Skip to main content

Nanoparticles as New Emerging Antibacterials: Potentials and Limitations

  • Chapter
  • First Online:
Antibacterial Drug Discovery to Combat MDR

Abstract

The use and abuse of antimicrobials have led to the emergence of multi-drug resistant (MDR) bacteria and the spread of resistant organisms and is one of the major global threats for healthcare professionals. Alternatives to conventional antibiotics for combating resistant infections are the need of the hour. Nanotechnology-based drugs offer a ray of hope in the fight against MDR bacteria for patients as well as clinicians. Diverse types of nanomaterials have been synthesized from metallic particles with promising antibacterial activity. Efficacy of these nanomaterials depends on their interactions with bacterial cells and their mechanisms of action differ based on their physico-chemical properties. Development of novel and potent nanoantimicrobials requires in-depth knowledge of the physico-chemical properties of nanoparticles and the biological characteristics of bacteria. However, there is still a long way to go as there are major issues related to the toxicity and stability of nanoparticles. Moreover, the economic feasibility of transferring the technology from bench to bedside needs to be addressed. The present review highlights the antibacterial effects of nanoparticles, their mechanisms of action, factors affecting the activity of NPs and challenges of ongoing and future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya, D., Singha, K. M., Pandey, P., Mohanta, B., Rajkumari, J., & Singha, L. P. (2018). Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria. Scientific Reports, 8(1), 201.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Shabib, N. A., Husain, F. M., Ahmed, F., et al. (2016). Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Scientific Reports, 6. https://doi.org/10.1038/srep36761.

  • Al-Shabib, N. A., Husain, F. M., Ahmad, N., et al. (2018a). Facile synthesis of Tin Oxide hollow nanoflowers interfering with quorum sensing-regulated functions and bacterial biofilms. Journal of Nanomaterials, 2018, 1–11. https://doi.org/10.1155/2018/6845026.

    Article  CAS  Google Scholar 

  • Al-Shabib, N. A., Husain, F. M., Ahmed, F., et al. (2018b). Low temperature synthesis of superparamagnetic iron oxide (Fe3O4) nanoparticles and their ROS mediated inhibition of biofilm formed by food-associated bacteria. Frontiers in Microbiology, 9, 2567. https://doi.org/10.3389/fmicb.2018.02567.

    Article  PubMed  PubMed Central  Google Scholar 

  • Al-Shabib, N. A., Husain, F. M., Hassan, I., et al. (2018c). Biofabrication of zinc oxide nanoparticle from ochradenus baccatus leaves: Broad-spectrum antibiofilm activity, protein binding studies, and in vivo toxicity and stress studies. Journal of Nanomaterials, 2018, 1. https://doi.org/10.1155/2018/8612158.

    Article  CAS  Google Scholar 

  • Andrade, F., Rafael, D., Videira, M., Ferreira, D., Sosnik, A., & Sarmento, B. (2013a). Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 65, 1816–1827. https://doi.org/10.1016/j.addr.2013.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade, F., Rafael, D., Videira, M., et al. (2013b). Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 65, 1816–1827. https://doi.org/10.1016/j.addr.2013.07.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ansari, M. A., Khan, H. M., Khan, A. A., Pal, R., & Cameotra, S. S. (2013). Antibacterial potential of Al2O3 nanoparticles against multidrug resistance strains of Staphylococcus aureus isolated from skin exudates. Journal of Nanoparticle Research.

    Google Scholar 

  • Ansari, M. A., Khan, H. M., Khan, A. A., et al. (2014). Interaction of Al 2 O 3 nanoparticles with Escherichia coli and their cell envelope biomolecules. Journal of Applied Microbiology, 116, 772–783. https://doi.org/10.1111/jam.12423.

    Article  CAS  PubMed  Google Scholar 

  • Antonelli, M., De Pascale, G., Ranieri, V. M., et al. (2012). Comparison of triple-lumen central venous catheters impregnated with silver nanoparticles (AgTive®) vs conventional catheters in intensive care unit patients. The Journal of Hospital Infection, 82, 101–107. https://doi.org/10.1016/j.jhin.2012.07.010.

    Article  CAS  PubMed  Google Scholar 

  • Argueta-Figueroa, L., Morales-Luckie, R. A., Scougall-Vilchis, R. J., & Olea-Mejía, O. F. (2014). Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic cu-Ni nanoparticles for potential use in dental materials. Prog Nat Sci Mater Int, 24, 321–328.

    Article  CAS  Google Scholar 

  • Ashfaq, M., Verma, N., & Khan, S. (2016). Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Materials Science and Engineering: C, 59, 938–947.

    Article  CAS  Google Scholar 

  • Baptista, P. V., McCusker, M. P., Carvalho, A., et al. (2018). Nano-strategies to fight multidrug resistant bacteria-“A Battle of the Titans”. Frontiers in Microbiology, 9, 1–26. https://doi.org/10.3389/fmicb.2018.01441.

    Article  Google Scholar 

  • Beyth, N., Houri-haddad, Y., Domb, A., et al. (2015). Alternative antimicrobial approach: Nano-antimicrobial materials. Evidence-based Complementary and Alternative Medicine, 2015, 2015. https://doi.org/10.1155/2015/246012.

    Article  Google Scholar 

  • Bjarnsholt, T. (2013). The role of bacterial biofilms in chronic infections. APMIS, 121, 1–58. https://doi.org/10.1111/apm.12099.

    Article  CAS  Google Scholar 

  • Brown, A., Smith, K., Samuels, T. A., Lu, J., Obare, S., & Scott, M. E. (2012). Nanoparticles functionalized with Ampicillin destroy multiple antibiotic resistant isolates of Pseudomonas aeruginosa, enterobacter aerogenes and Methicillin resistant Staphylococcus aureus. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.06513-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burygin, G. L., Khlebtsov, B. N., Shantrokha, A. N., et al. (2009). On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Research Letters, 4, 794–801. https://doi.org/10.1007/s11671-009-9316-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caster, J. M., Patel, A. N., Zhang, T., & Wang, A. (2017). Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 9, 1. https://doi.org/10.1002/wnan.1416.

    Article  Google Scholar 

  • Cavassin, E. D., de Figueiredo, L. F., Otoch, J. P., Seckler, M. M., de Oliveira, R. A., Franco, F. F., Marangoni, V. S., Zucolotto, V., Levin, A. S., & Costa, S. F. (2015). Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. Journal of Nanobiotechnology, 13(1), 64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cha, S. H., Hong, J., McGuffie, M., Yeom, B., VanEpps, J. S., & Kotov, N. A. (2015). Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano, 9(9), 9097–9105.

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti, S., Mandal, A. K., Sarwar, S., Singh, P., Chakraborty, R., & Chakrabarti, P. (2014). Bactericidal effect of polyethyleneimine capped ZnO nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island. Colloids and Surfaces. B, Biointerfaces, 121, 44–53.

    Article  CAS  PubMed  Google Scholar 

  • Chang, T. Y., Chen, C. C., Cheng, K. M., Chin, C. Y., Chen, Y. H., Chen, X. A., Sun, J. R., Young, J. J., & Chiueh, T. S. (2017). Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Colloids and Surfaces. B, Biointerfaces, 155, 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Chaurasia, A. K., Thorat, N. D., Tandon, A., Kim, J. H., Park, S. H., & Kim, K. K. (2016). Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Scientific Reports, 6, 1–13.

    Article  CAS  Google Scholar 

  • Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284(80), 1318. https://doi.org/10.1126/science.284.5418.1318.

    Article  CAS  PubMed  Google Scholar 

  • Courvalin, P. (2016). Why is antibiotic resistance a deadly emerging disease? Clinical Microbiology and Infection, 22, 405–407. https://doi.org/10.1016/j.cmi.2016.01.012.

    Article  CAS  PubMed  Google Scholar 

  • Cui, Y., Zhao, Y., Tian, Y., Zhang, W., Lü, X., & Jiang, X. (2012). The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials, 33(7), 2327–2333.

    Article  CAS  PubMed  Google Scholar 

  • Dakal, T. C., Kumar, A., Majumdar, R. S., & Yadav, V. (2016). Mechanistic basis of antimicrobial actions of silver nanoparticles. Frontiers in Microbiology, 7, 1–17. https://doi.org/10.3389/fmicb.2016.01831.

    Article  Google Scholar 

  • De Jong, W. H. (2008). 10.0000@www.iumj.indiana.edu@generic-B29BB9CC780E.pdf. 3:133–149. https:// https://doi.org/10.2147/IJN.S596

  • De Matteis, V. (2017). Exposure to inorganic nanoparticles: routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics, 5. https://doi.org/10.3390/toxics5040029.

