Skip to main content

Vibrational Spectroscopy of CO2 in 1-Ethyl-3-Methylimidazolium Ethyl Sulfate Ionic Liquid: A Quantum Chemical Approach

  • Conference paper
  • First Online:
Advances in Spectroscopy: Molecules to Materials

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 236))

  • 732 Accesses

Abstract

Nowadays, global climate change is a noticeable and challenging environmental issue for the mankind. The expected cause of climate change is mostly the greenhouse gas emission. The possible ways to reduce these emissions may be through carbon capture and its storage. In this scenario, ionic liquids (ILs) have the potential to absorb the CO2 and thus have been investigated to a larger extent. Here, the solubility of CO2 was investigated using 1-ethyl-3-methylimidazolium ethyl sulfate (C2mim EtSO4) ILs. To do so, the quantum chemical calculations based on DFT in the gas phase were performed at wB97XD/6-311++G(d,p) level of theory, where dispersion effect is considered to obtain information at the molecular level on the certain parameters related to efficient CO2 capture by ILs. During the interaction of C2mim EtSO4 and CO2, it was found that the CO2 considerably interacts at C2-position and ethyl chain of the cation at the cost of the weakening of the cation–anion interactions. Results were also analyzed and consistent with the vibrational mode analysis. TD-DFT calculations were performed to obtain the frontier molecular orbitals (FMOs) for analyzing the charge transfer in the ion pair having the CO2 molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Tamilarasan, S. Ramaprabhu, J. Mater. Chem. A 3(1), 101–108 (2014)

    Article  Google Scholar 

  2. T. Welton, Chem. Rev. 99(8), 2071–2084 (1999)

    Article  Google Scholar 

  3. K. Seddon, J. Chem. Tech. Biotechn. 68(4), 351–356 (1997)

    Article  Google Scholar 

  4. M. Smiglak, J. Pringle, X. Lu, L. Han, S. Zhang, H. Gao, D. MacFarlane, R. Rogers, Chem. Commun. 50(66), 9228–9250 (2014)

    Article  Google Scholar 

  5. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, Nat. Mater. 8, 621–629 (2009)

    Article  ADS  Google Scholar 

  6. C. Cadena, J.L. Anthony, J.K. Shah, T.I. Morrow, J.F. Brennecke, E.J. Maginn, J. Am. Chem. Soc. 126(16), 5300–5308 (2004)

    Article  Google Scholar 

  7. J.-H. Yim, S.-J. Ha, J. Lim, J. Chem. Eng. Data 63(3), 508–518 (2018)

    Article  Google Scholar 

  8. X. Zhu, Y. Lu, C. Peng, J. Hu, H. Liu, Y. Hu, J. Phys. Chem. B 115(14), 3949–3958 (2011)

    Article  Google Scholar 

  9. J.F. Brennecke, B.E. Gurkan, J. Phys. Chem. Lett. 1(24), 3459–3464 (2010)

    Article  Google Scholar 

  10. G.B. Damas, A. Dias, L.T. Costa, J. Phys. Chem. B 118(30), 9046–9064 (2014)

    Article  Google Scholar 

  11. I.M. Cabaço, M. Besnard, Y. Danten, J. Coutinho, J. Phys. Chem. A 116(6), 1605–1620 (2012)

    Article  Google Scholar 

  12. L.A. Blanchard, Z. Gu, J.F. Brennecke, J. Phys. Chem. B 105(12), 2437–2444 (2001)

    Article  Google Scholar 

  13. A.N. Soriano, B.T. Doma, M.-H. Li, J. Taiwan Inst. Chem. E 40(4), 387–393 (2009)

    Article  Google Scholar 

  14. A. Jalili, Mehdizadeh, M. Shokouhi, A. Ahmadi, M. Hosseini-Jenab, F. Fateminassab, J. Chem. Thermodyn. 42(10), 1298–1303 (2010)

    Google Scholar 

  15. M. Bermejo, T.M. Fieback, Á. Martín, J. Chem. Thermodyn. 58, 237–244 (2013)

    Article  Google Scholar 

  16. P.J. Carvalho, T. Regueira, J. Fernández, L. Lugo, J. Safarov, E. Hassel, J. Coutinho, J. Supercrit. Fluids 88, 46–55 (2014)

    Article  Google Scholar 

  17. J. Chai, M. Head-Gordon, Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008)

    Article  Google Scholar 

  18. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, D.J. Fox Gaussian 16, Revision B.01; Gaussian, Inc.; Wallingford CT (2016)

    Google Scholar 

  19. R. Dennington, T. Keith, J. Millam, K. Eppinnett, L.W. Hovell, R. Gilliland, GaussView, version 6 (Semichem Inc., Shawnee Mission, KS, 2016)

    Google Scholar 

  20. C. Wang, H. Luo, X. Luo, H. Li, S. Dai, Green Chem. 12(11), 2019–2023 (2010)

    Article  Google Scholar 

  21. E. Arunan, G.R. Desiraju, R.A. Klein, J. Sadlej, S. Scheiner, I. Alkorta, D.C. Clary, R.H. Crabtree, J.J. Dannenberg, P. Hobza, H.G. Kjaergaard, A.C. Legon, B. Mennucci, D.J. Nesbitt, Pure Appl. Chem. 83, 1637–1641 (2011)

    Article  Google Scholar 

  22. D.K. Singh, B. Rathke, J. Kiefer, A. Materny, J. Phys. Chem. A 120(31), 6274–6286 (2016)

    Article  Google Scholar 

  23. D.K. Singh, S. Cha, D. Nam, H. Cheong, S. Joo, D. Kim, ChemPhysChem 17(19), 3040–3046 (2016)

    Article  Google Scholar 

  24. T. Shimanouchi, Tables of Molecular Vibrational Frequencies Consolidated. Vol I. National Bureau of Standards, Washington, DC (1972)

    Google Scholar 

  25. J. Kiefer, J. Fries, A. Leipertz, Appl. Spectrosc. 61(12), 1306–1311 (2007)

    Google Scholar 

Download references

Acknowledgements

DKS acknowledges the financial support from SERB-DST ECR project “ECR/2016/001289”. DKP is grateful for the support by the DST INSPIRE fellowship IF170625.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dheeraj K. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, D.K., Sanchora, P., Singh, D.K. (2019). Vibrational Spectroscopy of CO2 in 1-Ethyl-3-Methylimidazolium Ethyl Sulfate Ionic Liquid: A Quantum Chemical Approach. In: Singh, D., Das, S., Materny, A. (eds) Advances in Spectroscopy: Molecules to Materials. Springer Proceedings in Physics, vol 236. Springer, Singapore. https://doi.org/10.1007/978-981-15-0202-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-0202-6_27

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-0201-9

  • Online ISBN: 978-981-15-0202-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics