Skip to main content

Alternative Therapies to Antibiotics to Combat Drug-Resistant Bacterial Pathogens

  • Chapter
  • First Online:
Antibacterial Drug Discovery to Combat MDR

Abstract

The unabated emergence and spread of antimicrobial resistance (AMR) within both nosocomial and community environments is the driving force behind the urgent need to discover novel antimicrobial agents. However, owing to the challenges faced during conventional drug discovery programmes and the concomitant paucity of new drugs, it is prudent to focus on non-conventional approaches that could serve as alternatives to antibiotics. These approaches include all non-compound approaches that target pathogens other than antibiotics. Although these alternatives may or may not be absolute replacements of antibiotics, they can certainly be used in prophylaxis and in combination therapies with antibiotics to reduce the overuse and help prevent AMR. The advantage of this approach includes specific inhibition of pathogens without effecting the host’s commensal beneficial microbiome. This is in direct contrast to antibiotic therapies which disturb the commensal bacteria, leading to increased risks of Clostridium difficile-associated diarrhoea, vaginal Candida albicans infections and the exacerbation of asthma and allergic diseases. Although a consistent efficacy is lacking, switching to alternatives will certainly reduce antibiotic abuse to a large extent and consequent resistance. Further development of these specific approaches is warranted to improve deliverability, potency and reliability. Thus, the investigation of novel non-antibiotic approaches for the prevention of, and protection against, infectious diseases should be stimulated, and such approaches must be high-priority research and development projects. The alternative approaches to antibiotics include immunomodulation, competitive exclusion of pathogenic bacteria via probiotics and their combination, natural and synthetic antimicrobial peptides, antibodies, bacteriophages and phage lysins. These alternative strategies are considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedon, S. T., GarcĂ­a, P., Mullany, P., & Aminov, R. (2017). Editorial: Phage therapy: Past, present and future. Frontiers in Microbiology, 8, 981. https://doi.org/10.3389/fmicb.2017.00981. PMCID: PMC5471325. PMID: 28663740.

  • Adenium Biotech Pipeline. http://adeniumbiotech.com/pipeline. Accessed 18 July 2018.

  • Amplifi Bioscience Corporation. https://www.ampliphibio.com/pipeline/ab-sa01/. Accessed 3 May 2019.

  • Antonelli, L. R., Rothfuchs, A. G., Gonçalves, R., et al. (2010). Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. The Journal of Clinical Investigation, 120(5), 1674–1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardis Pharmaceuticals. http://ardispharma.com/aerucin/. Accessed 11 July 2018.

  • Ardis Pharmaceuticals. http://ardispharma.com/Ar-301. Accessed 11 July 2018.

  • Behring, E., & Kitasako, S. (1890). Ueber das Zustandekommen der Diphtherie-Immunitat und der Tetanus. Immunitatbei Thieren. Deutsche Medizinische Wochenschrift, 16, 1113–1114.

    Article  Google Scholar 

  • Bradshaw, J. (2003). Cationic antimicrobial peptides: Issues for potential clinical use. BioDrugs, 17, 233–240.

    Article  CAS  PubMed  Google Scholar 

  • Brogden, K. A. (2005). Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? Nature Reviews Microbiology, 3, 238–250.

    Article  CAS  PubMed  Google Scholar 

  • Camilli, A., & Bassler, B. L. (2006). Bacterial small-molecule signaling pathways. Science, 311, 1113–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark, I. A. (2007). The advent of the cytokine storm. Immunology and Cell Biology, 85, 271–273.

    Article  CAS  PubMed  Google Scholar 

  • Cosseau, C., Devine, D. A., Dullaghan, E., et al. (2008). The commensal Streptococcus salivarius K12 downregulates the innate immune responses of human epithelial cells and promotes host-microbe homeostasis. Infection and Immunity, 76, 4163–4175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De la Fuente-NĂºĂ±ez, C., Reffuveille, F., FernĂ¡ndez, L., & Hancock, R. E. (2013). Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Current Opinion in Microbiology, 16(5), 580–589.

    Article  PubMed  CAS  Google Scholar 

  • De la Fuente-NĂºĂ±ez, C., Reffuveille, F., Haney, E. F., et al. (2014). Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathogens, 10(5), e1004152.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de la Fuente-NĂºĂ±ez, C., Reffuveille, F., Mansour, S. C., et al. (2015). Denantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chemistry & Biology, 22, 196–205.