    Article  PubMed Central  CAS  Google Scholar 

  • Ding, F., Songkiatisak, P., Cherukuri, P. K., Huang, T., & Xu, X. H. (2018). Size-Dependent Inhibitory Effects of Antibiotic Drug Nanocarriers against Pseudomonas aeruginosa. ACS omega, 3(1), 1231–1243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djafari, J., Marinho, C., Santos, T., Igrejas, G., Torres, C., Capelo, J. L., Poeta, P., Lodeiro, C., & Fernández-Lodeiro, J. (2016). New synthesis of gold-and silver-based nano-tetracycline composites. ChemistryOpen, 5(3), 206–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doi, Y., Adams-Haduch, J. M., Peleg, A. Y., & D’Agata, E. M. C. (2012). The role of horizontal gene transfer in the dissemination of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates in an endemic setting. Diagnostic Microbiology and Infectious Disease, 74, 34–38. https://doi.org/10.1016/j.diagmicrobio.2012.05.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos, V. E., Filho, A. V., Ribeiro Targino, A. G., et al. (2014). A new “silver-Bullet” to treat caries in children – Nano silver fluoride: A randomised clinical trial. Journal of Dentistry, 42, 945–951. https://doi.org/10.1016/j.jdent.2014.05.017.

    Article  CAS  PubMed  Google Scholar 

  • Drulis-Kawa, Z., & Dorotkiewicz-Jach, A. (2010). Liposomes as delivery systems for antibiotics. International Journal of Pharmaceutics, 387, 187–198. https://doi.org/10.1016/j.ijpharm.2009.11.033.

    Article  CAS  PubMed  Google Scholar 

  • Ehsan, S., & Sajjad, M. (2017). Bioinspired synthesis of zinc oxide nanoparticle and its combined efficacy with different antibiotics against multidrug resistant bacteria. Journal of Biomaterials and Nanobiotechnology., 8(02), 159.

    Article  CAS  Google Scholar 

  • El-Zowalaty, M. E., Al-Ali, S. H. H., Husseiny, M. I., Geilich, B. M., Webster, T. J., & Hussein, M. Z. (2015). The ability of streptomycin-loaded chitosancoated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. International Journal of Nanomedicine, 10, 3269–3274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esmaeillou, M., Zarrini, G., & Rezaee, M. A. (2017). Vancomycin capped with silver Nanoparticles as an antibacterial agent against multi-drug resistance bacteria. Advanced pharmaceutical bulletin., 7(3), 479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes, P., & ScienceDirect. (2015). The global challenge of new classes of antibacterial agents: An industry perspective. Current Opinion in Pharmacology, 24, 7–11. https://doi.org/10.1016/j.coph.2015.06.003.

    Article  CAS  PubMed  Google Scholar 

  • Foster, H. A., Ditta, I. B., Varghese, S., & Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90, 1847–1868. https://doi.org/10.1007/s00253-011-3213-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galanzha, E. I., Shashkov, E., Sarimollaoglu, M., Beenken, K. E., Basnakian, A. G., Shirtliff, M. E., Kim, J. W., Smeltzer, M. S., & Zharov, V. P. (2012). In vivo magnetic enrichment, photoacoustic diagnosis, and photothermal purging of infected blood using multifunctional gold and magnetic nanoparticles. PLoS One, 7(9), e45557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gholipourmalekabadi, M., Mobaraki, M., Ghaffari, M., & Zarebkohan, A. (2017). Send orders for print-reprints and e-prints to reprints@benthamscience.ae Targeted Drug Delivery Based on Gold Nanoparticle Derivatives Targeted Drug Delivery Based on Gold Nanoparticle Derivatives. https://doi.org/10.2174/138161282366617041910541.

  • Guo, L., Yuan, W., Lu, Z., & Li, C. M. (2013). Polymer/nanosilver composite coatings for antibacterial applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 439, 69–83. https://doi.org/10.1016/j.colsurfa.2012.12.029.

    Article  CAS  Google Scholar 

  • Hadiya, S., Liu, X., & Abd El-Hammed, W., et al. (2018). Levofloxacin-loaded nanoparticles decrease emergence of fluoroquinolone resistance in Escherichia coli. Microb Drug Resist 00:mdr.2017.0304. https://doi.org/10.1089/mdr.2017.0304.

