Skip to main content

Fluorescent Chemosensor for Detection of Water Pollutants

  • Chapter
  • First Online:
Sensors in Water Pollutants Monitoring: Role of Material

Part of the book series: Advanced Functional Materials and Sensors ((AFMS))

Abstract

Fluorescent chemosensors for detection of water pollutants (organic, inorganic and biological) are of primary importance due to the pressing need for safe drinking water. This chapter focuses on the application of fluorescence spectroscopy, an excellent analytical technique for sensing various water pollutants due to its improved sensitivity and operational simplicity. The recent advances in the development of fluorophores and the respective photophysical phenomena involved for selective detection of water pollutants including toxic metal ions and pathogens are discussed in detail. Furthermore, the future prospects of fluorescent sensors for rapid and on-site detection of water pollutants are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Forde, M., Izurieta, R., & Ôrmeci, B. (2019). Water and health. Water Quality in the Americas, p. 27.

    Google Scholar 

  2. Richardson, S. D., & Ternes, T. A. (2017). Water analysis: Emerging contaminants and current issues. Analytical Chemistry, 90(1), 398–428.

    Article  CAS  Google Scholar 

  3. Priiss, A., & Havelaar, A. (2001). The global burden of disease study and applications in water, sanitation and hygiene. Water Quality: Guidelines, Standards & Health, 43.

    Google Scholar 

  4. Kapur, R. (2019). Management of water resources. Acta Scientific Agriculture, 3, 100–104.

    Article  Google Scholar 

  5. Hunter, P. R. (2003). Climate change and waterborne and vector-borne disease. Journal of Applied Microbiology, 94, 37–46.

    Article  Google Scholar 

  6. Evans, A. E., Mateo-Sagasta, J., Qadir, M., Boelee, E., & Ippolito, A. (2019). Agricultural water pollution: key knowledge gaps and research needs. Current opinion in environmental sustainability, 36, 20–27.

    Article  Google Scholar 

  7. Ashbolt, N. J. (2015). Microbial contamination of drinking water and human health from community water systems. Current environmental health reports, 2(1), 95–106.

    Article  CAS  Google Scholar 

  8. Danner, M.C., Robertson, A., Behrends, V. and Reiss, J., 2019. Antibiotic pollution in surface fresh waters: Occurrence and effects. Science of The Total Environment.

    Google Scholar 

  9. Tallon, P., Magajna, B., Lofranco, C., & Leung, K. T. (2005). Microbial indicators of faecal contamination in water: a current perspective. Water, Air, and Soil pollution, 166(1–4), 139–166.

    Article  CAS  Google Scholar 

  10. World Health Organization, 2019. Typhoid vaccines: WHO position paper, March 2018–Recommendations.Vaccine, 37(2), pp. 214–216.

    Google Scholar 

  11. Daughton, C. G. (2004). Non-regulated water contaminants: emerging research. Environmental Impact Assessment Review, 24(7–8), 711–732.

    Article  Google Scholar 

  12. Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., et al. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65.

    Article  Google Scholar 

  13. Kumar, M., & Puri, A. (2012). A review of permissible limits of drinking water. Indian journal of occupational and environmental medicine, 16(1), 40.

    Article  Google Scholar 

  14. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J. and Mayes, A.M., 2010. Science and technology for water purification in the coming decades. In Nanoscience and technology: a collection of reviews from nature Journals (pp. 337–346).

    Google Scholar 

  15. Zulkifli, S. N., Rahim, H. A., & Lau, W. J. (2018). Detection of contaminants in water supply: a review on state-of-the-art monitoring technologies and their applications. Sensors and Actuators B: Chemical, 255, 2657–2689.

    Article  CAS  Google Scholar 

  16. Hameed, S., Xie, L. and Ying, Y., 2018. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends in Food Science & Technology.

    Google Scholar 

  17. Chen, W., Westerhoff, P., Leenheer, J. A., & Booksh, K. (2003). Fluorescence excitation − emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science and Technology, 37(24), 5701–5710.

    Article  CAS  Google Scholar 

  18. Wasswa, J., Mladenov, N., & Pearce, W. (2019). Assessing the potential of fluorescence spectroscopy to monitor contaminants in source waters and water reuse systems. Environmental Science: Water Research & Technology, 5(2), 370–382.

    CAS  Google Scholar 

  19. Ahmad, S. R., & Reynolds, D. M. (1999). Monitoring of water quality using fluorescence technique: prospect of on-line process control. Water Research, 33(9), 2069–2074.

    Article  CAS  Google Scholar 

  20. Carstea, E. M., Bridgeman, J., Baker, A., & Reynolds, D. M. (2016). Fluorescence spectroscopy for wastewater monitoring: a review. Water Research, 95, 205–219.

