Skip to main content

Nanomaterials as a Novel Class of Anti-infective Agents that Attenuate Bacterial Quorum Sensing

  • Chapter
  • First Online:
Antibacterial Drug Discovery to Combat MDR

Abstract

Excessive and unabated use of antibiotics has led to the emergence of multi-drug resistant (MDR) bacteria. The ineffectiveness of current antibiotic therapy and the slow development of new drugs with novel modes of action have made the task of combating MDR infections even more difficult. The problem of multi-drug resistance among pathogens has prompted the scientific community to look for alternative strategies. One such approach, termed antipathogenic/antivirulence therapy, is considered to be a viable alternative. This strategy is focused on rendering the pathogen ineffective by inhibiting its virulence traits rather than killing it. Since antipathogenic/antivirulence compounds target bacterial virulence, the likelihood of developing resistance is also reduced considerably. The areas of major interest in the antivirulence approach include the inhibition of quorum sensing and biofilm formation. The pioneering discovery of halogenated furanones as quorum sensing inhibitors (QSIs) has prompted the scientific community to search for novel QSIs of both natural and synthetic origin. However, QSIs like furanones are not recommended for human use due to issues related to their toxicity and stability. Recently, researchers across the globe have turned their attention toward nanomaterials as potential anti-infective drugs, targeting QS and biofilm formation. Although there are numerous studies regarding the antibacterial effect of nanoparticles, current reports on the antiquorum sensing and biofilm inhibition properties are still scarce. Therefore, in this article we have made an honest attempt to summarize the reports on the anti-QS properties of nanoparticles and their future as novel anti-infective drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addae, E., Dong, X., McCoy, E., Yang, C., Chen, W., & Yang, L. (2014). Investigation of antimicrobial activity of photothermal therapeutic gold/copper sulphide core/shell nanoparticles to bacterial spores and cells. Journal of Biological Engineering, 8, 11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adeli, M., Hosainzadegan, H., Pakzad, I., Zabihi, F., Alizadeh, M., & Karimi, F. (2013). Preparation of the silver nanoparticle containing starch foods and evaluation of antimicrobial activity. Jundishapur Journal of Microbiology, 6(4), e5075.

    Google Scholar 

  • Ahmad, I., Zahin, M., Aqil, F., Khan, M. S. A., & Ahmad, S. (2009). Novel approaches to combating drug-resistant bacteria. In I. Ahmad & F. Aqil (Eds.), New strategies combating bacterial infections (pp. 47–70). Weinheim: Wiley-Blackwell, Wiley- VCH.

    Google Scholar 

  • Ahmed, N. A., Petersen, F. C., & Scheie, A. A. (2007). AI-2 quorum sensing affects antibiotic susceptibility in Streptococcus anginosus. The Journal of Antimicrobial Chemotherapy, 60(1), 49–53.

    Article  CAS  PubMed  Google Scholar 

  • Alavi, M., & Karimi, N. (2018). Antiplanktonic, antibiofilm, antiswarming motility and antiquorum sensing activities of green synthesized Ag–TiO2, TiO2–Ag, Ag–Cu and Cu–Ag nanocomposites against multi-drug-resistant bacteria. Artificial cells, nanomedicine, and biotechnology, 7, 1–5.

    Google Scholar 

  • Al-Shabib, N. A., Husain, F. M., Ahmed, F., Khan, R. A., Alsharaeh, E., Khan, M. S., et al. (2016). Biogenic synthesis of Zinc oxide nanostructures from Nigella sativa seed: Prospective role as food packaging material inhibiting broad-spectrum quorum sensing. Scientific Reports, 6, 36761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Shabib, N. A., Husain, F. M., Hassan, I., Khan, M. S., Ahmed, F., Qais, F. A., et al. (2018). Biofabrication of zinc oxide nanoparticle from Ochradenus baccatus leaves: Broad-spectrum antibiofilm activity, proteinbinding studies, and in vivo toxicity and stress studies. Journal of Nanomaterials, 2018, 8612158.

    Google Scholar 

  • Aqil, F., Ahmad, I., & Owais, M. (2006). Targeted screening of bioactive plant extracts and phytocompounds against problematic groups of Multidrug resistant bacteria. In I. F. Aqil & M. Owais (Eds.), Modern phytomedicine: Turning medicinal plants into drugs (pp. 173–197). Weinheim: Wiley-Blackwell, Wiley-VCH.

    Chapter  Google Scholar 

  • Arunkumar, M., Suhashini, K., Mahesh, N., et al. (2014). Quorum quenching and antibacterial activity of silver nanoparticles synthesized from Sargassum polyphyllum. Bangladesh Journal of Pharmacology, 9, 6.