    Article  CAS  PubMed  Google Scholar 

  • Hagens, W. I., Oomen, A. G., de Jong, W. H., et al. (2007). What do we (need to) know about the kinetic properties of nanoparticles in the body? Regulatory Toxicology and Pharmacology, 49, 217–229. https://doi.org/10.1016/j.yrtph.2007.07.006.

    Article  CAS  PubMed  Google Scholar 

  • Hajipour, M. J., Fromm, K. M., Akbar Ashkarran, A., et al. (2012). Antibacterial properties of nanoparticles. Trends in Biotechnology, 30, 499–511. https://doi.org/10.1016/j.tibtech.2012.06.004.

    Article  CAS  PubMed  Google Scholar 

  • Hemeg, H. A. (2017). Nanomaterials for alternative antibacterial therapy. International Journal of Nanomedicine, 12, 8211–8225. https://doi.org/10.2147/IJN.S132163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Yu, F., Park, Y. S., et al. (2010). Co-administration of protein drugs with gold nanoparticles to enable percutaneous delivery. Biomaterials, 31, 9086–9091. https://doi.org/10.1016/j.biomaterials.2010.08.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, N., Chen, X., Zhu, X., Xu, M., & Liu, J. (2017). Ruthenium complexes/polypeptide self-assembled nanoparticles for identification of bacterial infection and targeted antibacterial research. Biomaterials, 141, 296–313.

    Article  CAS  PubMed  Google Scholar 

  • Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. Journal of Controlled Release, 156, 128–145. https://doi.org/10.1016/j.jconrel.2011.07.002.

    Article  CAS  PubMed  Google Scholar 

  • Husain, F. M., & Ahmad, I. (2013). Doxycycline interferes with quorum sensing-mediated virulence factors and biofilm formation in Gram-negative bacteria. World Journal of Microbiology and Biotechnology, 29, 29. https://doi.org/10.1007/s11274-013-1252-1.

    Article  CAS  Google Scholar 

  • Hussain, A., Alajmi, M., Khan, M. A., Pervez, A., Ahmed, F., Amir, Samira, Husain, F. M., Khan, M. S., Gouse, S. K., Hassan, I., Khan, R. A., & Rehman, M. T. (2019). Biosynthesized silver nanoparticle (AgNP) from pandanus odorifer leaf extract exhibits anti-metastasis and Anti-Biofilm potentialso title. Frontiers in Microbiology, 10. https://doi.org/10.3389/fmicb.2019.00008.

  • Hwang, T. J., Carpenter, D., & Kesselheim, A. S. (2015). Paying for innovation: Reimbursement incentives for antibiotics. Science Translational Medicine, 7, 7–10.

    Article  Google Scholar 

  • Jakobsen, T. H., Tolker-Nielsen, T., & Givskov, M. (2017). Bacterial biofilm control by perturbation of bacterial signaling processes. International Journal of Molecular Sciences, 18. https://doi.org/10.3390/ijms18091970.

    Article  PubMed Central  CAS  Google Scholar 

  • Jamil, B., & Imran, M. (2018). Factors pivotal for designing of nanoantimicrobials: An exposition. Critical Reviews in Microbiology, 44, 79–94. https://doi.org/10.1080/1040841X.2017.1313813.

    Article  CAS  PubMed  Google Scholar 

  • Jankauskaitė, V., Vitkauskienė, A., Lazauskas, A., et al. (2016). Bactericidal effect of graphene oxide/Cu/Ag nanoderivatives against Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. International Journal of Pharmaceutics, 511, 90–97. https://doi.org/10.1016/j.ijpharm.2016.06.121.

    Article  CAS  Google Scholar 

  • Joost, U., Juganson, K., Visnapuu, M., et al. (2015). Photocatalytic antibacterial activity of nano-TiO2(anatase)-based thin films: Effects on Escherichia coli cells and fatty acids. Journal of Photochemistry and Photobiology B: Biology, 142, 178–185. https://doi.org/10.1016/j.jphotobiol.2014.12.010.

    Article  CAS  Google Scholar 

  • Khan, M. F., Ansari, A. H., Hameedullah, M., et al. (2016). Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6. https://doi.org/10.1038/srep27689.

  • Khan, S., Khan, S. N., Meena, R., Dar, A. M., Pal, R., & Khan, A. U. (2017). Photoinactivation of multidrug resistant bacteria by monomeric methylene blue conjugated gold nanoparticles. Journal of Photochemistry and Photobiology, B: Biology, 174, 150–161.

    Article  CAS  Google Scholar 

  • Kim, D. Y., Kim, M., Shinde, S., Sung, J. S., & Ghodake, G. (2017). Cytotoxicity and antibacterial assessment of gallic acid capped gold nanoparticles. Colloids and Surfaces. B, Biointerfaces, 149, 162–167.

    Article  CAS  PubMed  Google Scholar 

  • Kruk, T., Szczepanowicz, K., Stefańska, J., Socha, R. P., & Warszyński, P. (2015). Synthesis and antimicrobial activity of monodisperse copper nanoparticles. Colloids and Surfaces. B, Biointerfaces, 128, 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, A., Yadav, S. K., & Yadav, S. C. (2010). Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces. B, Biointerfaces, 75, 1–18. https://doi.org/10.1016/j.colsurfb.2009.09.001.

    Article  CAS  PubMed  Google Scholar 

  • Lai, H. Z., Chen, W. Y., Wu, C. Y., & Chen, Y. C. (2015). Potent antibacterial nanoparticles for pathogenic bacteria. ACS Applied Materials & Interfaces, 7(3), 2046–2054.

    Article  CAS  Google Scholar 

  • Lara, H. H., Ayala-Núñez, N. V., Turrent, L. D., & Padilla, C. R. (2010). Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World Journal of Microbiology and Biotechnology, 26(4), 615–621.

    Article  CAS  Google Scholar 

  • LaSarre, B., & Federle, M. J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews, 77, 73–111. https://doi.org/10.1128/MMBR.00046-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. H., Kim, Y. G., Cho, M. H., & Lee, J. (2014). ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological Research, 169, 888–896. https://doi.org/10.1016/j.micres.2014.05.005.

    Article  CAS  PubMed  Google Scholar 

  • Lee, W. S., Hsieh, T. C., Shiau, J. C., et al. (2017). Bio-Kil, a nano-based disinfectant, reduces environmental bacterial burden and multidrug-resistant organisms in intensive care units. Journal of Microbiology, Immunology, and Infection, 50, 737–746. https://doi.org/10.1016/j.jmii.2016.04.008.

    Article  PubMed  Google Scholar 

  • Li, Y., Zhang, W., Niu, J., & Chen, Y. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal oxide nanoparticles. ACS Nano, 6, 1–22.

    Article  CAS  Google Scholar 

  • Mahon, E., Salvati, A., Baldelli Bombelli, F., et al. (2012). Designing the nanoparticle-biomolecule interface for “targeting and therapeutic delivery”. Journal of Controlled Release, 161, 164–174. https://doi.org/10.1016/j.jconrel.2012.04.009.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, B., Bhattacharjee, H., Mittal, N., et al. (2013). Core-shell-type lipid-polymer hybrid nanoparticles as a drug delivery platform. Nanomedicine: Nanotechnology, Biology and Medicine, 9, 474–491. https://doi.org/10.1016/j.nano.2012.11.010.

    Article  CAS  Google Scholar 

  • Mohamed, M. M., Fouad, S. A., Elshoky, H. A., et al. (2017). Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. International Journal of Veterinary Science and Medicine, 5, 23–29. https://doi.org/10.1163/18763332-03901005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagy, A., Harrison, A., Sabbani, S., Munson, R. S., Jr., Dutta, P. K., & Waldman, W. J. (2011). Silver nanoparticles embedded in zeolite membranes: Release of silver ions and mechanism of antibacterial action. International Journal of Nanomedicine, 6, 1833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Naik, K., & Kowshik, M. (2014). Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. Journal of Applied Microbiology, 117, 972–983. https://doi.org/10.1111/jam.12589.

    Article  CAS  PubMed  Google Scholar 

  • Niemirowicz, K., Swiecicka, I., Wilczewska, A. Z., Misztalewska, I., Kalska-Szostko, B., Bienias, K., et al. (2014). Gold-functionalized magnetic nanoparticles restrict growth of Pseudomonas aeruginosa. International Journal of Nanomedicine, 9, 2217–2224. https://doi.org/10.2147/IJN.S56588.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ocsoy, I., Yusufbeyoglu, S., Yılmaz, V., McLamore, E. S., Ildız, N., & Ülgen, A. (2017). DNA aptamer functionalized gold nanostructures for molecular recognition and photothermal inactivation of methicillin-resistant Staphylococcus aureus. Colloids and Surfaces. B, Biointerfaces, 159, 16–22.