    Article  CAS  Google Scholar 

  21. Wu, D., Sedgwick, A. C., Gunnlaugsson, T., Akkaya, E. U., Yoon, J., & James, T. D. (2017). Fluorescent chemosensors: the past, present and future. Chemical Society Reviews, 46(23), 7105–7123.

    Article  CAS  Google Scholar 

  22. Parkesh, R., Veale, E. B., & Gunnlaugsson, T. (2011). Fluorescent detection principles and strategies (pp. 229–252). Chemosensors: Principles, Strategies, and Applications.

    Google Scholar 

  23. Das, A. K., & Goswami, S. (2017). 2-Hydroxy-1-naphthaldehyde: a versatile building block for the development of sensors in supramolecular chemistry and molecular recognition. Sensors and Actuators B: Chemical, 245, 1062–1125.

    Article  CAS  Google Scholar 

  24. He, L., Dong, B., Liu, Y., & Lin, W. (2016). Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chemical Society Reviews, 45(23), 6449–6461.

    Article  CAS  Google Scholar 

  25. Sun, X., Wang, Y., & Lei, Y. (2015). Fluorescence based explosive detection: from mechanisms to sensory materials. Chemical Society Reviews, 44(22), 8019–8061.

    Article  CAS  Google Scholar 

  26. De Silva, A. P., Moody, T. S., & Wright, G. D. (2009). Fluorescent PET (Photoinduced Electron Transfer) sensors as potent analytical tools. Analyst, 134(12), 2385–2393.

    Article  CAS  Google Scholar 

  27. J. Luo, Z. Xie, J.W.Y. Lam, L. Cheng, H. Chen, C. Qiu, H.S. Kwok, X. Zhan, Y. Liu, D. Zhu and B.Z. Tang, Chem. Commun. (2001) 1740–1741.

    Google Scholar 

  28. Wu, J., Liu, W., Ge, J., Zhang, H., & Wang, P. (2011). New sensing mechanisms for design of fluorescent chemosensors emerging in recent years. Chemical Society Reviews, 40(7), 3483–3495.

    Article  CAS  Google Scholar 

  29. Lee, M. H., Kim, J. S., & Sessler, J. L. (2015). Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chemical Society Reviews, 44(13), 4185–4191.

    Article  CAS  Google Scholar 

  30. Hong, Y., Lam, J. W., & Tang, B. Z. (2009). Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 29, 4332–4353.

    Article  CAS  Google Scholar 

  31. Gowri, A., Vignesh, R., & Kathiravan, A. (2019). Anthracene based AIEgen for picric acid detection in real water samples (p. 117144). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.

    Google Scholar 

  32. Tanwar, A. S., Hussain, S., Malik, A. H., Afroz, M. A., & Iyer, P. K. (2016). Inner filter effect based selective detection of nitroexplosive-picric acid in aqueous solution and solid support using conjugated polymer. ACS Sensors, 1(8), 1070–1077.

    Article  CAS  Google Scholar 

  33. Liu, H., Li, M., Xia, Y., & Ren, X. (2016). A turn-on fluorescent sensor for selective and sensitive detection of alkaline phosphatase activity with gold nanoclusters based on inner filter effect. ACS Applied Materials & Interfaces, 9(1), 120–126.

    Article  CAS  Google Scholar 

  34. Chen, S., Yu, Y. L., & Wang, J. H. (2018). Inner filter effect-based fluorescent sensing systems: a review. Analytica Chimica Acta, 999, 13–26.

    Article  CAS  Google Scholar 

  35. Tanwar, A. S., Adil, L. R., Afroz, M. A., & Iyer, P. K. (2018). Inner Filter Effect and Resonance Energy Transfer Based Attogram Level Detection of Nitroexplosive Picric Acid Using Dual Emitting Cationic Conjugated Polyfluorene. ACS sensors, 3(8), 1451–1461.

    Article  CAS  Google Scholar 

  36. Prodi, L. (2005). Luminescent chemosensors: from molecules to nanoparticles. New Journal of Chemistry, 29(1), 20–31.

    Article  CAS  Google Scholar 

  37. Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P., & Hupp, J. T. (2011). Metal–organic framework materials as chemical sensors. Chemical Reviews, 112(2), 1105–1125.

    Article  CAS  Google Scholar 

  38. Chen, L. Y., Wang, C. W., Yuan, Z., & Chang, H. T. (2014). Fluorescent gold nanoclusters: recent advances in sensing and imaging. Analytical Chemistry, 87(1), 216–229.

    Article  CAS  Google Scholar 

  39. Murphy, C.J., 2002. Peer reviewed: optical sensing with quantum dots.

    Google Scholar 

  40. Formica, M., Fusi, V., Giorgi, L., & Micheloni, M. (2012). New fluorescent chemosensors for metal ions in solution. Coordination Chemistry Reviews, 256(1–2), 170–192.

