Skip to main content

Chitosan-Based Interpenetrating Polymer Networks: Drug Delivery Application

  • Chapter
  • First Online:
Functional Chitosan

Abstract

Multicomponent drug delivery systems have found several potential diagnostic and therapeutic applications. Among these the interpenetrating polymeric network (IPN) has gained great attention in the last decades, which involves a blend of two or more polymers in a network with at least one of the systems synthesized in the presence of the other. The development of IPN is attractive because they provide free volume space for the easy encapsulation of drugs in the three-dimensional network structure which are obtained by the cross-linking of two or more polymer networks. This review focuses on the IPNs based on chitosan for drug delivery and biomedical applications. Chitosan is a natural, biodegradable, nontoxic, mucoadhesive, and biocompatible polymer, which has found diverse pharmaceutical applications. Chitosan-based IPNs have garnered immense attention as a vehicle for oral drug delivery. This review summarizes IPNs based on chitosan and other polysaccharides and also IPNs based on chitosan and different synthetic polymers. The influence of the second network on the stimuli responsiveness of the “smart” chitosan-based IPNs is also discussed based on the most recent publications in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnihotri SA, Aminabhavi TM (2006) Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm 324:103

    Article  CAS  PubMed  Google Scholar 

  • Ahmed AA, Naik HSB, Sherigara BS (2009) Synthesis and characterization of chitosan-based pH-sensitive semi-interpenetrating network microspheres for controlled release of diclofenac sodium. Carbohydr Res 344:699

    Article  CAS  Google Scholar 

  • Alvarez-Lorenzo C, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinberg VY (2005) Temperature-sensitive chitosan-poly(N-isopropylacrylamide) interpenetrated networks with enhanced loading capacity and controlled release properties. J Control Release 102:629

    Article  CAS  PubMed  Google Scholar 

  • Amoozgar Z, Rickett T, Park J, Tuchek C, Shi R, Yeo Y (2012) Semi-interpenetrating network of polyethylene glycol and photocrosslinkable chitosan as an in-situ-forming nerve adhesive. Acta Biomater 8:1849

    Article  CAS  PubMed  Google Scholar 

  • Angadi SC, Manjeshwar LS, Aminabhavi TM (2010) Interpenetrating polymer network blend microspheres of chitosan and hydroxyethyl cellulose for controlled release of isoniazid. Int J Biol Macromol 47:171

    Article  CAS  PubMed  Google Scholar 

  • Angadi SC, Manjeshwar LS, Aminabhavi TM (2011) Stearic acid-coated chitosan-based interpenetrating polymer network microspheres: controlled release characteristics. Ind Eng Chem Res 50:4504

    Article  CAS  Google Scholar 

  • Artyukhov AA, Shtilman MI, Kuskov AN, Fomina AP, Lisovyy DE, Golunova AS, Tsatsakis AM (2011) Macroporous polymeric hydrogels formed from acrylate modified polyvinyl alcohol. J Polym Res 18:667

    Article  CAS  Google Scholar 

  • Arzate-Vázquez I, Chanona-Pérez JJ, Calderón-Domínguez G, Terres-Rojas E, Garibay-Febles V, Martínez-Rivas A (2012) Microstructural characterization of chitosan and alginate films by microscopy techniques and texture image analysis. Carbohydr Polym 87:289

    Article  PubMed  CAS  Google Scholar 

  • Babu VR, Hosamani KM, Aminabhavi TM (2008) Preparation and in-vitro release of chlorothiazide novel pH-sensitive chitosan-N,N′-dimethylacrylamide semi-interpenetrating network microspheres. Carbohydr Polym 71:208

    Article  CAS  Google Scholar 

  • Bayramog˘lu G, Arıca MY (2002) Procion green H-4G immobilized on a new IPN hydrogel membrane composed of poly(2-hydroxyethylmethacrylate)/chitosan: preparation and its application to the adsorption of lysozyme. Colloids Surf A Physicochem Eng Asp 202:41

    Article  Google Scholar 

  • Bedel NS, Birteksoz S, Gurdag G, Kasgoz H, Otuk G (2011) Novel chitosan-poly(N,N-dimethylaminoethyl methacrylate) semi-IPN gels: the synthesis and the antibacterial activities. Curr Opin Biotechnol 22S:S15

    Google Scholar 

  • Bhardwaj V, Harit G, Kumar S (2012) Interpenetrating polymer network (IPN): novel approach in drug delivery. Int J Drug Dev Res 4:41

    CAS  Google Scholar 

  • Bhise KS, Dhumal RS, Chauhan B, Paradkar A, Kadam SS (2007) Effect of oppositely charged polymer and dissolution medium on swelling, erosion, and drug release form chitosan matrices. AAPS Pharm Sci Tech 8:E1

    Article  Google Scholar 

  • Cai Z, Kim J (2009) Cellulose–chitosan interpenetrating polymer network for electro-active paper actuator. J Appl Polym Sci 114:288

    Article  CAS  Google Scholar 

  • Chen HS, Moschakis T, Nelson P (2004) Application of surface friction measurements for surface characterization of heat-set whey protein gels. J Texture Stud 35:493

    Article  Google Scholar 

  • Chen X, Song H, Fang T, Bai J, Xiong J, Ying H (2010) Preparation, characterization, and drug-release properties of pH/temperature-responsive poly(N-isopropylacrylamide)/chitosan semi-IPN hydrogel particles. J Appl Polym Sci 116:1342

    CAS  Google Scholar 

  • Chivukula P, Dušek K, Wang D, Duškova-Smrcˇkova M, Kopecˇkova P, Kopecˇek J (2006) Synthesis and characterization of novel aromatic azo bond containing pH-sensitive and hydrolytically cleavable IPN hydrogels. Biomaterials 27:1140

    Article  CAS  PubMed  Google Scholar 

  • Chow KS, Khor E (2000) Novel fabrication of open-pore chitin matrixes. Biomacromolecules 1:61

    Article  CAS  PubMed  Google Scholar 

  • Chung TW, Yang J, Akaike T (2002) Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 23:2827

    Article  CAS  PubMed  Google Scholar 

  • Crini G, Badot PM (2008) Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog Polym Sci 33:399

    Article  CAS  Google Scholar 

  • Cui L, Jia J, Guo Y, Liu Y, Zhu P (2014) Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydr Polym 99:31

    Article  CAS  PubMed  Google Scholar 

  • Dandangi PM, Mastiholimath VS, Gadad AP, Iliger SR (2007) Mucoadhesive microsphere of propanol HCl for nasal delivery. Int J Pharm Sci 69:402

    Google Scholar 

  • Dash M, Ferri M, Chiellini F (2012) Synthesis and characterization of semi-interpenetrating polymer network hydrogel based on chitosan and poly(methacryloylglycylglycine). Mater Chem Phys 135:1070

    Article  CAS  Google Scholar 

  • Dragan ES, Lazar MM, Dinu MV, Doroftei F (2012a) Macroporous composite IPN hydrogels based on poly(acrylamide) and chitosan with tuned swelling and sorption of cationic dyes. Chem Eng J 204:198

    Article  CAS  Google Scholar 

  • Dragan ES, Perju MM, Dinu MV (2012b) Preparation and characterization of IPN composite hydrogels based on polyacrylamide and chitosan and their interaction with ionic dyes. Carbohydr Polym 88:270

    Article  CAS  Google Scholar 

  • Ekici S, Saraydin D (2007) Interpenetrating polymeric network hydrogels for potential gastrointestinal drug release. Polym Int 56:1371

    Article  CAS  Google Scholar 

  • El-Sherbiny IM, Lins RJ, Abdel-Bary EM, Harding DRK (2005) Preparation, characterization, swelling and in vitro drug release behaviour of poly[N-acryloylglycine-chitosan] interpolymeric pH and thermally-responsive hydrogels. Eur Polym J 41:2584

    Article  CAS  Google Scholar 

  • Gao CY, Wang DY, Shen JC (2003) Fabrication of porous collagen/chitosan scaffolds with controlling microstructure for dermal equivalent. Polym Adv Technol 14:373

    Article  CAS  Google Scholar 

  • Ghosh R (2002) Protein separation using membrane chromatography: opportunities and challenges. J Chromatogr A 952:17

    Article  Google Scholar 

  • Gómez-Mascaraque LG, Méndez JA, Gutiérrez MF, Vázquez B, Román JS (2014) Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose–chitosan. Acta Biomater 10:798