    Article  CAS  Google Scholar 

  • Falagas, M. E., & Kasiakou, S. K. (2006). Toxicity of polymyxins: A systematic review of the evidence from old and recent studies. Critical Care, 10(1), R27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenton, M., Ross, P., & McAuliffe, O. (2010). Recombinant bacteriophage lysins as antibacterials. Bioengineered Bugs, 1(1), 9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fjell, C. D., Hiss, J. A., Hancock, R. E. W., et al. (2011). Designing antimicrobial peptides: Form follows function. Nature Reviews Drug Discovery, 11, 37–51.

    Article  PubMed  CAS  Google Scholar 

  • Fox, J. L. (2013). Antimicrobial peptides stage a comeback. Nature Biotechnology, 31, 379–382.

    Article  CAS  PubMed  Google Scholar 

  • Greig, S. L. (2016). Obiltoxaximab: First global approval. Drugs, 76(7), 823–830.

    Article  CAS  PubMed  Google Scholar 

  • Hafez, M., Hayes, K., Goldrick, M., et al. (2009). The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infection and Immunity, 77, 2995–3003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamill, P., Brown, K., Jenssen, H., et al. (2008). Novel anti-infectives: Is host defence the answer? Current Opinion in Biotechnology, 19, 628–636.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R. E., & Sahl, H. G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology, 24, 1551–1557.

    Article  CAS  PubMed  Google Scholar 

  • Hancock, R. E., Nijnik, A., & Philpott, D. J. (2012). Modulating immunity as a therapy for bacterial infections. Nature Reviews. Microbiology, 10(4), 243.

    Article  CAS  PubMed  Google Scholar 

  • Huynh, T., Stecher, M., McKinnon, J., et al. (2016). Safety and tolerability of 514G3, a true human anti-protein A monoclonal antibody for the treatment of S. aureus bacteremia. Open Forum Infectious Diseases, 3(1), 1354.

    Article  Google Scholar 

  • A Study to Evaluate the Safety, Pharmacokinetics and Pharmacodynamics of N-Rephasin® SAL200 in Healthy Male Volunteers. https://clinicaltrials.gov/ct2/show/NCT01855048. Accessed 14 Aug 2018.

  • Karaolis, D. K., Cheng, K., Lipsky, M., et al. (2005). 3′,5ʹ-cyclic diguanylic acid (c-di-GMP) inhibits basal and growth factor-stimulated human colon cancer cell proliferation. Biochemical and Biophysical Research Communications, 329, 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Karin, M., Lawrence, T., & Nizet, V. (2006). Innate immunity gone awry: Linking microbial infections to chronic inflammation and cancer. Cell, 124, 823–835.

    Article  CAS  PubMed  Google Scholar 

  • Koczulla, A. R., & Bals, R. (2003). Antimicrobial peptides: Current status and therapeutic potential. Drugs, 63, 389–406.

    Article  CAS  PubMed  Google Scholar 

  • Kosikowska, P., & Lesner, A. (2016). Antimicrobial peptides (AMPs) as drug candidates: A patent review (2003-2015). Expert Opinion on Therapeutic Patents, 26, 689–702.

    Article  CAS  PubMed  Google Scholar 

  • Landman, D., Georgescu, C., Martin, D. A., et al. (2008). Polymyxins revisited. Clinical Microbiology Reviews, 21, 449–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lebeer, S., Vanderleyden, J., & De Keersmaecker, S. C. (2010). Host interactions of probiotic bacterial surface molecules: Comparison with commensals and pathogens. Nature Reviews Microbiology, 8, 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P. T., Stenger, S., Li, H., et al. (2006). Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science, 311, 1770–1773.

    Article  CAS  PubMed  Google Scholar 

  • Mansour, S. C., de la Fuente-NĂºĂ±ez, C., & Hancock, R. E. W. (2015). Peptide IDR-1018: Modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections. Journal of Peptide Science, 21, 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Markham, A. (2016). Bezlotoxumab: First global approval. Drugs, 76(18), 1793–1798.

    Article  CAS  PubMed  Google Scholar 

  • Bitzan, M., Poole, R., Mehran, M., et al. (2009). Safety and pharmacokinetics of chimeric anti-shiga toxin 1 and anti-shiga toxin 2 monoclonal antibodies in healthy volunteers. Antimicrobial Agents and Chemotherapy, 53(7), 3081–3087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martineau, A. R., Timms, P. M., Bothamley, G. H., et al. (2011). High-dose vitamin D3 during intensive-phase antimicrobial treatment of pulmonary tuberculosis: A double-blind randomised controlled trial. Lancet, 377, 242–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mattmann, M. E., & Blackwell, H. E. (2010). Small molecules that modulate quorum sensing and control virulence in Pseudomonas aeruginosa. The Journal of Organic Chemistry, 75, 6737–6746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, M. L., Easton, D. M., & Hancock, R. E. W. (2010). Fine tuning host responses in the face of infection: Emerging roles and clinical applications of host defence peptides. In G. Wang (Ed.), Antimicrobial peptides: Discovery, design and novel therapeutic strategies (18th ed., pp. 195–220). Cambridge, MA: CABI.

