-Lefert P (2012) Conservation of NLR-triggered immunity across plant lineages. Proc Natl Acad Sci U S A 109:20119–20123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa S, Inada N, Yasuda S, Fukao Y, Fujiwara M, Sato T, Yamaguchi J (2014) The carbon/nitrogen regulator ARABIDOPSIS TOXICOS EN LEVADURA31 controls papilla formation in response to powdery mildew fungi penetration by interacting with SYNTAXIN OF PLANTS121 in Arabidopsis. Plant Physiol 164:879–887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Makandar R, Essig JS, Schapaugh MA, Trick HN, Shah J (2006) Genetically engineered resistance to Fusarium head blight in wheat by expression of Arabidopsis NPR1. Mol Plant-Microbe Interact 19:123–129

    CAS  PubMed  Google Scholar 

  • Maksimov V, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47(4):373–385

    CAS  Google Scholar 

  • Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2:643–654

    CAS  Google Scholar 

  • Malinovsky FG, Fangel JU, Willats WGT (2014) The role of the cell wall in plant immunity. Front Plant Sci 5.:PMID, 24834069

    Google Scholar 

  • Mao G, Meng X, Liu Y, Zheng Z, Chen Z, Zhang S (2011) Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 23:1639–1653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marone D, Russo MA, Laido G, De Vita P, Papa R, Blanco A, Gadaleta A, Rubiales D, Mastrangelo AM (2013) Genetic basis of qualitative and quantitative resistance to powdery mildew in wheat: from consensus regions to candidate genes. BMC Genomics 14:562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martiniere A, Gargani D, Uzest M, Lautredou N, Blanc S, Drucker M (2009) A role for plant microtubules in the formation of transmission specific inclusion bodies of cauliflower mosaic virus. Plant J 58:135–146

    CAS  PubMed  Google Scholar 

  • Meena PD, Mehta N, Rai PK, Saharan GS (2018) Geographical distribution of rapeseed-mustard powdery mildew disease in India. J Mycol Pl Pathol 48(3):284–302

    Google Scholar 

  • Mehta N, Singh K, Sangwan MS (2008) Assessment of yield losses and evaluation of different varieties/ genotypes of mustard against powdery mildew in Haryana. Plant Dis Res 23(1):55–59

    Google Scholar 

  • Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266

    CAS  PubMed  Google Scholar 

  • Meyer D, Pajonk S, Micali C, O’Connell R, Schulze-Lefert P (2009) Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57:986–999

    CAS  PubMed  Google Scholar 

  • Micali C, Gollner K, Humphry M, Consonni C, Panstruga R (2008) The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi. Arabidopsis Book 6:e0115

    PubMed  PubMed Central  Google Scholar 

  • Micali C, Neumann U, Grunewald D, Panstruga R, O’Connell R (2011) Biogenesis of a specialized plant-fungal interface during host cell internalization of Golovinomyces orontii haustoria. Cell Microbiol 13:210–226

    CAS  PubMed  Google Scholar 

  • Miklis M, Consonni C, Bhat RA, Lipka V, Schulze-Lefert P, Panstruga R (2007) Barley mlo modulates actin-dependent and actin-independent antifungal defense pathways at the cell periphery. Plant Physiol 144(2):1132–1143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misas-Villamil JC, van der Hoorn RA, Doehlemann G (2016) Papain-like cysteine proteases as hubs in plant immunity. New Phytol 212:902–907

    CAS  PubMed  Google Scholar 

  • Mitchell-Olds T, James RV, Palmer MJ, Williams PH (1995) Genetics of Brassica rapa (Syn. campestris) L. multiple disease resistance to three fungal pathogens: Peronospora parasitica, Albugo candida and Leptosphaeria maculans. Heredity 75:362–369

    PubMed  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci U S A 104:19613–19618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molendijk AJ, Ruperti B, Singh MK, Dovzhenko A, Ditengou FA, Milia M, Westphal L, Rosahl S, Soellick TR, Uhrig J, Weingarten L, Huber M, Palme K (2008) A cysteine rich receptor-like kinase NCRK and a pathogen-induced protein kinase RBK1 are Rop GTPase interactors. Plant J 53:909–923

    CAS  PubMed  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR function through redox changes. Cell 113:935–944

    CAS  PubMed  Google Scholar 

  • Mucha E, Fricke I, Schaefer A, Wittinghofer A, Berken A (2011) Rho proteins of plants—functional cycle and regulation of cytoskeletal dynamics. European J Cell Biol 90:934–943

    CAS  Google Scholar 

  • Muller S, Smertenko A, Wagner V, Heinrich M, Hussey PJ, Hauser MT (2004) The plant microtubule-associated protein AtMAP65-3/PLE is essential for cytokinetic phragmoplast function. Curr Biol 14:412–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murase K, Shiba H, Iwano M, Che FS, Watanabe M, Isogai A, Takayama S (2004) A membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science 303:1516–1519

    CAS  PubMed  Google Scholar 

  • Mysore KS, Ryu CM (2004) Non-host resistance how much do we know? Trends Plant Sci 9:97–104

    CAS  PubMed  Google Scholar 

  • Nafisi M, Goregaoker S, Botanga CJ, Glawischnig E, Olsen CE, Halkier BA (2007) Arabidopsis cytochrome P450 monooxygenase 71A13 catalyzes the conversion of indole-3-acetaldoxime in camalexin synthesis. Plant Cell 19:2039–2052

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano RT, Yamada K, Bednarek P, Nishimura M, Hara-Nishimura I (2014) ER bodies in plants of the Brassicales order: biogenesis and association with innate immunity. Front Plant Sci 5:73

    PubMed  PubMed Central  Google Scholar 

  • Naumann M, Somerville S, Voigt C (2013) Differences in early callose deposition during adapted and non-adapted powdery mildew infection of resistant Arabidopsis lines. Plant Signal Behav 8:e24408

    PubMed  PubMed Central  Google Scholar 

  • Naur P, Petersen BL, Mikkelsen MD, Bak S, Rasmussen H, Olsen CE, Halkier BA (2003) CYP83A1 and CYP83B1, two non-redundant cytochrome P450 enzymes metabolizing oximes in the biosynthesis of glucosinolates in Arabidopsis. Plant Physiol 133:63–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newton AC (1993) The effect of humidity on the expression of partial resistance to powdery mildew in barley. Plant Pathol 42:364–367