    Article  PubMed  CAS  Google Scholar 

  • Gong JP, Katsuyama Y, Kurokawa T, Osada Y (2003) Double network hydrogels with extremely high mechanical strength. Adv Mater 15:1155

    Article  CAS  Google Scholar 

  • Guo B-L, Gao Q-Y (2007) Preparation and properties of a pH/temperature-responsive carboxymethyl chitosan/poly(N-isopropylacrylamide)semi-IPN hydrogel for oral delivery of drugs. Carbohydr Res 342:2416

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Yuan J, Yao L, Gao Q (2007) Preparation and release profiles of pH/temperature responsive carboxymethyl chitosan/P(2-(dimethylamino)ethyl methacrylate) semi-IPN amphoteric hydrogel. Colloid Polym Sci 285:665

    Article  CAS  Google Scholar 

  • Gupta KC, Ravikumar MNV (2001) Studies on semi-interpenetrating polymer network beads of chitosan–poly(ethylene glycol) for the controlled release of drugs. J Appl Polym Sci 80:639

    Article  Google Scholar 

  • Gupta KC, Ravi-Kumar MNV (2000) Semi-interpenetrating polymer network beads of chitosan-glycine for controlled release of chlorpheniramine maleate. J Appl Polym Sci 76:672

    Article  CAS  Google Scholar 

  • Haque MA, Kurokawa T, Gong JP (2012) Super tough double network hydrogels and their application as biomaterials. Polymer 53:1805

    Article  CAS  Google Scholar 

  • Hoare TR, Kohane DS (2008) Hydrogels in drug delivery: progress and challenges. Polymer 49:1993

    Article  CAS  Google Scholar 

  • Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3

    Article  Google Scholar 

  • Hosseinzadeh H (2012) Novel interpenetrating polymer network based on chitosan for the controlled release of cis-Platin. J Basic Appl Sci Res 2:2200

    Google Scholar 

  • Hu QL, Fang ZP, Zhao Y, Xu CW (2001) A new method to prepare chitosan membrane as a biomedical material. Chin J Polym Sci 19:467

    CAS  Google Scholar 

  • Jain E, Kumar A (2009) Designing supermacroporous cryogels based on polyacrylonitrile and a polyacrylamide–chitosan semi-interpenetrating network. Aust J Biol Sci 20:877

    CAS  Google Scholar 

  • Jain N, Sharma PK, Banik A, Gupta A, Bhardwaj V (2011) Pharmaceutical and biomedical applications of interpenetrating polymer network. Curr Drug Ther 6:263

    Article  CAS  Google Scholar 

  • Jana S, Sen KK (2017) Chitosan—Locust bean gum interpenetrating polymeric network nanocomposites for delivery of aceclofenac. Int J Biol Macromol 102:878–884

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Gandhi A, Sen KK, Basu SK (2011) Natural polymers and their application in drug delivery and biomedical field. J Pharma Sci Tech 1:16

    Google Scholar 

  • Jana S, Gandhi A, Sen KK, Basu SK (2013a) Chapter 18: Biomedical application of chitin and chitosan derivatives. In: Kim SK (ed) Chitin and chitosan derivatives. Advances in drug discovery and developments. Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  • Jana S, Saha A, Nayak AK, Sen KK, Basu SK (2013b) Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B Biointerfaces 105:303

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Sen KK, Basu SK (2014) In vitro aceclofenac release from IPN matrix tablets composed of chitosan-tamarind seed polysaccharide. Int J Biol Macromol 65:241

    Article  CAS  PubMed  Google Scholar 

  • Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40:175

    Article  CAS  PubMed  Google Scholar 

  • Jindal M, Kumar V, Rana V, Tiwary AK (2013) Physico-chemical, mechanical and electrical performance of bael fruit gum-chitosan IPN films. Food Hydrocoll 30:192

    Article  CAS  Google Scholar 

  • Kaewpirom S, Boonsang S (2006) Electrical response characterisation of poly(ethylene glycol) macromer (PEGM)/chitosan hydrogels in NaCl solution. Eur Polym J 42:1609