    Article  CAS  Google Scholar 

  41. Zhang, J., Zhou, R., Tang, D., Hou, X. and Wu, P., 2018. Optically-active nanocrystals for inner filter effect-based fluorescence sensing: Achieving better spectral overlap. TrAC Trends in Analytical Chemistry.

    Google Scholar 

  42. Liu, D., Wang, Z., & Jiang, X. (2011). Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale, 3(4), 1421–1433.

    Article  CAS  Google Scholar 

  43. Shang, L., & Dong, S. (2009). Design of fluorescent assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Analytical Chemistry, 81(4), 1465–1470.

    Article  CAS  Google Scholar 

  44. Han, L., Liu, S. G., Liang, J. Y., Ju, Y. J., Li, N. B., & Luo, H. Q. (2019). pH-mediated reversible fluorescence nanoswitch based on inner filter effect induced fluorescence quenching for selective and visual detection of 4-nitrophenol. Journal of Hazardous Materials, 362, 45–52.

    Article  CAS  Google Scholar 

  45. Gale, P. A., & Caltagirone, C. (2018). Fluorescent and colorimetric sensors for anionic species. Coordination Chemistry Reviews, 354, 2–27.

    Article  CAS  Google Scholar 

  46. Dutta, M., & Das, D. (2012). Recent developments in fluorescent sensors for trace-level determination of toxic-metal ions. TrAC Trends in Analytical Chemistry, 32, 113–132.

    Article  CAS  Google Scholar 

  47. Yan, X., Li, H., & Su, X. (2018). Review of optical sensors for pesticides. TrAC Trends in Analytical Chemistry, 103, 1–20.

    Article  CAS  Google Scholar 

  48. Rasheed, T., Bilal, M., Nabeel, F., Iqbal, H. M., Li, C., & Zhou, Y. (2018). Fluorescent sensor based models for the detection of environmentally-related toxic heavy metals. Science of the Total Environment, 615, 476–485.

    Article  CAS  Google Scholar 

  49. Zhou, Y., Zhang, J. F., & Yoon, J. (2014). Fluorescence and colorimetric chemosensors for fluoride-ion detection. Chemical Reviews, 114(10), 5511–5571.

    Article  CAS  Google Scholar 

  50. Wang, L., Cao, H. X., Pan, C. G., He, Y. S., Liu, H. F., Zhou, L. H., et al. (2019). A fluorometric aptasensor for bisphenol a based on the inner filter effect of gold nanoparticles on the fluorescence of nitrogen-doped carbon dots. Microchimica Acta, 186(1), 28.

    Article  CAS  Google Scholar 

  51. Wei, J., Yang, Y., Dong, J., Wang, S., & Li, P. (2019). Fluorometric determination of pesticides and organophosphates using nanoceria as a phosphatase mimic and an inner filter effect on carbon nanodots. Microchimica Acta, 186(2), 66.

    Article  CAS  Google Scholar 

  52. Si, F., Zou, R., Jiao, S., Qiao, X., Guo, Y., & Zhu, G. (2018). Inner filter effect-based homogeneous immunoassay for rapid detection of imidacloprid residue in environmental and food samples. Ecotoxicology and Environmental Safety, 148, 862–868.

    Article  CAS  Google Scholar 

  53. Zhao, Y., Zou, S., Huo, D., Hou, C., Yang, M., Li, J., et al. (2019). Simple and sensitive fluorescence sensor for methotrexate detection based on the inner filter effect of N, S co-doped carbon quantum dots. Analytica Chimica Acta, 1047, 179–187.

    Article  CAS  Google Scholar 

  54. Barati, A.., Shamsipur, M., & Abdollahi, H., (2016). Metal-ion-mediated fluorescent carbon dots for indirect detection of sulfide ions. Sensors and Actuators B: Chemical, 230, 289–297.

    Google Scholar 

  55. Shang, L., Qin, C., Jin, L., Wang, L., & Dong, S. (2009). Turn-on fluorescent detection of cyanide based on the inner filter effect of silver nanoparticles. Analyst, 134(7), 1477–1482.

    Article  CAS  Google Scholar 

  56. Zhang, D., Dong, Z., Jiang, X., Feng, M., Li, W., & Gao, G. (2013). A proof-of-concept fluorescent strategy for highly selective detection of Cr (VI) based on inner filter effect using a hydrophilic ionic chemosensor. Analytical Methods, 5(7), 1669–1675.

    Article  CAS  Google Scholar 

  57. Li, Y., Cai, J., Liu, F., Yu, H., Lin, F., Yang, H., Lin, Y., & Li, S. (2018). Highly crystalline graphitic carbon nitride quantum dots as a fluorescent probe for detection of Fe (III) via an innner filter effect. Microchimica Acta, 185(2), 134.