    Google Scholar 

  • Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: 'hubs' for signal integration and diversification in plants. Trends Plant Sci 11:309–315

    CAS  PubMed  Google Scholar 

  • Nie H, Wu Y, Yao C, Tang D (2011) Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis. J Genet Genom 38:137–148

    CAS  Google Scholar 

  • Nie H, Zhao C, Wu G, Wu Y, Chen Y, Tang D (2012) SR1, a calmodulin binding transcription factor, modulates plant defense and ethylene-induced senescence by directly regulating NDR1 and EIN3. Plant Physiol 158:1847–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen ME, Feechan A, Bohlenius H, Ueda T, Thordal-Christensen H (2012) Arabidopsis ARF-GTP exchange factor, GNOM, mediates transport required for innate immunity and focal accumulation of syntaxin PEN1. Proc Natl Acad Sci U S A 109:11443–11448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishimura MT, Stein M, Hou BH, Vogel JP, Edwards H, Somerville SC (2003) Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301:969–972

    CAS  PubMed  Google Scholar 

  • Noel LD, Cagna G, Stuttmann J, Wirthmuller L, Betsuyaku S, Witte C-P, Bhat R, Pochon N, Colby T, Parker JE (2007) Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. Plant Cell 19:4061–4076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nongbri PL, Johnson JM, Sherameti I, Glawischnig E, Halkier BA, Oelm€uller R (2012) Indole-3-acetaldoxime-derived compounds restrict root colonization in the beneficial interaction between Arabidopsis roots and the endophyte Piriformospora indica. Mol Plant-Microbe Interact 25:1186–1197

    CAS  PubMed  Google Scholar 

  • Nurnberger T, Lipka V (2005) Non-host resistance in plants: new insights into an old phenomenon. Mol Plant Pathol 6:335–345

    PubMed  Google Scholar 

  • O’Connell RJ, Panstruga R (2006) Tete a Tete inside a plant cell: establishing compatibility between plants and biotrophic fungi and oomycetes. New Phytol 171:699–718

    PubMed  Google Scholar 

  • Opalski KS, Schultheiss H, Kogel KH, Huckelhoven R (2005) The receptor-like MLO protein and the RAC/ROP family G-protein RACB modulate actin reorganization in barley attacked by the biotrophic powdery mildew fungus Blumeria graminis f.sp. hordei. Plant J 41:291–303

    CAS  PubMed  Google Scholar 

  • Orgil U, Araki H, Tangchaiburana S, Berkey R, Xiao S (2007) Intraspecific genetic variations, fitness cost and benefit of RPW8, a disease resistance locus in Arabidopsis thaliana. Genetics 176:2317–2333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ouko MO, Sambade A, Brandner K, Niehl A, Pena E, Ahad A, Heinlein M, Nick P (2010) Tobacco mutants with reduced microtubule dynamics are less susceptible to TMV. Plant J 62:829–839

    CAS  PubMed  Google Scholar 

  • Pajerowska-Mukhtar KM, Emerine DK, Mukhtar MS (2013) Tell me more: roles of NPRs in plant immunity. Trends Plant Sci 18:402–411

    CAS  PubMed  Google Scholar 

  • Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923

    CAS  PubMed  Google Scholar 

  • Parkhi V, Kumar V, Campbell LM, Bell AA, Shah J, Rathore KS (2010) Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res 19:959–975

    CAS  PubMed  Google Scholar 

  • Pavan S, Jacobsen E, Visser RG, Bai Y (2010) Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol Breed 25:1–12

    PubMed  Google Scholar 

  • Pedras MSC, Adio AM (2008) Phytoalexins and phytoanticipins from the wild crucifers Thellungiella halophila and Arabidopsis thaliana: rapalexin a, was alexins and camalexin. Phytochemistry 69:889–893

    CAS  PubMed  Google Scholar 

  • Pedras MSC, Yaya EE, Glawischnig E (2011) The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat Prod Rep 28:1381–1405

    CAS  PubMed  Google Scholar 

  • Penaud A (1999) Chemical control and yield losses caused by Erysiphe cruciferarum on oilseed rape in France. In: Wratten N, Salisbury PA (eds) Proceedings of the 10th international Rapeseed Congress. The Regional Institute Ltd., Canberra, Australia CD-ROM, Doc. No. 327:1–8

    Google Scholar 

  • Perrin RM, Jia X, Wagner TA, O’Neill MA, Sarria R, York WS, Raikhel NV, Keegstra K (2003) Analysis of xyloglucan fucosylation in Arabidopsis. Plant Physiol 132:768–778

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peters W, Latka I (1986) Electron microscopic localization of chitin using colloidal gold labeled with wheat germ agglutinin. Histochem 84:155–160

    CAS  Google Scholar 

  • Petkova M, Dimova M, Dimova D, Bistrichanov S (2014) Effect of gamma-irradiation on the fatty acid composition and susceptibility to powdery mildew (Erysiphe cruciferarum) of oilseed rape plants. Agril Sci Technol 6(4):413–416

    Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Ann Rev Cell Dev Biol 28:489–521

    CAS  Google Scholar 

  • Pinosa F, Buhot N, Kwaaitaal M, Fahlberg P, Thordal-Christensen H, Ellerstrom M, Andersson MX (2013) Arabidopsis phospholipase Dδ is involved in basal defense and non-host resistance to powdery mildew fungi. Plant Physiol 163:896–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pinot F, Benveniste IJ, Salau P, Loreau O, Noe J, Schreiber L, Durst F (1999) Production in vitro by the cytochrome P450 CYP94A1 of major C18 cutin monomers and potential messengers in plant–pathogen interactions: enantioselectivity studies. Biochem J 342:27–32

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pleines S, Friendt W (1989) Genetic control of linolenic acid concentrations in seed oil of rapeseed (Brassica napus L.). Theor Appl Genet 78:793–797

    CAS  PubMed  Google Scholar 

  • Plotnikova JM, Reuber TL, Ausubel FM, Pfister DH (1998) Powdery mildew pathogenesis of Arabidopsis thaliana. Mycologia 90:1009–1016