    Chapter  Google Scholar 

  • Migone, T. S., Subramanian, G. M., Zhong, J., et al. (2009). Raxibacumab for the treatment of inhalational anthrax. The New England Journal of Medicine, 361(2), 135–144.

    Article  CAS  PubMed  Google Scholar 

  • Miyairi, S., Tateda, K., Fuse, E. T., et al. (2006). Immunization with 3-oxododecanoyl-l-homoserine lactone-protein conjugate protects mice from lethal Pseudomonas aeruginosa lung infection. Journal of Medical Microbiology, 55, 1381–1387.

    Article  CAS  PubMed  Google Scholar 

  • Novacta Biosystems NVB302. http://www.novactabio.com/careers.php. Accessed 14 Aug 2018.

  • Opal, S. M., Laterre, P. F., Francois, B., et al. (2013). ACCESS Study Group. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: The ACCESS randomized trial. JAMA, 309(11), 1154–1162.

    Article  CAS  PubMed  Google Scholar 

  • Overhage, J., Campisano, A., Bains, M., et al. (2008). Human host defense peptide LL-37 prevents bacterial biofilm formation. Infection and Immunity, 76, 4176–4182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pabary, R., Singh, C., & Morales, S. (2015). Anti-Pseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrobial Agents and Chemotherapy, 60(2), 744–751.

    Article  PubMed  CAS  Google Scholar 

  • Pletzer, D., & Hancock, R. E. (2016). Antibiofilm peptides: Potential as broad-spectrum agents. Journal of Bacteriology, 198(19), 2572–2578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murepavadin POL7080. http://www.polyphor.com/products/pol7080. Accessed 14 Aug 2018.

  • Quan-Guo, Z., & Buckling, A. (2012). Phages limit the evolution of bacterial antibiotic resistance in experimental microcosms. Evolutionary Applications, 5(6), 575–582.

    Article  CAS  Google Scholar 

  • Raqib, R., Sarker, P., Bergman, P., et al. (2006). Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proceedings of the National Academy of Sciences of the United States of America, 103, 9178–9183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reffuveille, F., de la Fuente-NĂºĂ±ez, C., Mansour, S., & Hancock, R. E. (2014). A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrobial Agents and Chemotherapy, 58(9), 5363–5371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Resch, G., Moreillon, P., & Fischetti, V. A. (2011). A stable phage lysin (Cpl-1) dimer with increased antipneumococcal activity and decreased plasma clearance. International Journal of Antimicrobial Agents, 38(6), 516–521. https://doi.org/10.1016/j.ijantimicag.2011.08.009. Epub 2011 Oct 5.

    Article  CAS  PubMed  Google Scholar 

  • Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9, 313–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scherer, A., & McLean, A. (2002). Mathematical models of vaccination. British Medical Bulletin, 62, 187–199.

    Article  PubMed  Google Scholar 

  • Schlee, M., Wehkamp, J., Altenhoefer, A., et al. (2007). Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infection and Immunity, 75, 2399–2407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlee, M., Harder, J., Köten, B., et al. (2008). Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clinical and Experimental Immunology, 151(3), 528–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schrezenmeir, J., & de Vrese, M. (2001). Probiotics, prebiotics, and synbiotics—Approaching a definition. The American Journal of Clinical Nutrition, 73(2), 361S–364S.

    Article  CAS  PubMed  Google Scholar 

  • Scott, M. G., Dullaghan, E., Mookherjee, N., et al. (2007). An anti-infective peptide that selectively modulates the innate immune response. Nature Biotechnology, 25, 465–472.

    Article  CAS  PubMed  Google Scholar 

  • Secher, T., Fas, S., Fauconnier, L., et al. (2013). The anti-Pseudomonas aeruginosa antibody panobacumab is efficacious on acute pneumonia in neutropenic mice and has additive effects with meropenem. PLoS One, 8(9), e73396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senok, A. C., Verstraelen, H., Temmerman, M., et al. (2009). Probiotics for the treatment of bacterial vaginosis. Cochrane Database of Systematic Reviews, 4, CD006289.

    Google Scholar 

  • Smith, R. S., Harris, S. G., Phipps, R., et al. (2002). The Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl)homoserine lactone contributes to virulence and induces inflammation in vivo. Journal of Bacteriology, 184, 1132–1139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smyth, A. R., Cifelli, P. M., Ortori, C. A., et al. (2010). Garlic as an inhibitor of Pseudomonas aeruginosa quorum sensing in cystic fibrosis—A pilot randomized controlled trial. Pediatric Pulmonology, 45, 6–362.