    Article  Google Scholar 

  • Barbachyn, M. R., & Ford, C. W. (2003). Oxazolidinone structure-activity relationships leading to linezolid. Angewandte Chemie, International Edition, 42(18), 2010–2023.

    Article  CAS  Google Scholar 

  • Bassetti, M., Ginocchio, F., & Mikulska, M. (2011). New treatment options against gram-negative organisms. Critical Care, 15, 215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bassler, B. L., Wright, M., Showalter, R. E., & Silverman, M. R. (1993). Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 9, 773–786.

    Article  CAS  PubMed  Google Scholar 

  • Bhainsa, K. C., & D’Souza, S. F. (2006). Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids and Surfaces B: Biointerfaces, 47, 160–164.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj, A. K., Vinothkumar, K., & Rajpara, N. (2013). Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Patents on Anti-infective Drug Discovery, 8, 68–83.

    Article  CAS  PubMed  Google Scholar 

  • Byeon, J. Y., Sim, J., Ryu, E. J., Sim, J., Lee, H., Cho, K. H., Choi, B. K., & Lee, J. (2017 Jul). In silico development of quorum-sensing inhibitors. Bulletin of the Korean Chemical Society, 38(7), 728–734.

    Article  CAS  Google Scholar 

  • Cámara, M., Hardman, A., Williams, P., & Milton, D. (2002). Quorum sensing in Vibrio cholerae. Nature Genetics, 32(2), 217–218.

    Article  PubMed  Google Scholar 

  • Cegelski, L., Marshall, G. R., Eldridge, G. R., & Hultgren, S. J. (2008). The biology and future prospects of antivirulence therapies. Nature Reviews. Microbiology, 6, 17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan, W. C., Coyle, B. J., & Williams, P. (2004). Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. Journal of Medicinal Chemistry, 47(19), 4633–4641.

    Article  CAS  PubMed  Google Scholar 

  • Chan, Y. Y., Bian, H. S., Tan, T. M., Mattmann, M. E., Geske, G. D., Igarashi, J., Hatano, T., Suga, H., Blackwell, H. E., & Chua, K. L. (2007). Control of quorum sensing by a Burkholderia pseudomallei multidrug efflux pump. Journal of Bacteriology, 189, 4320–4324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhari, A. A., Jasper, S. L., Dosunmu, E., et al. (2015). Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. Journal of Nanbiotechnology, 13, 23.

    Article  CAS  Google Scholar 

  • Chen, X., Schauder, S., Potier, N., et al. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415(6871), 545–549.

    Article  CAS  PubMed  Google Scholar 

  • Chen, F., Gao, Y., Chen, X., Yu, Z., & Li, X. (2013 Sep). Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection. International Journal of Molecular Sciences, 14(9), 17477–17500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coulthurst, S. J., Leopold, K. C., & Salmond, G. P. C. (2004). luxS mutants of Serratia defective in autoinducer-2-dependent ‘quorum sensing’ show strain-dependent impacts on virulence and production of carbapenem and prodigiosin. Microbiol, 150, 1901–1910.

    Article  CAS  Google Scholar 

  • Cvitkovitch, D. G., Li, Y. H., & Ellen, R. P. (2003). Quorum sensing and biofilm formation in Streptococcal infections. The Journal of Clinical Investigation, 112(11), 1626–1632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Costa, V. M., McGrann, K. M., Hughes, D. W., & Wright, G. D. (2006). Sampling the antibiotic resistome. Science, 311, 374–377.

    Article  PubMed  Google Scholar 

  • Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., & Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280(5361), 295–298.

    Article  CAS  PubMed  Google Scholar 

  • Defoirdt, T. (2017). Quorum-sensing systems as targets for antivirulence therapy. Trends in Microbiology, 26(4), 313–328.

    Article  PubMed  CAS  Google Scholar 

  • Ding, T., Li, T., & Li, J. (2019 Jul 1). Discovery of quorum sensing inhibitors of Pseudomonas fluorescens P07 by using a receptor-based pharmacophore model and virtual screening. LWT, 109, 171–178.

    Article  CAS  Google Scholar 

  • Dolgin, E. (2010). Sequencing of superbugs seen as key to combating their spread. Nature Medicine, 16, 1054.

    PubMed  Google Scholar 

  • Dong, Y. H., Xu, J. L., Li, X. Z., & Zhang, L. H. (2000). AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceedings of the National Acad.

    Google Scholar 

  • Dubern, J. F., & Diggle, S. P. (2008). Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Molecular BioSystems, 4, 882–888.