    Google Scholar 

  • Poraty-Gavra L, Zimmermann P, Haigis S, Bednarek P, Hazak O, Stelmakh OR, Sadot E, Schulze-Lefert P, Gruissem W, Yalovsky S (2013) The Arabidopsis rho of plants GTPase AtROP6 functions in developmental and pathogen response pathways. Plant Physiol 161:1172–1188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu JL, Fiil BK, Petersen K, Nielsen HB, Botanga CJ, Thorgrimsen S (2008) Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 27:2214–2221

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quentin M, Baures I, Hoefle C, Caillaud MC, Allasia V, Panabieres F, Abad P, Huckelhoven R, Keller H, Favery B (2016) The Arabidopsis microtubule-associated protein MAP65-3 supports infection by filamentous biotrophic pathogens by down-regulating salicylic acid-dependent defences. J Exp Bot 67(6):1731–1743

    CAS  PubMed  Google Scholar 

  • Quilis J, Penas G, Messeguer J, Brugidou C, Segundo BS (2008) The Arabidopsis AtNPR1 inversely modulates defense responses against fungal, bacterial, or viral pathogens while conferring hypersensitivity to abiotic stresses in transgenic rice. Mol Plant-Microbe Interact 21:1215–1231

    CAS  PubMed  Google Scholar 

  • Rahimi M, Bahrani A (2011) Effect of gamma irradiation on qualitative and quantitative characteristics of canola. Middle East J Sci Res 8:519–525

    Google Scholar 

  • Ramonell KM, Zhang B, Ewing RM, Chen Y, Xu D, Stacey G, Somerville S (2002) Microarray analysis of chitin elicitation in Arabidopsis thaliana. Mol Plant Pathol 3:301–311

    CAS  PubMed  Google Scholar 

  • Ramonell K, Berrocal-Lobo M, Koh S, Wan J, Edwards H, Stacey G, Somerville S (2005) Loss-of-function mutations in chitin responsive genes show increased susceptibility to the powdery mildew pathogen Erysiphe cichoracearum. Plant Physiol:138

    Google Scholar 

  • Rauhut T, Glawischnig E (2009) Evolution of camalexin and structurally related indolic compounds. Phytochemistry 70:1638–1644

    CAS  PubMed  Google Scholar 

  • Reddy KS, Pawar SE, Bhatia CR (1994) Inheritance of powdery mildew resistance (Erysiphe polygoni DC) resistance in mungbean. Theor Appl Genet 88:945–948

    CAS  PubMed  Google Scholar 

  • Reiner T, Hoefle C, Huesmann C, Menesi D, Feher A, Huckelhoven R (2014) The Arabidopsis ROP-activated receptor-like cytoplasmic kinase RLCK VI-A3 is involved in control of basal resistance to powdery mildew and trichome branching. Plant Cell Reptr 34(3):457–468

    Google Scholar 

  • Reuber TL, Plotnikova JM, Dewdney J, Rogers EE, Wood W, Ausubel FM (1998) Correlation of defense gene induction defects with powdery mildew susceptibility in Arabidopsis enhanced disease susceptibility mutants. Plant J 16:473–485

    CAS  PubMed  Google Scholar 

  • Rietz S, Stamm A, Malonek S, Wagner S, Becker D, Medina-Escobar N, Vlot AC, Feys BJ, Niefind K, Parker JE (2011) Different roles of enhanced disease susceptibility1 (EDS1) bound to and dissociated from phytoalexin deficient4 (PAD4) in Arabidopsis immunity. New Phytol 191:107–119

    CAS  PubMed  Google Scholar 

  • Roux F, Voisin D, Badet T, Balague C, Barlet X, Huard-Chauveau C, Roby D, Raffaele S (2014) Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Mol Plant Pathol 15(5):427–432

    PubMed  PubMed Central  Google Scholar 

  • Rushton PJ, Somssich IE (1998) Transcriptional control of plant genes responsive to pathogens. Curr Opinion Plant Biol 1:311–315

    CAS  Google Scholar 

  • Russo VM, Bushnell WR (1989) Responses of barley cells to puncture by micro needles and to attempted penetration by Erysiphe graminis f. sp. hordei. Can J Bot 67:2912–2921

    Google Scholar 

  • Rusterucci C, Aviv DH, Holt BF, Dangl JL, Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1 in Arabidopsis. Plant Cell 13:2211–2224

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saenz GS, Taylor JW (1999) Phylogeny of the Erysiphales (powdery mildews) inferred from internal transcribed spacer (ITS) ribosomal DNA sequences. Can J Bot 77:150–169

    CAS  Google Scholar 

  • Saharan GS, Krishnia SK (2001) Multiple disease resistance in rapeseed and mustard. In: Nagarajan S, Singh DP (eds) Role of resistance in intensive agriculture, vol 10. Kalyani Publishers, New Delhi, pp 98–100

    Google Scholar 

  • Saharan GS, Mehta N, Sangwan MS (2005) Development of disease resistance in rapeseed-mustard pp 561-617. In: Saharan GS, Mehta N, Sangwan MS (eds) Diseases of oilseed crops. Indus Publishing Co., New Delhi, 643p

    Google Scholar 

  • Saharan GS, Verma PR, Meena PD, Kumar A (2014) White rust of crucifers: biology, ecology and management. Springer, New Delhi. 244pp

    Google Scholar 

  • Saharan GS, Mehta N, Meena PD (2016) Alternaria blight of crucifers: biology, ecology and disease management. Springer Verlag, Singapore 326. ISBN 978-981-10-0019-5

    Google Scholar 

  • Saharan GS, Mehta N Meena PD (2017) Downy mildew disease of crucifers: biology, ecology and disease management. Springer Verlag Singapore LVI: 357. ISBN 978-981-10-7499-8

    Google Scholar 

  • Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta 220:183–197

    CAS  PubMed  Google Scholar 

  • Scheler B, Schnepf V, Galgenmuller C, Ranf S, Huckelhoven R (2016) Barley disease susceptibility factor RACB acts in epidermal cell polarity and positioning of the nucleus. J Exp Bot. https://doi.org/10.1093/jxb/erw141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schiff CL, Wilson IW, Somerville SC (2001) Polygenic powdery mildew disease resistance in Arabidopsis thaliana: quantitative trait analysis of the accession Warschau-1. Plant Pathol 50:690–701