    Google Scholar 

  • Sorbara, M., & Philpott, D. (2011). Peptidoglycan: A critical activator of the mammalian immune system during infection and homeostasis. Immunological Reviews, 243, 40–60.

    Article  CAS  PubMed  Google Scholar 

  • Spreafico, R., Ricciardi-Castagnoli, P., & Mortellaro, A. (2010). The controversial relationship between NLRP3, alum, danger signals and the next-generation adjuvants. European Journal of Immunology, 40, 638–642.

    Article  CAS  PubMed  Google Scholar 

  • Sutherland, I. W. (2001). The biofilm matrix—An immobilized but dynamic microbial environment. Trends in Microbiology, 9, 222–227.

    Article  CAS  PubMed  Google Scholar 

  • Tidswell, M., et al. (2010). Phase 2 trial of eritoran tetrasodium (E5564), a Toll-like receptor 4 antagonist, in patients with severe sepsis. Critical Care Medicine, 38, 72–83.

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri, G., & Sher, A. (2007). Cooperation of Toll-like receptor signals in innate immune defence. Nature Reviews Immunology, 7, 179–190.

    Article  CAS  PubMed  Google Scholar 

  • Twetman, S., & Stecksen-Blicks, C. (2008). Probiotics and oral health effects in children. International Journal of Paediatric Dentistry, 18, 3–10.

    PubMed  Google Scholar 

  • Ulevitch, R. J. (2004). Therapeutics targeting the innate immune system. Nature Reviews Immunology, 4, 512–520.

    Article  CAS  PubMed  Google Scholar 

  • Velden, W. J., van Iersel, T. M., Blijlevens, N. M., et al. (2009). Safety and tolerability of the antimicrobial peptide human lactoferrin 1-11 (hLF1-11). BMC Medicine, 7, 44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Warrener, P., Varkey, R., Bonnell, J. C., et al. (2014). A novel anti-PcrV antibody providing enhanced protection against Pseudomonas aeruginosa in multiple animal infection models. Antimicrobial Agents and Chemotherapy, 58(8), 4384–4391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Werts, C., Rubino, S., Ling, A., et al. (2011). Nod-like receptors in intestinal homeostasis, inflammation, and cancer. Journal of Leukocyte Biology, 90, 471–482.

    Article  CAS  PubMed  Google Scholar 

  • Willing, B. P., Russell, S. L., & Finlay, B. B. (2011). Shifting the balance: Antibiotic effects on host–microbiota mutualism. Nature Reviews Microbiology, 9, 233–243.

    Article  CAS  PubMed  Google Scholar 

  • Wright, A., Shin, S. U., & Morrison, S. L. (1992). Genetically engineered antibodies: Progress and prospects. Critical Reviews in Immunology, 12(3–4), 125–126.

    CAS  PubMed  Google Scholar 

  • Wu, H., Song, Z., Hentzer, M., et al. (2004). Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice. The Journal of Antimicrobial Chemotherapy, 53, 1054–1061.

    Article  CAS  PubMed  Google Scholar 

  • About Cystic Fibrosis CF Foundation. https://www.cff.org/What-is-CF/About-Cystic-Fibrosis/. Accessed 14 Aug 2018.

  • Yeaman, M. R., & Yount, N. Y. (2003). Mechanisms of antimicrobial peptide action and resistance. Pharmacological Reviews, 55, 27–55.

    Article  CAS  PubMed  Google Scholar 

  • Yu, X.-Q., Robbie, G. J., Wu, Y., et al. (2016). Safety, tolerability, and pharmacokinetics of MEDI4893, an investigational, extended-half-life, anti-Staphylococcus aureus alpha-toxin human monoclonal antibody, in healthy adults. Antimicrobial Agents and Chemotherapy, 61(1), e01020-16. https://doi.org/10.1128/AAC.01020-16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395.

    Article  CAS  PubMed  Google Scholar 

  • Zavascki, A. P., Goldani, L. Z., Li, J., et al. (2007). Polymyxin B for the treatment of multidrug-resistant pathogens: A critical review. The Journal of Antimicrobial Chemotherapy, 60, 1206–1215.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript bears CSIR-CDRI communication number 9730.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaul, G., Shukla, M., Dasgupta, A., Chopra, S. (2019). Alternative Therapies to Antibiotics to Combat Drug-Resistant Bacterial Pathogens. In: Ahmad, I., Ahmad, S., Rumbaugh, K. (eds) Antibacterial Drug Discovery to Combat MDR. Springer, Singapore. https://doi.org/10.1007/978-981-13-9871-1_9

Download citation

Publish with us

Policies and ethics