    Article  CAS  PubMed  Google Scholar 

  • Dubey, G. P., & Yahuda, S. B. (2011). Intercellular nanotubes mediate bacterial communication. Cell, 144, 590–600.

    Article  CAS  PubMed  Google Scholar 

  • Escaich, S. (2010). Novel agents to inhibit microbial virulence and pathogenicity. Expert Opinion on Therapeutic Patents, 20, 1401–1418.

    Article  CAS  PubMed  Google Scholar 

  • Evans, K., Passador, L., Srikumar, R., Tsang, E., Nezezon, J., & Poole, K. (1998). Influence of the MexAB-OprM multidrug efflux system on quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology, 180, 5443–5447.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Federle, M. J., & Bassler, B. L. (2003). Interspecies communication in bacteria. The Journal of Clinical Investigation, 112(9), 1291–1299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes, R., Roy, V., Wu, H. C., et al. (2010). Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nature Nanotechnology, 5, 213–217.

    Article  CAS  PubMed  Google Scholar 

  • Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16(10), 8894–8918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambino, M., Marzano, V., Villa, F., et al. (2015). Effects of sublethal doses of silver nanoparticles on Bacillus subtilis planktonic and sessile cells. Journal of Applied Microbiology, 118, 1103–1115.

    Article  CAS  PubMed  Google Scholar 

  • Garcıa-Lara, B., Saucedo-Mora, M. A., & Roldan-Sanchez, J. (2015). Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61, 299–305.

    Article  PubMed  CAS  Google Scholar 

  • Geske, G. D., O’Neill, J. C., Miller, D. M., Mattmann, M. E., & Blackwell, H. E. (2007 Nov 7). Modulation of bacterial quorum sensing with synthetic ligands: Systematic evaluation of Nacylated homoserine lactones in multiple species and new insights into their mechanisms of action. Journal of the American Chemical Society, 129(44), 13613–13625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geske, G. D., O’Neill, J. C., & Blackwell, H. E. (2008). Expanding dialogues: from natural autoinducers to non-natural analogues that modulate quorum sensing in Gram-negative bacteria. Chemical Society Reviews, 37, 1432–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbertson, L. M., Goodwin, D. G., Taylor, A. D., Pfefferle, L., & Zimmerman, J. B. (2014). Toward tailored functional design of Multi-Walled Carbon Nanotubes (MWNTs): electrochemical and antimicrobial activity enhancement via oxidation and selective reduction. Environmental Science & Technology, 48, 5938–5945.

    Article  CAS  Google Scholar 

  • Gonzales, R. D., Schreckenberger, P. C., Graham, M. B., Kelkar, S., DenBesten, K., & Quinn, J. P. (2001). Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet, 357(9263), 1179.

    Article  CAS  PubMed  Google Scholar 

  • Guo, M., Zheng, Y., Starks, R., Opoku-Temeng, C., Ma, X., & Sintim, H. O. (2015). 3-Aminooxazolidinone AHL analogs as hydrolytically-stable quorum sensing agonists in Gramnegative bacteria. Medicinal Chemistry Communications, 6(6), 1086–1092.

    Article  CAS  Google Scholar 

  • Hauck, T., Hübner, Y., Brühlmann, F., & Schwab, W. (2003). Alternative pathway for the formation of 4,5-dihydroxy-2,3- pentanedione, the proposed precursor of 4-hydroxy-5-methyl-3(2H)-furanone as well as autoinducer-2, and its detection as natural constituent of tomato fruit. Biochimica et Biophysica Acta, 1623(2–3), 109–119.

    Article  CAS  PubMed  Google Scholar 

  • Hentzer, M., & Givskov, M. (2003). Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. The Journal of Clinical Investigation, 112, 1300–1307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heras, B., Scanlon, M. J., & Martin, J. L. (2014). Targeting virulence not viability in search for future antibacterials. British Journal of Clinical Pharmacology, 79, 208–215.

    Article  CAS  Google Scholar 

  • Higgins, D. A., Pomianek, M. E., Kraml, C. M., Taylor, R. K., Semmelhack, M. F., & Bassler, B. L. (2007). The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature, 450(7171), 883–886.

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu, K., Hanaki, H., Ino, T., Yabuta, K., Oguri, T., & Tenover, F. C. (1997). Methicillin-resistant Staphylococus aureus clinical strain with reduced vancomycin susceptibility. The Journal of Antimicrobial Chemotherapy, 40(1), 135–136.

    Article  CAS  PubMed  Google Scholar 

  • Hoang, T. T., & Schweizer, H. P. (1999). Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. Journal of Bacteriology, 181, 5489–5497.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horinouchi, S., Ohnishi, Y., & Kang, D. K. (2001). The A factor regulatory cascade and cAMP in the regulation of physiological and morphological development in Streptomyces griseus. Journal of Industrial Microbiology & Biotechnology, 27, 177–182.

    Article  CAS  Google Scholar 

  • Hoseinzadeh, E., Makhdoumi, P., Taha, P., Hossini, H., Stelling, J., & Amjad, K. M. (2017). A review on nano-antimicrobials: Metal nanoparticles, methods and mechanisms. Current Drug Metabolism, 18(2), 120–128.

    Article  CAS  PubMed  Google Scholar 

  • Huang, J. J., Han, J. I., Zhang, L. H., & Leadbetter, J. R. (2003). Utilization of acylhomoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Applied and Environmental Microbiology, 69, 5941–5949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes, D. T., & Sperandio, V. (2008). Inter-kingdom signaling: communication between bacteria and their hosts. Nature Reviews. Microbiology, 6(2), 111–120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens, J. C., Metzger, K., Daniels, R., et al. (2007). Synthesis of N-acyl homoserine lactone analogues reveals strong activators of SdiA, the Salmonella enterica serovar Typhimurium LuxR homologue. Applied and Environmental Microbiology, 73(2), 535–544.

    Article  CAS  PubMed  Google Scholar 

  • Ji, G., Beavis, R., & Novick, R. P. (1997). Bacterial interference caused by autoinducing peptide variants. Science, 276(5321), 2027–2030.

    Article  CAS  PubMed  Google Scholar 

  • Jimenez, P. N., Koch, G., Thompson, J. A., Xavier, K. B., Cool, R. H., & Quax, W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 76, 46–65.

    Article  CAS  PubMed  Google Scholar 

  • Jones, R. N., Della-Latta, P., Lee, L. V., & Biedenbach, D. J. (2002). Linezolid-resistant Enterococcus faecium isolated from a patient without prior exposure to an oxazolidinone: Report from the SENTRY Antimicrobial Surveillance Program. Diagnostic Microbiology and Infectious Disease, 42(2), 137–139.

    Article  PubMed  Google Scholar 

  • Kalia, V. C. (2013). Quorum sensing inhibitors: An overview. Biotechnology Advances, 31(2), 224–245.

    Article  CAS  PubMed  Google Scholar 

  • Kalishwaralal, K., Barath, M. K. S., Pandian, S. R., et al. (2010). Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids and Surfaces. B, Biointerfaces, 79, 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Kamal, A. A. M., Christine, K. M., Giuseppe, A., Jörg, H., Martin, E., & Rolf, W. H. (2017). Quorum sensing inhibitors as pathoblockers for Pseudomonas aeruginosa infections: A new concept in Anti-Infective drug discovery. In J. Fisher, S. Mobashery, & M. Miller (Eds.), Antibacterials. Topics in Medicinal Chemistry (Vol. 26, pp. 1–26). Champions: Springer.

    Google Scholar 

  • Khan, M. F., Ansari, A. H., Hameedullah, M., Ahmad, E., Husain, F. M., et al. (2016). Sol-gel synthesis of ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics. Scientific Reports, 6, 27689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, M. S., Qais, F. A., & Ahmad, I. (2018). Quorum sensing interference by natural products from medicinal plants: Significance in combating bacterial infection. In Biotechnological applications of quorum sensing inhibitors 2018 (pp. 417–445). Singapore: Springer.

    Chapter  Google Scholar 

  • Kim, S. Y., Lee, S. E., Kim, Y. R., et al. (2003). Regulation of Vibrio vulnificus virulence by the LuxS quorum-sensing system. Molecular Microbiology, 48(6), 1647–1664.

    Article  CAS  PubMed  Google Scholar 

  • Koh, C. L., Sam, C. K., Yin, W. F., Tan, L., Krishnan, T., Chong, Y., & Chan, K. G. (2013 May). Plant-derived natural products as sources of anti-quorum sensing compounds. Sensors, 13(5), 6217–6228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulshrestha, S., Khan, S., Hasan, S., Khan, M. E., Misra, L., & Khan, A. U. (2016). Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo approach. Applied Microbiology and Biotechnology, 100, 1901–1914.

    Article  CAS  PubMed  Google Scholar 

  • Lara-Garcıa, B., Saucedo-Mora, M. A., & Roldan-Sanchez, J. (2015). Inhibition of quorum-sensing- dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Letters in Applied Microbiology, 61, 299–305.

    Article  CAS  Google Scholar 

  • Lee, J. H., Kim, Y. G., Cho, M. H., & Lee, J. (2014). ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiological Research, 169, 888–896.