    Google Scholar 

  58. Dong, Y., Wang, R., Li, G., Chen, C., Chi, Y., & Chen, G. (2012). Polyamine-functionalized carbon quantum dots as fluorescent probes for selective and sensitive detection of copper ions. Analytical chemistry, 84(14), 6220–6224.

    Google Scholar 

  59. Chen, M., Kutsanedzie, F. Y., Cheng, W., Li, H., & Chen, Q. (2019). Ratiometric fluorescence detection of Cd2+ and Pb2+ by inner filter-based upconversion nanoparticle-dithizone nanosystem. Microchemical Journal, 144, 296–302.

    Article  CAS  Google Scholar 

  60. Liu, Y., Ouyang, Q., Li, H., Zhang, Z., & Chen, Q. (2017). Development of an inner filter effects-based upconversion nanoparticles–curcumin nanosystem for the sensitive sensing of fluoride ion. ACS Applied Materials & Interfaces, 9(21), 18314–18321.

    Article  CAS  Google Scholar 

  61. Gu, W., Pei, X., Cheng, Y., Zhang, C., Zhang, J., Yan, Y., et al. (2017). Black phosphorus quantum dots as the ratiometric fluorescence probe for trace mercury ion detection based on inner filter effect. ACS sensors, 2(4), 576–582.

    Article  CAS  Google Scholar 

  62. Xiao, S. J., Zhao, X. J., Hu, P. P., Chu, Z. J., Huang, C. Z., & Zhang, L. (2016). Highly photoluminescent molybdenum oxide quantum dots: one-pot synthesis and application in 2, 4, 6-trinitrotoluene determination. ACS Applied Materials & Interfaces, 8(12), 8184–8191.

    Article  CAS  Google Scholar 

  63. Almeida, M. I. G., Jayawardane, B. M., Kolev, S. D., & McKelvie, I. D. (2018). Developments of microfluidic paper-based analytical devices (μPADs) for water analysis: A review. Talanta, 177, 176–190.

    Article  CAS  Google Scholar 

  64. Bridgeman, J., Baker, A., Brown, D., & Boxall, J. B. (2015). Portable LED fluorescence instrumentation for the rapid assessment of potable water quality. Science of the Total Environment, 524, 338–346.

    Article  CAS  Google Scholar 

  65. Zhang, D., Zhang, Y., Lu, W., Le, X., Li, P., Huang, L., et al. (2019). Fluorescent Hydrogel-Coated Paper/Textile as Flexible Chemosensor for Visual and Wearable Mercury (II) Detection. Advanced Materials Technologies, 4(1), 1800201.

    Article  CAS  Google Scholar 

  66. Xu, W., Ren, C., Teoh, C. L., Peng, J., Gadre, S. H., Rhee, H. W., et al. (2014). An artificial tongue fluorescent sensor array for identification and quantitation of various heavy metal ions. Analytical Chemistry, 86(17), 8763–8769.

    Article  CAS  Google Scholar 

  67. Kassal, P., Steinberg, M. D., Horak, E., & Steinberg, I. M. (2018). Wireless fluorimeter for mobile and low cost chemical sensing: A paper based chloride assay. Sensors and Actuators B: Chemical, 275, 230–236.

    Article  CAS  Google Scholar 

  68. Belaïdi, F. S., Farouil, L., Salvagnac, L., Temple-Boyer, P., Séguy, I., Heully, J. L., et al. (2019). Towards integrated multi-sensor platform using dual electrochemical and optical detection for on-site pollutant detection in water. Biosensors & Bioelectronics, 132, 90–96.

    Article  CAS  Google Scholar 

  69. Adkins, J. A., Boehle, K., Friend, C., Chamberlain, B., Bisha, B., & Henry, C. S. (2017). Colorimetric and electrochemical bacteria detection using printed paper-and transparency-based analytic devices. Analytical Chemistry, 89(6), 3613–3621.

    Article  CAS  Google Scholar 

  70. Thale, P. B., Borase, P. N., & Shankarling, G. S. (2016). A “turn on” fluorescent and chromogenic chemosensor for fluoride anion: experimental and DFT studies. Inorganic Chemistry Frontiers, 3(7), 977–984.

    Article  CAS  Google Scholar 

  71. López Marzo, A. M., Pons, J., Blake, D. A., & Merkoçi, A. (2013). All-integrated and highly sensitive paper based device with sample treatment platform for Cd2+ immunodetection in drinking/tap waters. Analytical Chemistry, 85(7), 3532–3538.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunkumar Kathiravan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gowri, A., Kathiravan, A. (2020). Fluorescent Chemosensor for Detection of Water Pollutants. In: Pooja, D., Kumar, P., Singh, P., Patil, S. (eds) Sensors in Water Pollutants Monitoring: Role of Material. Advanced Functional Materials and Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-15-0671-0_9

Download citation

Publish with us

Policies and ethics