    Article  CAS  PubMed  Google Scholar 

  • Otari, S. V., Patil, R. M., Waghmare, S. R., Ghosh, S. J., & Pawar, S. H. (2013). A novel microbial synthesis of catalytically active Ag–alginate biohydrogel and its antimicrobial activity. Dalton Transactions, 42(27), 9966–9975.

    Article  CAS  PubMed  Google Scholar 

  • Pan, W. Y., Huang, C. C., Lin, T. T., et al. (2016a). Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine: Nanotechnology, Biology and Medicine, 12, 431–438. https://doi.org/10.1016/j.nano.2015.11.014.

    Article  CAS  Google Scholar 

  • Pan, W. Y., Huang, C. C., Lin, T. T., Hu, H. Y., Lin, W. C., Li, M. J., & Sung, H. W. (2016b). Synergistic antibacterial effects of localized heat and oxidative stress caused by hydroxyl radicals mediated by graphene/iron oxide-based nanocomposites. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 431–438.

    Article  CAS  Google Scholar 

  • Panáček, A., Kvítek, L., Smékalová, M., et al. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nature Nanotechnology, 13, 65–71. https://doi.org/10.1038/s41565-017-0013-y.

    Article  CAS  PubMed  Google Scholar 

  • Payne, J. N., Waghwani, H. K., Connor, M. G., Hamilton, W., Tockstein, S., Moolani, H., Chavda, F., Badwaik, V., Lawrenz, M. B., & Dakshinamurthy, R. (2016). Novel synthesis of kanamycin conjugated gold nanoparticles with potent antibacterial activity. Frontiers in Microbiology, 7, 607.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perez, F., Endimiani, A., Hujer, K. M., & Bonomo, R. A. (2007). The continuing challenge of ESBLs. Current Opinion in Pharmacology, 7, 459–469. https://doi.org/10.1016/j.coph.2007.08.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piddock, L. J. V. (2016). Assess drug-resistance phenotypes, not just genotypes. Nature Microbiology, 1, 16120. https://doi.org/10.1038/nmicrobiol.2016.120.

    Article  CAS  PubMed  Google Scholar 

  • Poma, A., & Giorgio, M. L. Di. (2008). 基因毒性综述.Pdf. 571–585.

    Google Scholar 

  • Potgieter, M. D., & Meidany, P. (2018). Evaluation of the penetration of nanocrystalline silver through various wound dressing mediums: An in vitro study. Burns, 44, 596–602. https://doi.org/10.1016/j.burns.2017.10.011.

    Article  PubMed  Google Scholar 

  • Poulikakos, P., Tansarli, G. S., & Falagas, M. E. (2014). Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: a systematic review. European Journal of Clinical Microbiology & Infectious Diseases, 33, 1675–1685. https://doi.org/10.1007/s10096-014-2124-9.

    Article  CAS  Google Scholar 

  • Pradeepa, V. S. M., Mutalik, S., Udaya Bhat, K., Huilgol, P., & Avadhani, K. (2016). Preparation of gold nanoparticles by novel bacterial exopolysaccharide for antibiotic delivery. Life Sciences, 153, 171–179.

    Article  CAS  PubMed  Google Scholar 

  • Qayyum, S., Oves, M., & Khan, A. U. (2017). Obliteration of bacterial growth and biofilm through ROS generation by facilely synthesized green silver nanoparticles. PLoS One, 12, 1–18. https://doi.org/10.1371/journal.pone.0181363.

    Article  CAS  Google Scholar 

  • Rai, M., Ingle, A. P., Gaikwad, S., et al. (2016). Nanotechnology based anti-infectives to fight microbial intrusions. Journal of Applied Microbiology, 120, 527–542. https://doi.org/10.1111/jam.13010.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, L. S., Nisha, M. M., Joice, M., & Shilpa, P. N. (2014a). Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical Biology, 52, 1388–1397. https://doi.org/10.3109/13880209.2014.893001.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, L. S., Nisha, M. M., Joice, M., & Shilpa, P. N. (2014b). Antimicrobial activity of zinc oxide (ZnO) nanoparticle against Klebsiella pneumoniae. Pharmaceutical Biology, 52(11), 1388–1397.

