Skip to main content

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 582))

Abstract

Firstly, this paper introduces the industrial robot control system. Then, the development and research status of the open industrial robot control system are summarized, and this paper focuses on the hardware structure and software structure of the open industrial robot control system. And the application status of the typical multi-robot collaboration system is analyzed. Finally, the future development direction of the open robot control system is prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, R., Zhang, W., Zheng, W.: Discussion on the status quo and development of industrial robots. Intell. Robot 4, 37–39+65 (2018)

    Google Scholar 

  2. Wang, T., Tao, Y.: Current status and industrialization development strategy of industrial robot technology in China. J. Mech. Eng. 50(09), 1–13 (2014)

    Article  Google Scholar 

  3. Meng, M., Zhou, C., Chen, L., Feng, W., Miao, C.: A review of the development and application of industrial robots. J. Shanghai Jiaotong Univ. 50(S1), 98–101 (2016)

    Google Scholar 

  4. Sun, B., Yang, L.: Overview of open robot controllers. Robot 23(4), 374–378 (2001)

    Google Scholar 

  5. Song, W.: Research and development of key technologies of open intelligent control system based on multi-robot. Tianjin University, Tianjin (2012)

    Google Scholar 

  6. Gao, G., Hou, J.: China’s manufacturing industry from the perspective of Industry 4.0–Dilemma, Motivation and Orientation. J. Theor. Perspect. 11, 46–48 (2015)

    Google Scholar 

  7. Li, H., Ruwang, M., et al.: Perspective of industrial seismic instrument assembly. In: 2016 16th International Symposium on Communications and Information Technologies (ISCIT) (2016)

    Google Scholar 

  8. Wang, Z., Yunjiang, L., Yue, L., et al.: An open control system architecture with an on-line velocity filter for industrial robots. In: 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO) (2012)

    Google Scholar 

  9. Pan, L.: Research on Open Robot Controller and Related Technology. Huazhong University of Science and Technology, Wuhan (2007)

    Google Scholar 

  10. Lu, D., Zheng, S.: Summary of research on open control system of industrial robots. Electr. Autom. 39(01), 88–91 (2017)

    Google Scholar 

  11. Wang, N., Qu, D.: The open architecture of industrial robot control system. Robotics 03, 256–261 (2002)

    Google Scholar 

  12. Li, J.: Research on PUMA560 robot control system on open structure platform. Zhejiang University, Hangzhou (2002)

    Google Scholar 

  13. Jerry, D., Jeremy, H.G., et al.: Hybrid systems in robotics. IEEE Robot. Autom. Mag. 18, 33–43 (2011)

    Google Scholar 

  14. Kilyen, A.O., Letia, T.S.: Hybrid robot controller synthesis with GP and UETPN. In: 2018 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, pp. 1–6 (2018)

    Google Scholar 

  15. Lutz, P., Sperling, W.: OSACA-the vendor neutral control architecture. In: Proceedings of the European Conference on Integration in Manufacturing, Dresden, Germany, pp. 247–256 (1997)

    Google Scholar 

  16. Li, Z., Liu, B.: Research on open robot control architecture based on OSACA. Combined Mach. Tool Autom. Process. Technol. 03, 70–72+74 (2003)

    Google Scholar 

  17. Zhunan, F.: Research on SCARA manipulator open control system based on OSACA model. Zhejiang University (2019)

    Google Scholar 

  18. Chihiro, S., Okano, A.: Open controller architecture OSEC-II: architecture overview and prototype systems. In: Proceedings of IEEE 6th International Conference on Emerging Technologies and Factory Automation, pp. 543–550 (2017)

    Google Scholar 

  19. Ma, X., Han, Z., Wang, Y., et al.: Development of a PC-based open architecture software-CNC system. Chin. J. Aeronaut. 03, 272–281 (2007)

    Article  Google Scholar 

  20. https://omac.org/

  21. Tang, F., Geng, S.R., Qiang, C., et al.: Open robot control platform based on LSOA. Appl. Mech. Mater. (2013)

    Google Scholar 

  22. Xia, J., Zhang, H., Wang, G., et al.: Study on open robotic plasma spray forming system based on ethernet. Robot 01, 17–21 (2008)

    Google Scholar 

  23. Zhenhua, W., Xu, L., et al.: Research and development of Open 6R industrial robot control system based on Win CE. Combined Mach. Tool Autom. Process. Technol. 6, 76–80 (2018)

    Google Scholar 

  24. Abdelfetah, H., Abderraouf, M., et al.: A survey of development frameworks for robotics. In: 8th International Conference on Modelling, Identification and Control (ICMIC-2016), pp. 67–72

    Google Scholar 

  25. Ding, L., Wang, D., Li, T., Yang, Y.: A brief introduction to CLARAty software system. Mach. Tool Hydraul. 40(17), 118–122 (2012)

    Google Scholar 

  26. Montemerlom, R., Thrun, S.: Perspectives on standardization in mobile robot programming: the Carnegie Mellon navigation (CARMEN) toolkit. In: 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003. Proceedings, vol. 3. IEEE, New York, pp. 2436–2441 (2003)

    Google Scholar 

  27. Brooks, A., Kaupp, T., Makarenko, A., et al.: Orca: components for robotics. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Workshop on Robotic Standardization, pp. 163–168 (2006)

    Google Scholar 

  28. Panagiota, T., Sotiris, M., George, M., et al.: ROS based coordination of human robot cooperative assembly tasks-an industrial case study. Proc. CIRP 37(1), 254–259 (2015)