    Article  CAS  PubMed  Google Scholar 

  • Leadbetter, J. R., & Greenberg, E. P. (2000 Dec 15). Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. Journal of Bacteriology., 182(24), 6921–6926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin, Y. H., Xu, J. L., Hu, J., Wang, L. H., Ong, S. L., Leadbetter, J. R., & Zhang, L. H. (2003 Feb). Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Molecular Microbiology, 47(3), 849–860.

    Article  PubMed  Google Scholar 

  • Li, J., Wang, L., Hashimoto, Y., et al. (2006). A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis pathways. Molecular Systems Biology, 2, 67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loo, C. Y., Rohanizadeh, R., Young, P. M., Traini, D., Cavaliere, R., Whitchurch, D., & Lee, W. H. (2016). Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. Journal of Agricultural and Food Chemistry, 64(12), 2513–2522.

    Article  CAS  PubMed  Google Scholar 

  • Lu, H. D., Spiegel, A. C., Hurley, A., et al. (2015). Modulating Vibrio cholerae quorum-sensing-controlled communication using autoinducer-loaded nanoparticles. Nano Letters, 15, 2235–2241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez, J. L. (2008). Antibiotics and antibiotic resistance genes in natural environments. Science, 321, 365–367.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Gutierrez, F., Boegli, L., Agostinho, A., et al. (2013). Anti-biofilm activity of silver nanoparticles against different microorganisms. Biofouling, 29, 651–660.

    Article  CAS  PubMed  Google Scholar 

  • Masurkar, S. A., Chaudhari, P. R., Shidore, V. B., et al. (2012). Effect of biologically synthesised silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnology, 6, 110–114.

    Article  CAS  PubMed  Google Scholar 

  • Michael, B., Smith, J. N., Swift, S., Heffron, F., & Ahmer, B. M. M. (2001). SdiA of Salmonella enterica is a LuxR homolog that detects mixed microbial communities. Journal of Bacteriology, 183(19), 5733–5742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller, S. T., Xavier, K. B., Campagna, S. R., et al. (2004). Salmonella typhimurium recognizes a chemically distinct form of the bacterial quorum-sensing signal AI-2. Molecular Cell, 15(5), 677–687.

    Article  CAS  PubMed  Google Scholar 

  • Miller, K. P., Wang, L., Chen, Y. P., et al. (2015). Engineering nanoparticles to silence bacterial communication. Frontiers in Microbiology, 6, 189.

    Article  PubMed  PubMed Central  Google Scholar 

  • Misba, L., Kulshrestha, S., & Khan, A. U. (2016). Antibiofilm action of a toluidine blue O-silver nanoparticle conjugate on Streptococcus mutans: a mechanism of type I photodynamic therapy. Biofouling, 32(3), 313–328.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., et al. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Letters, 1, 515–519.

    Article  CAS  Google Scholar 

  • Nafees, N., Husari, A., Maurer, C. K., et al. (2014). Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and antivirulence efficacy of novel quorum sensing inhibitors. Journal of Controlled Release, 192, 131–140.

    Article  CAS  Google Scholar 

  • Naik, K., & Kowshik, M. (2014). Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. Journal of Applied Microbiology, 117, 972–983.

    Article  CAS  PubMed  Google Scholar 

  • Ngoy, J. M., Iyuke, S. E., Neuse, W. E., & Yah, C. S. (2011). Covalent functionalization for multi-walled carbon nanotube (f-MWCNT) -folic acid bound bioconjugate. Journal of Applied Sciences, 11(15), 2700–2711.

    Article  CAS  Google Scholar 

  • Ni, N., Li, M., Wang, J., & Wang, B. (2009). Inhibitors and antagonists of bacterial quorum sensing. Medicinal Research Reviews, 29, 65–124.

    Article  CAS  PubMed  Google Scholar 

  • Ohtani, K., Hayashi, H., & Shimizu, T. (2002). The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens. Molecular Microbiology, 44(1), 171–179.

    Article  CAS  PubMed  Google Scholar 

  • Paczkowski, J. E., Mukherjee, S., McCready, A. R., Cong, J. P., Aquino, C. J., Kim, H., Henke, B. R., Smith, C. D., & Bassler, B. L. (2017 Mar 10). Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. Journal of Biological Chemistry, 292(10), 4064–4076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parise, A., Thakor, H., & Zhang, X. (2014). Activity inhibition on municipal activated sludge by single-walled carbon nanotubes. Journal of Nanoparticle Research, 16, 2159.

    Article  CAS  Google Scholar 

  • Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Jr Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 96, 4360–4365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Payne, D. J. (2008). Microbiology: Desperately seeking new antibiotics. Science, 321, 1644–1645.

    Article  CAS  PubMed  Google Scholar 

  • Pearson, J. P., Gray, K. M., Passador, L., Tucker, K. D., Eberhard, A., Iglewski, B. H., & Greenberg, E. P. (1994). Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 91, 197–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson, J., Pesci, E., & Iglewski, B. (1997). Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. Journal of Bacteriology, 179, 5756–5767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesci, E. C., Milbank, J. B., Pearson, J. P., et al. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11229–11234.

    Article  CAS  Google Scholar 

  • Qi, X., Gunawan, P., Xu, R., & Chang, M. W. (2015). Cefalexin-immobilized multi-walled carbon nanotubes show strong antimicrobial and anti-adhesion properties. Chemical Engineering Science, 84, 552–556.

    Article  CAS  Google Scholar 

  • Qin, H., Cao, H., Zhao, Y., Zhu, C., Cheng, T., Wang, Q., Peng, X., Cheng, M., Wang, J., Jin, G., Jiang, Y., Zhang, X., Liu, X., & Chu, P. K. (2014). In vitro and in vivo anti-biofilm effects of silver nanoparticles immobilized on titanium. Biomaterials, 35(33), 9114–9125.

    Article  CAS  PubMed  Google Scholar 

  • Radzig, M. A., Nadtochenko, V. A., Koksharova, O. A., et al. (2013). Antibacterial effects of silver nanoparticles on gramnegative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids and Surfaces. B, Biointerfaces, 102, 300–306.

    Article  CAS  PubMed  Google Scholar 

  • Rasheed, J. K., Jay, C., Metchock, B., et al. (1997). Evolution of extended-spectrum b-lactam resistance (SHV-8) in a strain of Escherichia coli during multiple episodes of bacteremia. Antimicrobial Agents and Chemotherapy, 41(3), 647–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasko, D. A., Moreira, C. G., Li, R., Reading, N. C., Ritchie, J. M., Waldor, M. K., Williams, N., Taussig, R., Wei, S., Roth, M., Hughes, D., Huntley, J. F., Fina, M. W., Falck, J. R., & Sperandio, V. (2008). Targeting QseC signaling and virulence for antibiotic development. Science, 321, 1078–1080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen, T. B., & Givskov, M. (2006). Quorum sensing inhibitors: a bargain of effects. Microbiology, 152, 895–904.

    Article  CAS  PubMed  Google Scholar 

  • Rickard, A. H., Palmer, R. J., Jr., Blehert, D. S., et al. (2006). Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. Molecular Microbiology, 60(6), 1446–1456.

    Article  CAS  PubMed  Google Scholar 

  • Roman, S., Ines, J., Stefanie, W., & Alexander, T. (2013). New approaches to control infections: Anti–biofilm strategies against gram–negative bacteria. Chimia International Journal for Chemistry, 67, 286–290.

    Article  CAS  Google Scholar 

  • Samanta, S., Singh, B. R., & Adholeya, A. (2017). Intracellular synthesis of gold nanoparticles using an ectomycorrhizal strain em-1083 of Laccaria fraterna and its nanoanti-quorum sensing potential against Pseudomonas aeruginosa. Indian Journal of Microbiology, 57(4), 448–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer, A. L., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1996). Generation of cell-to-cell signals in quorum sensing: Acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl.Acad. Sci .USA, 93, 9505–9509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seil, J. T., & Webster, T. J. (2011). Reduced Staphylococcus aureus proliferation and biofilm formation on zinc oxide nanoparticle PVC composite surfaces. Acta Biomaterialia, 7, 2579–2584.

    Article  CAS  PubMed  Google Scholar 

  • Shaw, K. J., Rather, P. N., Hare, R. S., & Miller, G. H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiology and Molecular Biology Reviews, 57(1), 138–163.

    CAS  Google Scholar 

  • Shin, N. R., Lee, D. Y., Shin, S. J., Kim, K. S., & Yoo, H. S. (2004). Regulation of proinflammatory mediator production in RAW264.7 macrophage by Vibrio vulnificus LuxS and SmcR. FEMS Immunology and Medical Microbiology, 41, 169–176.

    Article  CAS  PubMed  Google Scholar 

  • Silva, L. N., Zimmer, K. R., Macedo, A. J., & Trentin, D. S. (2016 Jul 20). Plant natural products targeting bacterial virulence factors. Chemical Reviews, 116(16), 9162–9236.