    Article  CAS  PubMed  Google Scholar 

  • Reen, F. J., Gutiérrez-Barranquero, J. A., Parages, M. L., & O Gara, F. (2018). Coumarin: a novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 102, 2063–2073. https://doi.org/10.1007/s00253-018-8787-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy, A. S., Parveen, A., Koppalkar, A. R., & Prasad, M. A. (2010). Effect of nano-titanium dioxide with different antibiotics against methicillin-resistant Staphylococcus aureus. Journal of Biomaterials and Nanobiotechnology., 1(01), 37.

    Article  CAS  Google Scholar 

  • Rudramurthy, G. R., Swamy, M. K., Sinniah, U. R., & Ghasemzadeh, A. (2016). Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules, 21, 1–30. https://doi.org/10.3390/molecules21070836.

    Article  CAS  Google Scholar 

  • Rutherford, S. T., Bassler, B. L., Delany, I., et al. (2014). Bacterial quorum sensing : Its role in virulence and possibilities for its Control. Cold Spring Harbor Perspectives in Medicine, 1;2(11). https://doi.org/10.1101/cshperspect.a012427.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saeb, A., Alshammari, A. S., Al-Brahim, H., & Al-Rubeaan, K. A. (2014). Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug resistant bacteria. Scientific World Journal, 704708.

    Google Scholar 

  • Saha, B., Bhattacharya, J., Mukherjee, A., Ghosh, A. K., Santra, C. R., & Dasgupta, A. K. K. P. (2007). In Vitro Structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Research Letters, 2, 614.

    Article  CAS  PubMed Central  Google Scholar 

  • Sandhiya, S., Dkhar, S. A., & Surendiran, A. (2009). Emerging trends of nanomedicine – an overview. Fundamental & Clinical Pharmacology, 23, 263–269. https://doi.org/10.1111/j.1472-8206.2009.00692.x.

    Article  CAS  Google Scholar 

  • Shaikh, S., Rizvi, S. M. D., Shakil, S., et al. (2017). Synthesis and characterization of cefotaxime conjugated gold nanoparticles and their use to target drug-resistant CTX-M-Producing Bacterial Pathogens. Journal of Cellular Biochemistry, 118, 2802–2808. https://doi.org/10.1002/jcb.25929.

    Article  CAS  PubMed  Google Scholar 

  • Shaker, M. A., & Shaaban, M. I. (2017). Formulation of carbapenems loaded gold nanoparticles to combat multi-antibiotic bacterial resistance: in vitro antibacterial study. International Journal of Pharmaceutics, 15;525(1), 71–84.

    Article  CAS  Google Scholar 

  • Siddiqi, K. S., Husen, A., & Rao, R. A. K. (2018). A review on biosynthesis of silver nanoparticles and their biocidal properties. Journal of nanobiotechnology, 16, 14. https://doi.org/10.1186/s12951-018-0334-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, R., Smitha, M. S., & Singh, S. P. (2014). The role of nanotechnology in combating multi-drug resistant bacteria. Journal of Nanoscience and Nanotechnology, 14(7), 4745–4756.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B. N., Prateeksha, U. D. K., et al. (2017). Bactericidal, quorum quenching and anti-biofilm nanofactories: A new niche for nanotechnologists. Critical Reviews in Biotechnology, 37, 525–540. https://doi.org/10.1080/07388551.2016.1199010.

    Article  CAS  PubMed  Google Scholar 

  • Su, Y., Zheng, X., Chen, Y., et al. (2015a). Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 5, 1–11. https://doi.org/10.1038/srep15824.

    Article  CAS  Google Scholar 

  • Su, Y., Zheng, X., Chen, Y., Li, M., & Liu, K. (2015b). Alteration of intracellular protein expressions as a key mechanism of the deterioration of bacterial denitrification caused by copper oxide nanoparticles. Scientific Reports, 5, 15824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thapa, R., Bhagat, C., Shrestha, P., Awal, S., & Dudhagara, P. (2017). Enzyme-mediated formulation of stable elliptical silver nanoparticles tested against clinical pathogens and MDR bacteria and development of antimicrobial surgical thread. Annals of Clinical Microbiology and Antimicrobials, 16(1), 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thorley, A. J., & Tetley, T. D. (2013). New perspectives in nanomedicine. Pharmacology & Therapeutics, 140, 176–185. https://doi.org/10.1016/j.pharmthera.2013.06.008.