    Article  CAS  Google Scholar 

  • Kajjari PB, Manjeshwar LS, Aminabhavi TM (2011) Novel interpenetrating network hydrogel microspheres of chitosan and poly(acrylamide)-grafted-guargum for controlled release of cefadroxil. Ind Eng Chem Res 50:13280

    Article  CAS  Google Scholar 

  • Karaaslan MA, Tshabalala MA, Buschle-Diller G (2012) Semi-interpenetrating polymer network hydrogels based on aspen hemicellulose and chitosan: effect of crosslinking sequence on hydrogel properties. J Appl Polym Sci 124:1168

    Article  CAS  Google Scholar 

  • Khalid MN, Agnely F, Yagoubi N, Grossiord JL, Couarraze G (2002) Water state characterization, swelling behavior, thermal and mechanical properties of chitosan based networks. Eur J Pharm Sci 15:425

    Article  CAS  PubMed  Google Scholar 

  • Khurma JR, Nand AV (2008) Temperature and pH sensitive hydrogels composed of chitosan and poly(ethylene glycol). Polym Bull 59:805

    Article  CAS  Google Scholar 

  • Kim SJ, Park SJ, Kim SI (2003) Swelling behavior of interpenetrating polymer network hydrogels composed of poly(vinyl alcohol) and chitosan. React Funct Polym 55:53

    Article  CAS  Google Scholar 

  • Kim SJ, Shin SR, Spinks GM, Kim IY, Kim SI (2005) Synthesis and characteristics of a semi-interpenetrating polymer network based on chitosan/polyaniline under different pH conditions. J Appl Polym Sci 96:867

    Article  CAS  Google Scholar 

  • Kim IY, Yoo MK, Kim BC, Kim SK, Kim SK, Lee HC, Cho CS (2006) Preparation of semi-interpenetrating polymer networks composed of chitosan and poloxamer. Int J Biol Macromol 38:51

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni PV, Keshavayya J (2010) Chitosan-sodium alginate biodegradable interpenetrating polymer network (IPN) beads for delivery ofofloxacin hydrochloride. Int J Pharmacy Pharm Sci 2:77–82

    CAS  Google Scholar 

  • Kulkarni AR, Soppimath KS, Aminabhavi TM, Rudzinski WE (2001) In-vitro release kinetics of cefadroxil-loaded sodium alginate interpenetrating network beads. Eur J Pharm Biopharm 51:127

    Article  CAS  PubMed  Google Scholar 

  • Kumar MNVR, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspective. Chem Rev 104:6017

    Article  PubMed  Google Scholar 

  • Kumari K, Kundu PP (2007) Semi-interpenetrating polymer networks (IPNs) of chitosan and L-alanine for monitoring the release of chlorpheniramine maleate. J Appl Polym Sci 103:3751

    Article  CAS  Google Scholar 

  • Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203

    Article  CAS  Google Scholar 

  • Leea SJ, Kim SS, Lee YM (2000) Interpenetrating polymer network hydrogels based on poly(ethylene glycol) macromer and chitosan. Carbohydr Polym 41:197

    Article  Google Scholar 

  • Li G, Guo L, Chang X, Yang M (2012) Thermo-sensitive chitosan based semi-IPN hydrogels for high loading and sustained release of anionic drugs. Int J Biol Macromol 50:899

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Shen J, Ma H, Lu X, Shi M, Li N, Ye M (2013) Preparation and characterization of pH and temperature responsive nanocomposite double network hydrogels. Mater Sci Eng C 33:1951

    Article  CAS  Google Scholar 

  • Lohani A, Gangwar PC (2012) Mucoadhesion: a novel approach to increase gastroretention. Chronicles of Young Scientist 3:121

    Article  CAS  Google Scholar 

  • Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445

    Article  CAS  PubMed  Google Scholar 

  • Maity J, Ray SK (2014) Enhanced adsorption of methyl violet and Congo red by using semiand full IPN of polymethacrylic acid and chitosan. Carbohydr Polym 104:8

    Article  CAS  PubMed  Google Scholar 

  • Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013

    Article  CAS  Google Scholar 

  • Muzzarelli RAA (2009) Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr Polym 77(1)

    Article  CAS  Google Scholar 

  • Myung D, Waters D, Wiseman M, Duhamel PE, Noolandi J, Ta CN, Frank CW (2008) Progress in the development of interpenetrating polymer network hydrogels. Polym Adv Technol 19:647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naidu VGM, Madhusudhana K, Sashidhar RB, Ramakrishna S, Khar RK, Ahmed FJ (2009) Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym 76:464

    Article  CAS  Google Scholar 

  • Ng LT, Swami S (2005) IPNs based on chitosan with NVP and NVP/HEMA synthesised through photoinitiator-free photopolymerisation technique for biomedical applications. Carbohydr Polym 60:523

    Article  CAS  Google Scholar 

  • Park SB, You JO, Park HY, Haam SJ, Kim WS (2001) A novel pH-sensitive membrane from chitosan-TEOS IPN; preparation and its drug permeation characteristics. Biomaterials 22:323

    Article  CAS  PubMed  Google Scholar 

  • Patel VR, Amiji MM (1996) Preparation and characterization of freeze dired chitosan poly(ethylene oxide) hydrogels for site specific antibiotic delivery in the stomach. Pharm Res 13:588

    Article  CAS  PubMed  Google Scholar 

  • Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50:27

    Article  CAS  PubMed  Google Scholar 

  • Plieva FM, Karlsson M, Aguilar MR, Gomez D, Mikhalovsky S, Galaev IY (2005) Pore structure in supermacroporous polyacrylamide based cryogels. Soft Matter 1:303

    Article  CAS  PubMed  Google Scholar 

  • Rani M, Agarwal A, Maharana T, Negi YS (2010) A comparative study for interpenetrating polymeric network (IPN) of chitosan-amino acid beads for controlled drug release. Afr J Pharm Pharmacol 4:35

    CAS  Google Scholar 

  • Rao KSVK, Naidu BVK, Subha MCS, Sairam M, Aminabhavi TM (2006) Novel chitosan-based pH-sensitive interpenetrating network microgels for the controlled release of cefadroxil. Carbohydr Polym 66:333

    Article  CAS  Google Scholar 

  • Rao MS, Kanatt SR, Chawla SP, Sharma A (2010) Chitosan and guar gum composite films: preparation, physical, mechanical and antimicrobial properties. Carbohydr Polym 82:1243

    Article  CAS  Google Scholar 

  • Reddy J, Nagashubha B, Reddy M, Moin A, Shivakumar HG (2013) Novel interpenetrating polymer matrix network microparticles for intestinal drug delivery. Curr Drug Deliv 11:191

    Article  CAS  Google Scholar 

  • Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57:397

    Article  CAS  Google Scholar 

  • Risbud MV, Hardikar AA, Bhat SV, Bhonde RR (2000) pH sensitive freeze dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release 68:23

    Article  CAS  PubMed  Google Scholar 

  • Rodkate N, Wichai U, Boontha B, Rutnakornpituk M (2010) Semi-interpenetrating polymer network hydrogels between polydimethylsiloxane/polyethylene glycol and chitosan. Carbohydr Polym 81:617

    Article  CAS  Google Scholar 

  • Rokhade AP, Shelke NB, Patil SA, Aminabhavi TM (2007) Novel interpenetrating polymer network microspheres of chitosan and methylcellulose for controlled release of theophylline. Carbohydr Polym 69:678

    Article  CAS  Google Scholar 

  • Sivakumar M, Manjubala I, Panduranga RK (2002) Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatiteechitosan composite microspheres. Carbohydr Polym 49:281

    Article  CAS  Google Scholar 

  • Sperling LH (1977) Interpenetrating polymer networks and related materials. J Polymer Sci Macromol Rev 12:141

    Article  CAS  Google Scholar 

  • Sperling LH (1994) In: Klempner D, Sperling LH, Utracki LA (eds) Interpenetrating polymer networks. American Chemical Society, Washington, pp 3–38

    Chapter  Google Scholar 

  • Sperling LH (2005) In: Mark HF (ed) Encyclopedia of polymer science and technology, vol 10. Wiley, New York, pp 272–311

    Google Scholar 

  • Vaghani SS, Patel MM (2011) pH-sensitive hydrogels based on semi-interpenetrating network (semi-IPN) of chitosan and polyvinyl pyrrolidone for clarithromycin release. Drug Dev Ind Pharm 37:1160