    Article  CAS  PubMed  Google Scholar 

  • Singh, P. K., Schaefer, A. L., Parsek, M. R., Moninger, T. O., Welsh, M. J., & Greenberg, E. P. (2000). Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature, 407(6805), 762–764.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B. N., Prateeksha, P. G., et al. (2015). Development and characterization of a novel Swarna-based herbometallic colloidal nano-formulation – inhibitor of Streptococcus mutans quorum sensing. RSC Advances, 5, 5809–5822.

    Article  CAS  Google Scholar 

  • Singh, B. R., Singh, B. N., Singh, A., Khan, W., Naqvi, A. H., & Singh, H. B. (2016). Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Scientific Reports, 5, 13719.

    Article  Google Scholar 

  • Smith, R. S., & Iglewski, B. H. (2003). P. aeruginosa quorum-sensing systems and virulence. Current Opinion in Microbiology, 6(1), 56–60.

    Article  CAS  PubMed  Google Scholar 

  • Soukarieh, F., Paul, W., Michael, J. S., & Miguel, C. (2018). Pseudomonas aeruginosa quorum sensing systems as drug discovery targets: current position and future perspectives. Journal of Medicinal Chemistry, 61, 10385. https://doi.org/10.1021/acs.jmedchem.8b00540.

    Article  CAS  PubMed  Google Scholar 

  • Spellberg, B. (2012). New antibiotic development: Barrier and opportunities in 2012. APUA Newsletter. Vol. 30.

    Google Scholar 

  • Spellberg, B., Miller, L. G., Kuo, M. N., Bradley, J., Scheld, W. M., & Edwards, J. E., Jr. (2007). Societal costs versus savings from wild–card patent extension legislation to spur critically needed antibiotic development. Infection, 35, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan, R., Vigneshwari, L., Rajavel, T., Durgadevi, R., Kannappan, A., Balamurugan, K., Devi, K. P., & Ravi, A. V. (2018). Biogenic synthesis of silver nanoparticles using Piper betle aqueous extract and evaluation of its anti-quorum sensing and antibiofilm potential against uropathogens with cytotoxic effects: an in vitro and in vivo approach. Environmental Science and Pollution Research International, 25(11), 10538–10554.

    Article  CAS  PubMed  Google Scholar 

  • Subbiah, R., Veerapandian, M., Sadhasivam, S., & Yun, K. (2011). Triad CNT-NPs/Polymer nanocomposites: fabrication, characterization, and preliminary antimicrobial study. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 41, 345–355.

    Article  CAS  Google Scholar 

  • Subhaswaraj, P., Barik, S., Macha, C., Chiranjeevi, P. V., & Siddhardha, B. (2018). Anti quorum sensing and anti biofilm efficacy of cinnamaldehyde encapsulated chitosan nanoparticles against Pseudomonas aeruginosa PAO1. LWT, 97, 752–759.

    Article  CAS  Google Scholar 

  • Subramoni, S., & Venturi, V. (2009). LuxR-family ‘solos’: Bachelor sensors/regulators of signalling molecules. Microbiology, 155, 1377–1385.

    Article  CAS  PubMed  Google Scholar 

  • Sunitha, A., Rimal, I. R. S., Sweetly, G., Sornalekshmi, S., Arsula, R., & Praseetha, P. K. (2013). Evaluation of antimicrobial activity of biosynthesized iron and silver Nanoparticles using the fungi Fusarium oxysporum and Actinomycetes sp. On human pathogens. Nano Biomedicine and Engineering, 5(1), 39–45.

    Google Scholar 

  • Tally, F. P., & DeBruin, M. F. (2000). Development of daptomycin for gram-positive infections. The Journal of Antimicrobial Chemotherapy, 46(4), 523–526.

    Article  CAS  PubMed  Google Scholar 

  • Tan, S. Y., Chua, S. L., Chen, Y., Rice, S. A., Kjelleberg, S., Nielsen, T. E., Yang, L., & Givskov, M. (2013 Nov 1). Identification of five structurally unrelated quorum-sensing inhibitors of Pseudomonas aeruginosa from a natural-derivative database. Antimicrobial Agents and Chemotherapy, 57(11), 5629–5641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavender, T. J., Halliday, N. M., Hardie, K. R., & Winzer, K. (2008). LuxS-independent formation of AI-2 from ribulose-5-phosphate. BMC Microbiology, 8(98), 2188–2198.

    Google Scholar 

  • Thukkaram, M., Sitaram, S., Kannaiyan, S. K., et al. (2014). Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces. International Journal of Biomaterials, 2014, 716080.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Varga, Z. G., Armada, A., Cerca, P., Amaral, L., Subki, M. A., Savka, M. A., Szegedi, E., Kawase, M., Motohashi, N., & Molnár, J. (2012 Mar 1). Inhibition of quorum sensing and efflux pump system by trifluoromethyl ketone proton pump inhibitors. In Vivo, 26(2), 277–285.

