Skip to main content

Gravitational Waves: The Mathematical Background

  • Conference paper
  • First Online:
Mathematical Analysis and Applications in Modeling (ICMAAM 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 302))

  • 625 Accesses

Abstract

The geometrical construction of General Relativity which led Einstein to the prediction of gravitational waves is discussed and formation of Cauchy problem is shown. Due to complexity of the Cauchy problem, it is not possible to solve it by the methods of analysis and geometry—approximation methods and numerical algorithms are used. Finally, the consequences of detecting gravitational waves are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Einstein, A.: Näherungsweise integration der Feldgleichungen der gravitation. SAW, pp. 688–696. Sitzungesber K. Preuss. Akad. Wiss., Berlin (1916)

    Google Scholar 

  2. Choquet-Bruhat, Y.: Théoréme d’existence pour certain systémes d’equations aux dérivées partielles nonlinéaires. Acta Math. 88, 141 (1968)

    Article  Google Scholar 

  3. Choquet-Bruhat, Y., Geroch, R.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    Article  MathSciNet  Google Scholar 

  4. Christodoulou, D., Klainerman, S.: The Global Non-linear Stability of the Minkowski Space. Princeton Mathematical Series, vol. 41. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  5. Klainerman, S., Rodnianski, I., Szeftel, J.: Invent. Math. 202, 1 (2015)

    Article  MathSciNet  Google Scholar 

  6. Klainerman, S., Rodnianski, I., Szeftel, J.: arXiv:1204.1772 [math.AP]

  7. Szeftel, J.: arXiv:1204.1768 [math.AP]

  8. Szeftel, J.: arXiv:1204.1769 [math.AP]

  9. Szeftel, J.: arXiv:1204.1770 [math.AP]

  10. Szeftel, J.: arXiv:1204.1771 [math.AP]

  11. Zel’dovich, Ya.B., Polnarev, A.G.: Astron. Zh. 51, 30 (1974)

    Google Scholar 

  12. Christodoulou, D.: Phys. Rev. Lett. 67, 1486 (1991)

    Article  MathSciNet  Google Scholar 

  13. Bieri, L., Garfinkle, D.: Phys. Rev. D 89, 084039 (2014)

    Article  Google Scholar 

  14. Bieri, L., Garfinkle, D., Yunes, N.: arXiv:1710.03272 [gr-qc]

  15. Blanchet, L.: Living Rev. 9, 4 (2006)

    Article  Google Scholar 

  16. Poisson, E., Will, C.M.: Gravity. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  17. Will, C.M., Wiseman, A.G.: Phys. Rev. D 54, 4813 (1996)

    Article  Google Scholar 

  18. Will, C.M.: Prog. Theoret. Phys. Suppl. 136, 158 (1999)

    Article  Google Scholar 

  19. Pati, M.E., Will, C.M.: Phys. Rev. D 62, 124015 (2000)

    Article  MathSciNet  Google Scholar 

  20. Blanchet, L., Faye, G.: J. Math. Phys. 41, 7675 (2000)

    Article  MathSciNet  Google Scholar 

  21. Damour, T., Jaranowski, P., Schaofer, G.: Phys. Lett. B 513, 147 (2001)

    Article  Google Scholar 

  22. Damour, T.: Fundam. Theor. Phys. 9, 89 (1984)

    Google Scholar 

  23. Babak, S., Taracchini, A., Buonanno, A.: Phys. Rev. D 95, 024010 (2017)

    Article  Google Scholar 

  24. Press, W., Teukolsky, S., Velterling, W., Flannery, B.: Numerical Recipes in Fortran. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  25. Pretorius, F.: Phys. Rev. Lett. 95 (2005)

    Google Scholar 

  26. Camponelli, M., Lousto, C.O., Marronetti, B., Zlochower, Y.: Phys. Rev. Lett. 96 (2006)

    Google Scholar 

  27. Baker, J.G., et al.: Phys. Rev. Lett. 96 (2006)

    Google Scholar 

  28. Mroue, A., et al.: Phys. Rev. Lett. 111, 241104 (2013)

    Article  Google Scholar 

  29. Weber, J.: Phys. Rev. Lett. 24, 276 (1970)

    Article  Google Scholar 

  30. Weiss, R.: MIT Report No. 105 (1972)

    Google Scholar 

  31. Press, W., Thorne, K.: Annu. Rev. Astron. Astrophys. 10, 335 (1972)

    Article  Google Scholar 

  32. Drever, R.W.P., et al.: Laser interferometer gravitational-wave observatory (LIGO). Technical report (1989)

    Google Scholar 

  33. Abbott, B.P., et al. [LIGO Scientific and Virgo collaborations]: Phys. Rev. Lett. 116, 061102 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S. (2020). Gravitational Waves: The Mathematical Background. In: Roy, P., Cao, X., Li, XZ., Das, P., Deo, S. (eds) Mathematical Analysis and Applications in Modeling. ICMAAM 2018. Springer Proceedings in Mathematics & Statistics, vol 302. Springer, Singapore. https://doi.org/10.1007/978-981-15-0422-8_34

Download citation

Publish with us

Policies and ethics