    CAS  Google Scholar 

  • Schlaeppi K, Abou-Mansour E, Buchala A, Mauch F (2010) Disease resistance of Arabidopsis to Phytophthora brassicae is established by the sequential action of indole glucosinolates and camalexin. Plant J 62:840–851. https://doi.org/10.1111/j.1365-313X.2010.04197.x

    Article  CAS  PubMed  Google Scholar 

  • Schmelzer E (2002) Cell polarization, a crucial process in fungal defence. Trends Plant Sci 7:411–415

    CAS  PubMed  Google Scholar 

  • Schmid M, Simpson D, Kalousek F, Gietl C (1998) A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206:466–475

    CAS  PubMed  Google Scholar 

  • Schmidt SM, Panstruga R (2007) Cytoskeleton functions in plant–microbe interactions. Physiol Mol Plant Pathol 71:135–148

    CAS  Google Scholar 

  • Schmidt SM, Kuhn H, Micali C, Liller C, Kwaaitaal M, Panstruga R (2014) Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target. Mol Plant Pathol 15:535–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schon M, Toller A, Diezel C, Roth C, Westphal L, Wiermer M, Somssich IE (2013) Analyses of wrky18 wrky40 plants reveal critical roles of SA/EDS1 signaling and indole-glucosinolate biosynthesis for Golovinomyces orontii resistance and a loss-of resistance towards Pseudomonas syringae pv. tomato AvrRPS4. Mol Plant-Microbe Interact 26:758–767

    PubMed  Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2006) CYP71B15 (PAD3) catalyzes the final step in camalexin biosynthesis. Plant Physiol 141:1248–1254

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuhegger R, Nafisi M, Mansourova M, Petersen BL, Olsen CE, Svatos A, Halkier BA, Glawischnig E (2007a) CYP71 B15 (PAD3) catalyzes the final step in camalexin biosynthesis-correction. Plant Physiol 145:1086–1086. https://doi.org/10.1104/pp.104.900240

    Article  CAS  Google Scholar 

  • Schuhegger R, Rauhut T, Glawischnig E (2007b) Regulatory variability of camalexin biosynthesis. J. Plant Physiol 164:636–644. https://doi.org/10.1016/j.jplph.2006.04.012

    Article  CAS  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2002) A small GTP-binding host protein is required for entry of powdery mildew fungus into epidermal cells of barley. Plant Physiol 128:1447–1454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2003) Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J:589–601

    CAS  PubMed  Google Scholar 

  • Schuster A, Schmoll M (2010) Biology and biotechnology of Trichoderma. Appl Microbiol Biotech 87:787–799

    CAS  Google Scholar 

  • Schweizer P (2007) Non-host resistance of plants to powdery mildew-new opportunities to unravel the mystery. Physiol Mol Plant Pathol 70:3–7

    CAS  Google Scholar 

  • Schweizer P, Kmecl A, Carpita N, Dudler R (2000) A soluble carbohydrate elicitor from Blumeria graminis f. sp tritici is recognized by a broad range of cereals. Physiol Mol Plant Pathol 56:157–167

    CAS  Google Scholar 

  • Serrano I, Gu Y, Qi D, Dubiella U, Innes RW (2014) The Arabidopsis EDR1 protein kinase negatively regulates the ATL1 E3 ubiquitin ligase to suppress cell death. Plant Cell 26:4532–4546

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seyfferth C, Tsuda K (2014) Salicylic acid signal transduction: the initiation of biosynthesis, perception and transcriptional reprogramming. Front Plant Sci 5:697

    PubMed  PubMed Central  Google Scholar 

  • Shapiro AD, Zhang C (2001) The role of NDR1 in avirulence gene-directed signaling and control of programmed cell death in Arabidopsis. Plant Physiol 127:1089–1101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Sain SK (2004) Induction of systemic resistance in tomato and cauliflower by Trichoderma spp. against stalk rot pathogen, Sclerotinia sclerotiorum Lib de Bary. J Biol Control 18(1):21–27

    Google Scholar 

  • Shattuck VI (1993) Powdery mildew-resistant UG3 and UG4 rutabaga germplasm. Can J Plant Sci 73:301–302

    Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science 315:1098–1103

    CAS  PubMed  Google Scholar 

  • Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb C (1999) Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270

    Google Scholar 

  • Shiu SH, Karlowski WM, Pan R, Tzeng YH, Mayer KF, Li WH (2004) Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16:1220–1234

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43

    CAS  PubMed  Google Scholar 

  • Singh RB, Singh RN (2003) Management of powdery mildew of mustard Department of Plant Pathology, N. D. University of Agriculture and Technology, Kumarganj, Faizabad 224 229

    Google Scholar 

  • Singh K (2004) Studies on the ecofriendly management of powdery mildew (Erysiphe cruciferarum Opiz ex. Junell) of mustard [Brassica juncea (Linn.) Czern & Coss]. M. Sc Thesis, CCS HAU, Hisar 108 + xix

    Google Scholar 

  • Singh D, Chandra N, Gupta PP (1997) Inheritance of powdery mildew resistance in interspecific crosses of Indian and Ethiopian mustard. Ann Biol 13:73–77

    Google Scholar 

  • Singh R, Singh D, Salisbury P, Barbetti MJ (2010) Field evaluation of indigenous and exotic Brassica juncea genotypes against Alternaria blight, white rust, downy mildew and powdery mildew diseases in India. Indian J Agril Sci 80(2):155–159

    Google Scholar 

  • Skoric D, Jocic S, Sakac Z, Lecic N (2008) Genetic possibilities for altering sunflower oil quality to obtain novel oils. Can J Physio Pharmacology 86:215–221

    CAS  Google Scholar 

  • Smits GJ, van den Ende H, Klis FM (2001) Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiol 147:781–794

    CAS  Google Scholar 

  • Sonderby IE, Geu-Flores F, Halkier BA (2010) Biosynthesis of glucosinolates–gene discovery and beyond. Trends Plant Sci 15:283–290. https://doi.org/10.1016/j.tplants.2010.02.005

    Article  CAS  PubMed  Google Scholar 

  • Spencer-Phillips PTN, Gay JL (1981) Domains of ATPase in plasma membrane and transport through infected plant cells. New Phytol 89:393–400

    CAS  Google Scholar 

  • Speth EB, Lee YN, He SY (2007) (2007). Pathogen virulence factors as molecular probes of basic plant cellular functions. Curr Opinion Plant Biol 10:580–586