    Google Scholar 

  29. Liu, F.: Design and implementation of ROS-based intelligent industrial robot system. University of Chinese Academy of Sciences (Institute of Computing Technology, Chinese Academy of Sciences) (2017)

    Google Scholar 

  30. Maosheng, T., Tang, X., Zhang, Y.: Implementation and design of open control system for industrial robot based on double CPU. In: 2011 IEEE 2nd International Conference on Computing Control and Industrial Engineering (2011)

    Google Scholar 

  31. Mou, H.: Analysis and research on motion control of industrial robots. Electr. Technol. Softw. Eng. 23, 115–117 (2018)

    Google Scholar 

  32. Huang, J.: Research on Cartesian impedance control system of manipulator in human-machine collision environment. Harbin: Harbin Institute of Technology (2009)

    Google Scholar 

  33. Zhongzhong, H.: Design of open industrial robot control system based on multi-axis motion control card. Hefei University of Technology (2015)

    Google Scholar 

  34. Wang, T., Qu, D.: The open architecture of industrial robot control system. Robot 24(3), 256–261 (2002)

    Google Scholar 

  35. Tian, S.: Development of six-axis robot control system based on EtherCAT bus. South China University of Technology (2018)

    Google Scholar 

  36. Hu, G.: Research on open networked robot communication platform and control method. Southeast University (2005)

    Google Scholar 

  37. Kocian, J., Kozio, R.: An outline of advanced process control and self tuning techniques on plc background. In: 2010 IEEE Conference on Emerging Technologies and Factory Automation (ETFA), pp. 1–8. IEEE, New York (2010)

    Google Scholar 

  38. Qin, Y., Luo, D.: Design of welding control system based on robot. In: 2016 International Conference on Electrical Engineering and Automation (ICEEA 2016)

    Google Scholar 

  39. Yan, H.: Research and implementation of industrial robot system based on PLC control. Southeast University, Nanjing (2005)

    Google Scholar 

  40. Wang, Y., Chen, K., et al.: Design of control system for material sorting manipulator based on PLC. J. Qingdao Technol. Univ. 40(01), 108–112 (2019)

    Google Scholar 

  41. Yassine, B.: Distributed second order sliding mode control for networked robots synchronisation: theory and experimental results. Int. J. Modell. Ident. Control (IJMIC2018)

    Google Scholar 

  42. Youngwoo, L., Wonsuk, L.: Reliable software architecture design with EtherCAT for a rescue robot. In: 2016 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), pp. 34–39 (2016)

    Google Scholar 

  43. Chen, Y., Chang, S., Feng, Q.: Industrial robot system based on CPS method. J. Beijing Univ. Aeronaut. Astronaut. 44(05), 931–938 (2018)

    Google Scholar 

  44. Liu, F.: Design and implementation of ROS-based intelligent industrial robot system. University of Chinese Academy of Sciences (Shenyang Institute of Computing Technology, Chinese Academy of Sciences) (2017)

    Google Scholar 

  45. http://www.willowgarage.com/pages/software/ros-platform

  46. http://singularityhub.com/2010/11/08/publish-monday-robot-operatingsystem-celebrates-3rd-birthday-with-exponential-growth-video/

  47. Bruyninckxh. Open robot control software: the OROCOS project. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics & Automation, pp. 2523–2528 (2001)

    Google Scholar 

  48. http://www.orocos.org/

  49. McKenzie, A., Gay, D., et al.: Comparing temporally aware mobile robot controllers built with Sun’s Java Real-Time System, OROCOS’s real-time toolkit and player. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (2010)

    Google Scholar 

  50. http://www.tuling123.com/os/index.jhtml?nav=prod

  51. Microsoft. Microsoft Robotics Studio. http://www.microsoft.com/robotics/

  52. iRobot. iRobot AWARE. http://www.irobot.cn/

  53. Player. Playe. http://playerstage.sourceforge.net/

  54. Muratore, L., Laurenzi, A., et al.: XbotCore: a real-time cross-robot software platform. In: IEEE International Conference on Robotic Computing, IRC17 (2017)

    Google Scholar 

  55. Jia, T., Wen, X.: A review of group robot systems research. J. Shenyang Aerosp. Univ. 35(05), 78–84 (2018)

    Google Scholar 

  56. Yang, K.: Multi-robot coordinated motion control system. University of Electronic Science and Technology (2010)

    Google Scholar 

  57. Li, L., Li, Y., Bing, L.: Formation control for multiple robots in uncertain environments. In: Proceedings of the 10th World Congress on Intelligent Control and Automation (2012)

    Google Scholar 

  58. Gan, Y., Dai, X.: Design of multi-robot collaborative fixtureless welding system. Control Eng. 20(03), 397–403 (2013)

    Google Scholar 

  59. Huang, Y.: Research on the space synchronization tracking control method for multi-manipulator system, p. 2. Beijing Mechanics Association (2013)

    Google Scholar 

  60. Wang, Y., Tan, D., Huang, J., et al.: A multi-agent robot collaborative assembly system. High-Tech Commun. 07, 8–12 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, L., Gong, J., Chen, J. (2020). Industrial Robot Control Systems: A Review. In: Wang, R., Chen, Z., Zhang, W., Zhu, Q. (eds) Proceedings of the 11th International Conference on Modelling, Identification and Control (ICMIC2019). Lecture Notes in Electrical Engineering, vol 582. Springer, Singapore. https://doi.org/10.1007/978-981-15-0474-7_101

Download citation

Publish with us

Policies and ethics