    Article  CAS  Google Scholar 

  • Ulloa-Ogaz, A. L., Piñón-Castillo, H. A., Muñoz-Castellanos, L. N., et al. (2017). Oxidative damage to Pseudomonas aeruginosa ATCC 27833 and Staphylococcus aureus ATCC 24213 induced by CuO-NPs. Environmental Science and Pollution Research, 24, 22048–22060. https://doi.org/10.1007/s11356-017-9718-6.

    Article  CAS  PubMed  Google Scholar 

  • Vinoj, G., Pati, R., Sonawane, A., & Vaseeharan, B. (2015). In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against proteus species. Antimicrobial Agents and Chemotherapy, 59, 763–771. https://doi.org/10.1128/AAC.03047-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagh, M. S., Patil, R. H., Thombre, D. K., et al. (2013). Evaluation of anti-quorum sensing activity of silver nanowires. Applied Microbiology and Biotechnology, 97, 3593–3601. https://doi.org/10.1007/s00253-012-4603-1.

    Article  CAS  Google Scholar 

  • Wang, L., Hu, C., & Shao, L. (2017). The antimicrobial activity of nanoparticles: Present situation and prospects for the future. International Journal of Nanomedicine, 12, 1227–1249. https://doi.org/10.2147/IJN.S121956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warheit, D. B. (2018). Hazard and risk assessment strategies for nanoparticle exposures: How far have we come in the past 10 years? [ version 1; referees: 2 approved]. Referee Status, 7, 1–14. https://doi.org/10.12688/f1000research.12691.1.

    Article  Google Scholar 

  • Xie, S., Tao, Y., Pan, Y., et al. (2014). Biodegradable nanoparticles for intracellular delivery of antimicrobial agents. Journal of Controlled Release, 187, 101–117. https://doi.org/10.1016/j.jconrel.2014.05.034.

    Article  CAS  PubMed  Google Scholar 

  • Yang, C. C., & Mai, Y. W. (2014). Thermodynamics at the nanoscale: A new approach to the investigation of unique physicochemical properties of nanomaterials. Materials Science and Engineering R: Reports, 79, 1–40. https://doi.org/10.1016/j.mser.2014.02.001.

    Article  Google Scholar 

  • Yang, L., Wen, Z., Junfeng, N., & Yongsheng, C. (2012). Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 6, 5164–5173. https://doi.org/10.1021/nn300934k.

    Article  CAS  Google Scholar 

  • Zaidi, S., Misba, L., & Khan, A. U. (2017). Nano-therapeutics: A revolution in infection control in post antibiotic era. Nanomedicine: Nanotechnology, Biology and Medicine, 13, 2281–2301. https://doi.org/10.1016/j.nano.2017.06.015.

    Article  CAS  Google Scholar 

  • Zhang, W., Li, Y., Niu, J., & Chen, Y. (2013a). Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir, 29, 4647–4651. https://doi.org/10.1021/la400500t.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Li, Y., Niu, J., & Chen, Y. (2013b). Photogeneration of reactive oxygen species on uncoated silver, gold, nickel, and silicon nanoparticles and their antibacterial effects. Langmuir, 29(15), 4647–4651.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Zhu, P., Li, G., Wang, W., Chen, L., Lu, D. D., et al. (2015). Highly stable and re-dispersible nano cu hydrosols with sensitively size-dependent catalytic and antibacterial activities. Nanoscale, 7, 13775–13783.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Ye, C., Liu, W., Chen, R., & Jiang, X. (2014). Tuning the composition of AuPt bimetallic nanoparticles for antibacterial application. Angew Chem Int, 53, 8127–8131. https://doi.org/10.1002/anie.201401035.

    Article  CAS  Google Scholar 

  • Zhou, Z., Peng, S., Sui, M., Chen, S., Huang, L., Xu, H., & Jiang, T. (2018). Multifunctional nanocomplex for surface-enhanced Raman scattering imaging and near-infrared photodynamic antimicrobial therapy of vancomycin-resistant bacteria. Colloids and Surfaces. B, Biointerfaces, 161, 394–402.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the King Saud University and Aligarh Muslim University for providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fohad Mabood Husain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Husain, F.M. et al. (2019). Nanoparticles as New Emerging Antibacterials: Potentials and Limitations. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_25

Download citation

Publish with us

Policies and ethics