    Google Scholar 

  • Spoel SH, Koornneef A, Claessens SM, Korzelius JP, Van-Pelt JA, Mueller MJ, Buchala AJ, Metraux J-P, Brown R, Kazan K, Van Loon LC, Dong X, Pieterse CMJ (2003) NPR1 modulates cross–talk between salicylate and jasmonate dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760–770. https://doi.org/10.1105/tpc.009159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreeramulu S, Mostizky Y, Sunitha S, Shani E, Nahum H, Salomon D, Hayun LB, Gruetter C, Rauh D, Ori N, Sessa G (2013) BSKs are partially redundant positive regulators of brassinosteroid signaling in Arabidopsis. Plant J 74:905–919

    CAS  PubMed  Google Scholar 

  • Stein M, Dittgen J, Sánchez-Rodríguez C, Hou BH, Molina A, Schulze-Lefert P, Lipka V, Somerville S (2006) Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to non-host resistance to inappropriate pathogens that enter by direct penetration. Plant Cell 18:731–746

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stein E, Molitor A, Kogel KH, Waller F (2008) Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol 49:1747–1751

    CAS  PubMed  Google Scholar 

  • Stitt M, von Schaewen A, Willmitzer L (1990) “Sink” regulation of photosynthetic metabolism in transgenic tobacco plants expressing yeast invertase in their cell wall involves a decrease of the Calvin-cycle enzymes and an increase in glycolytic enzymes. Planta 183:40–50

    Google Scholar 

  • Stotz HU, Sawada Y, Shimada Y, Hirai MY, Sasaki E, Krischke M, Brown PD, Saito K, Kamiya Y (2011) Role of camalexin, indole glucosinolates, and side chain modification of glucosinolate-derived isothiocyanates in defense of Arabidopsis against Sclerotinia sclerotiorum. Plant J 67:81–93

    CAS  PubMed  Google Scholar 

  • Strack D, Vogt T, Schliemann W (2003) Recent advances in betalain research. Phytochem 62:247Ð269

    CAS  PubMed  Google Scholar 

  • Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC (2007) Arabidopsis isochorismate synthase functional in pathogen-induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem 282:5919–5933

    CAS  PubMed  Google Scholar 

  • Sundaresha S, Rohini S, Appanna V K, Arthikala M K, Shanmugam N B, Shashibhushan N B, Kishore C M , Pannerselvam R , Kirti P B , Udayakumar M (2016). Co-overexpression of Brassica juncea NPR1 (BjNPR1) and Trigonella foenum-graecum defensin (Tfgd) in transgenic peanut provides comprehensive but varied protection against Aspergillus flavus and Cercospora arachidicola. Plant Cell Rep 35:1189–1203. https://doi.org/10.1007/s00299-016-1945-7

    CAS  PubMed  Google Scholar 

  • Swarbrick PJ, Schulze-Lefert P, Scholes JD (2006) Metabolic consequences of susceptibility and resistance (race-specific and broad-spectrum) in barley leaves challenged with powdery mildew. Plant Cell Environ 29:1061–1076

    CAS  PubMed  Google Scholar 

  • Swiderski MR, Innes RW (2001) The Arabidopsis PBS1 resistance gene encodes a member of a novel protein kinase subfamily. Plant J 26:101–112

    CAS  PubMed  Google Scholar 

  • Tada Y, Spoel SH, Pajerowska-Mukhtar K, Mou Z, Song J, Wang C, Zuo J, Dong X (2008) Plant immunity requires conformational charges of NPR1 via S-nitrosylation and thioredoxins. Science 321:952–956

    CAS  PubMed  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2003) GFP-tagging of cell components reveals the dynamics of sub-cellular re-organization in response to infection of Arabidopsis by oomycete pathogens. Plant J 33:775–792

    CAS  PubMed  Google Scholar 

  • Takemoto D, Jones DA, Hardham AR (2006) Re-organization of the cytoskeleton and endoplasmic reticulum in the Arabidopsis pen1-1 mutant inoculated with the non-adapted powdery mildew pathogen, Blumeria graminis f. sp. hordei. Mol Plant Pathol 7:553–563

    CAS  PubMed  Google Scholar 

  • Takken FL, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opinion Plant Biol 15:375–384

    CAS  Google Scholar 

  • Tang D, Innes RW (2002) Overexpression of a kinase-deficient form of the EDR1 gene enhances powdery mildew resistance and ethylene-induced senescence in Arabidopsis. Plant J 32:975–983

    CAS  PubMed  Google Scholar 

  • Tang XY, Xie MT, Kim YJ, Zhou JM, Klessig DF, Martin GB (1999) Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell 11:15–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Christiansen KM, Innes RW (2005a) Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiol 138:1018–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2005b) Regulation of plant defense responses in Arabidopsis by EDR2, a PH and START domain-containing protein. Plant J 44:245–257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang D, Ade J, Frye CA, Innes RW (2006) A mutation in the GTP hydrolysis site of Arabidopsis dynamin-related protein 1E confers enhanced cell death in response to powdery mildew infection. Plant J 47:75–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang W, Kim TW, Oses-Prieto JA, Sun Y, Deng Z, Zhu S, Wang R, Burlingame AL, Wang ZY (2008) BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321:557–560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teh OK, Hofius D (2014) Membrane trafficking and autophagy in pathogen-triggered cell death and immunity. J Exp Bot 65:1297–1312

    CAS  PubMed  Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    CAS  PubMed  Google Scholar 

  • Than ME, Helm M, Simpson DJ, Lottspeich F, Huber R, Gietl C (2004) The2.0-Å crystal structure of the KDEL-tailed cysteine endopeptidase from germinating endosperm of Ricinus communis confirms its function in the final stage of programmed cell death. J Mol Biol 336:1103–1116

    CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Eggermont K, Penninckx IA, Mauch-Mani B, Vogelsang R, Cammue BP, Broekaert WF (1998) Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc Natl Acad Sci U S A 95:15107–15111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomma BPHJ, Nelissen I, Eggermont K, Broekaert WF (1999) Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J 19:163–171

    CAS  PubMed  Google Scholar 

  • Thomma BPHJ, Penninckx IAMA, Broekaert WF, Cammue BPA (2001) The complexity of disease signaling in Arabidopsis. Curr Opinion Immun 13:63–68