    CAS  PubMed  Google Scholar 

  • Vattem, D. A., Mihali, K. K., Crixell, S. H., & Mclean, R. J. C. (2007). Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia, 78, 302–310.

    Article  CAS  PubMed  Google Scholar 

  • Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M., & Hardie, K. R. (2005). Making ‘sense’ of metabolism: autoinducer-2, LuxS and pathogenic bacteria. Nature Reviews. Microbiology, 3(5), 383–396.

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan, J., Jayakumar, R., Mohandas, A., Bhatnagar, I., & Kim, S. K. (2014). Antimicrobial activity of chitosan-carbon nanotube hydrogels. Materials, 7, 3946–3955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vinoj, G., Pati, R., Sonawane, A., et al. (2015). In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrobial Agents and Chemotherapy, 59, 763–771.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vinothkannan, R. L. Z., Wang, H., Yu, G., Zhang, Y., & Li, A. (2018). Virtual screening and biomolecular interactions of CviR-based quorum sensing inhibitors against Chromobacterium violaceum. Frontiers in Cellular and Infection Microbiology, 8.

    Google Scholar 

  • Vyshnava, S. S., Kanderi, D. K., Panjala, S. P., Pandian, K., Bontha, R. R., Goukanapalle, P. K. R., & Banaganapalli, B. (2016). Effect of silver nanoparticles against the formation of biofilm by Pseudomonas aeruginosa an In silico approach. Applied Biochemistry and Biotechnology, 180, 426–437.

    Article  CAS  PubMed  Google Scholar 

  • Wagh, M. S., Patil, R. H., Thombre, D. K., Kulkarni, M. V., Gade, W. N., & Kale, B. B. (2013). Evaluation of anti-quorum sensing activity of silver nanowires. Applied Microbiology and Biotechnology, 97, 3593–3601.

    Article  CAS  Google Scholar 

  • Wagner, A., Whitaker, R. J., Krause, D. J., Heilers, J. H., van Wolferen, M., van der Does, C., & Albers, S. V. (2017). Mechanisms of gene flow in archaea. Nature Reviews. Microbiology, 15(8), 492.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, C. (2000). Molecular mechanisms that confer antibacterial drug resistance. Nature, 406, 775–781.

    Article  CAS  PubMed  Google Scholar 

  • Walters, M., Sircili, M. P., & Sperandio, V. (2006). AI-3 synthesis is not dependent on luxS in Escherichia coli. Journal of Bacteriology, 188(16), 5668–5681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.

    Article  CAS  PubMed  Google Scholar 

  • Whiteley, M., Lee, K. M., & Greenberg, E. P. (1999). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(24), 13904–13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winzer, K., Hardie, K. R., Burgess, N., et al. (2002). LuxS: Its role in central metabolism and the in vitro synthesis of 4-hydroxy-5-methyl-3-(2H)- furanone. Microbiol, 148(Pt 4), 909–922.

    Article  CAS  Google Scholar 

  • Wright, J. S., 3rd, Jin, R., & Novick, R. P. (2005). Transient interference with staphylococcal quorum sensing blocks abscess formation. Proceedings of the National Academy of Sciences of the United States of America, 102(5), 1691–1696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, H., Song, Z., Hentzer, M., Andersen, J. B., Molin, S., Givskov, M., & Hoiby, N. (2004). Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. The Journal of Antimicrobial Chemotherapy, 53, 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  • Xavier, K. B., Bassler, B. L., & Lux, S. (2003). quorum sensing: more than just a numbers game. Current Opinion in Microbiology, 6(2), 191–197.

    Article  CAS  PubMed  Google Scholar 

  • Xue, T., Zhao, L., Sun, H., Zhou, X., & Sun, B. (2009). LsrR-binding site recognition and regulatory characteristics in Escherichia coli AI-2 quorum sensing. Cell Research, 19(11), 1258–1268.

    Article  CAS  PubMed  Google Scholar 

  • Zucca, M., Scutera, S., & Savoia, D. (2011). New antimicrobial frontiers. Mini Reviews in Medicinal Chemistry, 11, 888–900.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the Deanship of Scientific Research and Research Centre, College of Applied Medical Sciences, King Saud University, Riyadh, KSA for funding this research.

Disclosure

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fohad Mabood Husain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Husain, F.M. et al. (2019). Nanomaterials as a Novel Class of Anti-infective Agents that Attenuate Bacterial Quorum Sensing. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_26

Download citation

Publish with us

Policies and ethics