    Article  CAS  PubMed  Google Scholar 

  • Wan Ngah WS, Teong LC, Hanafiah MAKM (2011) Adsorption of dyes and heavy metals by chitosan composites: a review. Carbohydr Polym 83:1446

    Article  CAS  Google Scholar 

  • Wang JJ, Liu F (2013) Enhanced adsorption of heavy metal ions onto simultaneous interpenetrating polymer network hydrogels synthesized by UV irradiation. Polym Bull 70:1415

    Article  CAS  Google Scholar 

  • Wang M, Fang Y, Hu D (2001) Preparation and properties of chitosan-poly(N-isopropylacrylamide) full-IPN hydrogels. React Funct Polym 48:215

    Article  CAS  Google Scholar 

  • Wang LH, Khor E, Wee A, Lim LY (2002) Chitosan-alginate PEC membrane as a wound dressing: assessment of incisional wound healing. J Biomed Mater Res 63:610

    Article  CAS  PubMed  Google Scholar 

  • Wang J, He R, Che Q (2011) Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene. J Colloid Interface Sci 361:219

    Article  CAS  PubMed  Google Scholar 

  • Wang WB, Huang DJ, Kang YR, Wang AQ (2013) One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion. Colloids Surf B Biointerfaces 106:51

    Article  CAS  PubMed  Google Scholar 

  • Work WJ, Horie K, Hess M, Stepto RFT (2004) Definitions of terms related to polymer blends, composites, and multiphase polymeric materials. Pure Appl Chem 76:1985

    Article  CAS  Google Scholar 

  • Wu X, He G, Gu S, Hu Z, Yao P (2007) Novel interpenetrating polymer network sulfonated poly (phthalazinone ether sulfone ketone)/polyacrylic acid proton exchange membranes for fuel cell. J Membr Sci 295:80

    Article  CAS  Google Scholar 

  • Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) PH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr Polym 92:719

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Fei L, Cui F, Tang C, Yin C (2007a) Synthesis, characterization, mechanical properties and biocompatibility of interpenetrating polymer network superporous hydrogel containing sodium alginate. Polym Int 56:1563

    Article  CAS  Google Scholar 

  • Yin L, Fei L, Cui F, Tang C, Yin C (2007b) Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/ O-carboxymethyl chitosan interpenetrating polymer networks. Biomaterials 28:1258

    Article  CAS  PubMed  Google Scholar 

  • Yin L, Ding JY, Fei L (2008) Beneficial properties for insulin absorption using superporous hydrogel containing interpenetrating polymer network as oral delivery vehicles. Int J Pharm 350:220

    Article  CAS  PubMed  Google Scholar 

  • Yu SH, Mi FL, Shyu SS, Tsai C-H, Peng C-K, Lai J-Y (2006) Miscibility, mechanical characteristic and platelet adhesion of 6-O-carboxymethylchitosan/polyurethane semi-IPN membranes. J Membr Sci 276:68

    Article  CAS  Google Scholar 

  • Zeng M, Fang Z (2004) Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. J Membr Sci 245:95

    Article  CAS  Google Scholar 

  • Zeng X, Wei W, Li X, Zeng J, Wu L (2007) Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Bioelectrochemistry 71:135

    Article  CAS  PubMed  Google Scholar 

  • Zhang XZ, Wu DQ, Chu CC (2004) Synthesis, characterization and controlled drug release of thermosensitive IPN–PNIPAAm hydrogels. Biomaterials 25:3793

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Zhou F, Li L, Cao M, Zuo D, Liu H (2012) Removal of anionic dyes from aqueous solutions by adsorption of chitosan-based semi-IPN hydrogel composites. Compo Part B 43:1570

    Article  CAS  Google Scholar 

  • Zhou Y, Yang D, Gao X, Chen X, Xu Q, Lu F, Nie J (2009) Semi-interpenetrating polymer network hydrogels based on water-soluble N-carboxylethyl chitosan and photopolymerized poly (2-hydroxyethyl methacrylate). Carbohydr Polym 75:293

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jana, S., Gandhi, A., Sen, K.K. (2019). Chitosan-Based Interpenetrating Polymer Networks: Drug Delivery Application. In: Jana, S., Jana, S. (eds) Functional Chitosan. Springer, Singapore. https://doi.org/10.1007/978-981-15-0263-7_9

Download citation

Publish with us

Policies and ethics