    CAS  Google Scholar 

  • Thordal-Christensen H (2003) Fresh insights into processes of non-host resistance. Curr Opinion Plant Biol 6:351–357

    CAS  Google Scholar 

  • Timonen KL, Vanninen E, de Hartog J, Ibald-Mulli A, Brunekreef B, Gold DR, Heinrich J, Hoek G, Lanki T, Peters A, Tarkiainen P, Kreyling W, Pekkanen J (2006) Effects of ultrafine and fine particulate and gaseous air pollution on cardiac autonomic control in subjects with coronary artery disease-the ULTRA study. J Expo Sci Environ Epidemiol 16(4):332–341

    CAS  PubMed  Google Scholar 

  • Tongue M, Griffiths PD (2004) Transfer of powdery mildew resistance from Brassica carinata to Brassica oleracea through embryo rescue. Plant Breed 123:587–589

    Google Scholar 

  • Tronchin G, Poulain D, Herbaut J, Biguet J (1981) Localization of chitin in the cell wall of Candida albicans by means of wheat germ agglutinin. Fluorescence and ultra-structural studies. Eur J Cell Biol 26:121–128

    CAS  PubMed  Google Scholar 

  • Tsuda K, Somssich IE (2015) Transcriptional networks in plant immunity. New Phytol 206:932–947

    CAS  PubMed  Google Scholar 

  • Uemura T, Kim H, Saito C, Ebine K, Ueda T, Schulze-Lefert P, Nakano A (2012) Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc Natl Acad Sci U S A 109:1784–1789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulker B, Shahid Mukhtar M, Somssich IE (2007) The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta 226:125–137

    PubMed  Google Scholar 

  • Underwood W, Somerville SC (2008) Focal accumulation of defences at sites of fungal pathogen attack. J Exp Bot 59:3501–3508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood W, Somerville SC (2013) Perception of conserved pathogen elicitors at the plasma membrane leads to relocalization of the Arabidopsis PEN3 transporter proc Natl Acad Sci. USA 110:12492–12497

    CAS  Google Scholar 

  • Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Korbes AP, Memelink J, Ritsema T, Van Wees SCM, Pieterse CMJ (2013) Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. Plant Cell 25:744–761

    PubMed  PubMed Central  Google Scholar 

  • Van der Luit AH, Piatti T, van Doorn A, Musgrave A, Felix G, Boller T, Munnik T (2000) Elicitation of suspension-cultured tomato cells triggers the formation of phosphatidic acid and diacylglycerol pyrophosphate. Plant Physiol 123:1507–1516

    PubMed  PubMed Central  Google Scholar 

  • Van Schie CC, Takken FL (2014) Susceptibility genes: how to be a good host. Annu Rev Phytopathol 52:551–581

    PubMed  Google Scholar 

  • Vassileva VN, Kouchi H, Ridge RW (2005) Microtubule dynamics in living root hairs: transient slowing by lipochitin oligosaccharide nodulation signals. Plant Cell 17:1777–1787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verhagen BWM, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CMJ (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17:895–908

    CAS  PubMed  Google Scholar 

  • Veronese P, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, Dietrich RA, Hirt H, Mengiste T (2006) The membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18:257–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vivancos J, Labbé C, Menzies JG, Bélanger RR (2015) Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol Plant Pathol 16:572–582

    CAS  PubMed  Google Scholar 

  • Vlieghe K, Boudolf V, Beemster GTS, Maes S, Magyar Z, Atanassova A, de Almeida EJ, De Groodt R, Inzé D, De Veylder L (2005) The DP-E2F-like gene DEL1 controls the endocycle in Arabidopsis thaliana. Curr Biol 15:59–63

    CAS  PubMed  Google Scholar 

  • Voegele RT, Stuck C, Hahn M, Mendgen K (2001) The role of haustoria in sugar supply during infection of broad bean by the rust fungus Uromyces fabae. Proc Natl Acad Sci U S A 98:8133–8138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel J, Somerville S (2000) Isolation and characterization of powdery mildew-resistant Arabidopsis mutants. Proc Natl Acad Sci U S A 97:1897–1902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JP, Raab TK, Schiff C, Somerville SC (2002) PMR6, a pectate lyase–like gene required for powdery mildew susceptibility in Arabidopsis. Plant Cell 14:2095–2106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel JP, Raab TK, Somerville CR, Somerville SC (2004) Mutations in PMR5 result in powdery mildew resistance and altered cell wall composition. Plant J 40:968–978

    CAS  PubMed  Google Scholar 

  • von Schaewen A, Stitt M, Schmidt R, Sonnewald U, Willmitzer L (1990) Expression of a yeast-derived invertase in the cell wall of tobacco and Arabidopsis plants leads to accumulation of carbohydrate and inhibition of photosynthesis and strongly influences growth and phenotype of transgenic tobacco plants. EMBO J 9:3033–3044

    Google Scholar 

  • Vorwerk S, Schiff C, Santamaria M, Koh S, Nishimura M, Vogel J, Somerville C, Somerville S (2007) EDR2 negatively regulates salicylic acid-based defenses and cell death during powdery mildew infections of Arabidopsis thaliana. BMC Plant Biol 7:35

    PubMed  PubMed Central  Google Scholar 

  • Wagner S, Stuttmann J, Rietz S, Guerois R, Brunstein E, Bautor J, Niefind K, Parker JE (2013) Structural basis for signaling by exclusive EDS1 heteromeric complexes with SAG101 or PAD4 in plant innate immunity. Cell Host Microbe 14:619–630

    CAS  PubMed  Google Scholar 

  • Walker JC, Williams PH (1965) The inheritance of powdery mildew resistance in cabbage. Plant Dis Reptr 49:198–201

    Google Scholar 

  • Wally O, Jayaraj J, Punja ZK (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, beta–1, 3– glucanase and peroxidase. Eur J Plant Pathol 123:331–342

    CAS  Google Scholar 

  • Walters DR, Ratsep J, Havis Neil D (2013) Controlling crop diseases using induced resistance: challenges for the future. J Exp Bot 64:1263–1280

    CAS  PubMed  Google Scholar 

  • Wan J, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X (2004) Lipid signaling. Curr Opinion Plant Biol 7:329–336

    CAS  Google Scholar 

  • Wang D, Amornsiripanitch N, Dong X (2006) A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants. PLOS Pathol 2:e123

    Google Scholar 

  • Wang W, Devoto A, Turner JG, Xiao S (2007) Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens. Mol Plant-Microbe Interact 20:966–976

    CAS  PubMed  Google Scholar 

  • Wang W, Wen Y, Berkey R, Xiao S (2009) Specific targeting of the Arabidopsis resistance protein RPW8.2 to the interfacial membrane encasing the fungal haustorium renders broad-spectrum resistance to powdery mildew. Plant Cell 21:2898–2913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Berkey R, Wen Y, Xiao S (2010) Accurate and adequate spatiotemporal expression and localization of RPW8.2 is key to activation of resistance at the host-pathogen interface. Plant Signalling Behav 5:1002–1005

    Google Scholar 

  • Wang Y, Nishimura MT, Zhao T, Tang D (2011a) ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J 68:74–87

    CAS  PubMed  Google Scholar 

  • Wang Y, Wu Y, Tang D (2011b) The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signalling Behav 6:1408–1410

    CAS  Google Scholar 

  • Wang WM, Ma XF, Zhang Y, Luo MC, Wang GL, Bellizzi M, Xiong XY, Xiao SY (2012) PAPP2C interacts with the atypical disease resistance protein RPW8.2 and negatively regulates salicylic acid-dependent defense responses in Arabidopsis. Mol Plant 5:1125–1137

    CAS  PubMed  Google Scholar 

  • Wang W, Zhang Y, Wen Y, Berkey R, Ma X, Pan Z, Bendigeri D, King H, Zhang Q, Xiao S (2013) A comprehensive mutational analysis of the Arabidopsis resistance protein RPW8.2 reveals key amino acids for defense activation and protein targeting. Plant Cell 25:4242–4261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wasteneys GO (2004) Progress in understanding the role of microtubules in plant cells. Curr Opinion Plant Biol 7:651–660

    CAS  Google Scholar 

  • Wasteneys GO, Galway ME (2003) Remodeling the cytoskeleton for growth and form: an overview with some new views. Ann Rev Plant Biol 54:691–722

    CAS  Google Scholar 

  • Wawrzynska A, Rodibaugh NL, Innes RW (2010) Synergistic activation of defense responses in Arabidopsis by simultaneous loss of the GSL5 callose synthase and the EDR1 protein kinase. Mol Plant-Microbe Interact 23:578–584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weis C, Huckelhoven R, Eichmann R (2013) LIFEGUARD proteins support plant colonization by biotrophic powdery mildew fungi. J Exp Bot 64:3855–3867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weis C, Hildebrandt U, Hoffmann T, Hemetsberger C, Pfeilmeier S, Konig C, Schwab W, Eichmann R, Huckelhoven R (2014) CYP83A1 is required for metabolic compatibility of Arabidopsis with the adapted powdery mildew fungus Erysiphe cruciferarum. New Phytol 202:1310–1319

    CAS  PubMed  Google Scholar 

  • Weymann K, Hunt M, Uknes S, Neuenschwander U, Lawton K, Steiner HY, Ryals J (1995) Suppression and restoration of lesion formation in Arabidopsis lsd mutants. Plant Cell 7:2013–2022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wiermer M, Feys BJ, Parker JE (2005) Plant immunity-the EDS1 regulatory node. Curr Opinion Plant Biol 8:383–389

    CAS  Google Scholar 

  • Williams PH, Walker JC, Pound GS (1968) Hybelle and Sanibel, multiple disease-resistant F1 hybrid cabbages. Phytopathology 58:791–796

    Google Scholar 

  • Wilson IW, Schiff CL, Hughes DE, Somerville SC (2001) Quantitative trait loci analysis of powdery mildew disease resistance in the Arabidopsis thaliana accession Kashmir-1. Genetics 158:1301–1309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winge P, Brembu T, Kristensen R, Bones AM (2000) Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics 156:1959–1971

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wittstock U, Halkier BA (2002) Glucosinolate research in the Arabidopsis era. Trends Plant Sci 7:263–270

    CAS  PubMed  Google Scholar 

  • Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995a) Source-sink relationships in wheat leaves infected with powdery mildew. II. Changes in the regulation of the Calvin cycle. Physiol Mol Plant Pathol 47:255–267

    CAS  Google Scholar 

  • Wright DP, Baldwin BC, Shephard MC, Scholes JD (1995b) Source-sink relationships in wheat leaves infected with powdery mildew. I. Alterations in carbohydrate metabolism. Physiol Mol Plant Pathol 47:237–253

    CAS  Google Scholar 

  • Wu Y, Zhang D, Chu JY, Boyle P, Wang Y, Brindle ID, De Luca V, Despres C (2012) The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep 1:639–647

    CAS  PubMed  Google Scholar 

  • Wu G, Liu S, Zhao Y, Wang W, Kong Z, Tang D (2015) Enhanced disease resistance 4 associates with clathrin heavy chain 2 and modulates plant immunity by regulating relocation of edr1 in Arabidopsis. Plant Cell 27:857–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Ellwood S, Findlay K, Oliver RP, Turner JG (1997) Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-0 to two powdery mildew diseases. Plant J 12(4):757–768

    CAS  PubMed  Google Scholar 

  • Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG (2001) Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291:118–120

    CAS  PubMed  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid–dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15:33–45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao S, Emerson B, Ratanasut K, Patrick E, O’Neill C, Bancroft I, Turner JG (2004) Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis. Mol Biol Evol 21:1661–1672

    CAS  PubMed  Google Scholar 

  • Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker JE, Turner JG (2005) The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. Plant J 42:95–110

    CAS  PubMed  Google Scholar 

  • Xu X, Kanbara K, Azakami H, Kato A (2004) Expression and characterization of Saccharomyces cerevisiae Cne1p, a calnexin homologue. J Biochem 135(5):615–618

    CAS  PubMed  Google Scholar 

  • Xu T, Wen M, Nagawa S, Fu Y, Chen JG, Wu MJ, Perrot-Rechenmann C, Friml J, Jones AM, Yang Z (2010) Cell surface- and rho GTPase-based auxin signaling controls cellular interdigitation in Arabidopsis. Cell 143:99–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yan S, Dong X (2014) Perception of the plant immune signal salicylic acid. Curr Opinion Plant Biol 20:64–68

    CAS  Google Scholar 

  • Yang Y, Shah J, Klessig DF (1997) Signal perception and transduction in plant defense responses. Genes Dev 11:1621–1639

    CAS  PubMed  Google Scholar 

  • Yang X, Wang W, Coleman M, Orgil U, Feng J, Ma X, Ferl R, Turner JG, Xiao S (2009) Arabidopsis 14-3-3 lambda is a positive regulator of RPW8-mediated disease resistance. Plant J 60:539–550

    CAS  PubMed  Google Scholar 

  • Yang L, Qin L, Liu G, Peremyslov VV, Dolja VV, Wei Y (2014) Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens. Proc Natl Acad Sci U S A 111:13996–14001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yedidia I, Benhamou N, Chet I (1999) Induction of defense responses in cucumber plants (Cucumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl Env Microbiol 65:1061–1070

    CAS  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Chen C, Chen Z (2001) Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell 13:1527–1540

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yun BW, Atkinson HA, Gaborit C, Greenland A, Read ND, Pallas JA, Loake GJ (2003) Loss of actin cytoskeletal function and EDS1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. Plant J 34:768–777

    CAS  PubMed  Google Scholar 

  • Zablackis E, Huang J, Muller B, Darvill AG, Albersheim P (1995) Characterization of the cell wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107:1129–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zander M, Chen S, Imkampe J, Thurow C, Gatz C (2012) Repression of the Arabidopsis thaliana jasmonic acid/ethylene-induced defense pathway by TGA-interacting glutaredoxins depends on their C-terminal ALWL motif. Mol Plant 5:831–840

    CAS  PubMed  Google Scholar 

  • Zander M, Thurow C, Gatz C (2014) TGA transcription factors activate the salicylic acid-suppressible branch of the ethylene-induced defense program by regulating ORA59 expression. Plant Physiol 165:1671–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller FJ, Lutz J, Reimlein E, Limpert E, Koenig J (1993) Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.) II. French cultivars. Agronomie 13:201–207

    Google Scholar 

  • Zeyen RJ, Kruger WM, Lyngkjær MF, Carver TLW (2002) Differential effects of D-mannose and 2-deoxym-D-glucose on attempted powdery mildew fungal infection of inappropriate and appropriate gramineae. Physiol Mol Plant Pathol 61:315–323

    CAS  Google Scholar 

  • Zhang C, Shapiro AD (2002) Two pathways act in an additive rather than obligatorily synergistic fashion to induce systemic acquired resistance and PR gene expression. BMC Plant Biol 2:9

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Tessaro MJ, Lassner M, Li X (2003) Knockout analysis of Arabidopsis transcription factors TGA2, TGA5, and TGA6 reveals their redundant and essential roles in systemic acquired resistance. Plant Cell 15:2647–2653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Feechan A, Pedersen C, Newman MA, Qiu JL, Olesen KL, Thordal-Christensen H (2007) A SNARE-protein has opposing functions in penetration resistance and defence signalling pathways. Plant J 49:302–312

    CAS  PubMed  Google Scholar 

  • Zhang X, Francis MI, Dawson WO, Graham JH, Orbovic V (2010) Over-expression of the Arabidopsis NPR1 gene in citrus increases resistance to citrus canker. Eur J Plant Pathol 128:91–100

    CAS  Google Scholar 

  • Zhang D, Liu D, Lv X, Wang Y, Xun Z, Liu Z, Li F, Lu H (2014) The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell 26:2939–2961

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LL, Ma XF, Zhou BB, Zhao JQ, Fan J, Huang F, Li Y, Wang WM (2015a) EDS1-mediated basal defense and SA-signaling contribute to post-invasion resistance against tobacco powdery mildew in Arabidopsis. Physiol Mol Plant Pathol 91:120–130

    Google Scholar 

  • Zhang Q, Berkey R, Pan Z, Wang W, Zhang Y, Ma X, King H, Xiao S (2015b) Dominant negative RPW8.2 fusion proteins reveal the importance of haustorium-oriented protein trafficking for resistance against powdery mildew in Arabidopsis. Plant Signalling Behav 10:e989766

    Google Scholar 

  • Zhao J, Last RL (1996) Coordinate regulation of the tryptophan biosynthetic pathway and indolic phytoalexin accumulation in Arabidopsis. Plant Cell 8:2235–2244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C, Nie H, Shen Q, Zhang S, Lukowitz W, Tang D (2014) EDR1 physically interacts with MKK4/MKK5 and negatively regulates a MAP kinase cascade to modulate plant innate immunity. PLoS Genet 10:e1004389

    PubMed  PubMed Central  Google Scholar 

  • Zhong X, Xi L, Lian Q, Luo X, Wu Z, Seng S, Yuan X, Yi M (2015) The NPR1 homolog GhNPR1 plays an important role in the defense response of Gladiolus hybridus. Plant Cell Reptr 34:1063–1074

    CAS  Google Scholar 

  • Zhou N, Tootle TL, Tsui F, Klessig DF, Glazebrook J (1998) PAD4 functions upstream from salicylic acid to control defense responses in Arabidopsis. Plant Cell 10:1021–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L-Z, Howing T, Muller B, Hammes UZ, Getl C, Dresselhaus T (2016) Expression analysis of KDEL CysEPs programmed cell death markers during reproduction in Arabidopsis. Plant Reprod 29:265–272

    CAS  PubMed  Google Scholar 

  • Zimmerli L, Stein M, Lipka V, Schulze-Lefert P, Somerville S (2004) Host and non-host pathogens elicit different jasmonate/ethylene responses in Arabidopsis. Plant J 40:633–646

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) Genevestigator. Arabidopsis microarray data base and analysis toolbox. Plant Physiol 136:2621–2632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel C, Robatzek S, Navarro L, Oakeley EJ, Jones JDG, Felix G, Boller T (2004) Bacterial disease resistance in Arabidopsis through flagellin perception. Nat Intl J Sci 428:764–767

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saharan, G.S., Mehta, N.K., Meena, P.D. (2019). Host Resistance. In: Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management. Springer, Singapore. https://doi.org/10.1007/978-981-13-9853-7_7

Download citation

Publish with us

Policies and ethics