Skip to main content

Nanopolysaccharides in Environmental Treatments

  • Chapter
  • First Online:
Advanced Functional Materials from Nanopolysaccharides

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 15))

Abstract

In recent years, sustainable nanopolysaccharides, such as cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and chitin nanocrystals (ChNC) have been explored for improving the efficiency of environment prevention and purification. The potential application is attributed to their biodegradability, sustainability, renewability, biocompatibility, high aspect ratio and high capacity retention. Besides the outstanding advantages, the tailorability of the surface chemistry may enhance the binding efficiency. This review provides a detailed overview of pristine, surface-functionalized nanopolysaccharides and nanocomposites for applications in removal heavy metal ions, organic molecules, dyes and toxic gas in various wastewater treatment and gas adsorptions processes, such as adsorption, flocculation, and membrane filtration. It appears that abundant nanopolysaccharide materials have attracted increasing attention in promising environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali I, Gupta VK (2006) Advances in water treatment by adsorption technology. Nat Protoc 1:2661

    Article  CAS  Google Scholar 

  2. Dich J, Zahm SH, Hanberg A et al (1997) Pesticides and cancer. Cancer Causes Control 8:420–443

    Article  CAS  Google Scholar 

  3. Bhatnagar A, Sillanpää M (2010) Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—a review. Chem Eng J 157:277–296

    Article  CAS  Google Scholar 

  4. Satyanarayana KG, Arizaga GG, Wypych F (2009) Biodegradable composites based on lignocellulosic fibers—an overview. Prog Polym Sci 34:982–1021

    Article  CAS  Google Scholar 

  5. Ali I (2012) New generation adsorbents for water treatment. Chem Rev 112:5073–5091

    Article  CAS  Google Scholar 

  6. Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4:3274–3294

    Article  CAS  Google Scholar 

  7. Rajawat DS, Kardam A, Srivastava S et al (2013) Nanocellulosic fiber-modified carbon paste electrode for ultra trace determination of Cd(II) and Pb(II) in aqueous solution. Environ Sci Pollut Res 20:3068–3076

    Article  CAS  Google Scholar 

  8. Roy D, Semsarilar M, Guthrie JT et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38:2046–2064

    Article  CAS  Google Scholar 

  9. Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interfaces 7:53–67

    Article  CAS  Google Scholar 

  10. Dufresne A, Cavaillé JY, Helbert W (1997) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Poly Compos 18:198–210

    Article  CAS  Google Scholar 

  11. Favier V, Canova G, Cavaillé J et al (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355

    Article  CAS  Google Scholar 

  12. Lin N, Dufresne A (2013) Supramolecular hydrogels from in situ host–guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin. Biomacromol 14:871–880

    Article  CAS  Google Scholar 

  13. Lin N, Dufresne A (2013) Physical and/or chemical compatibilization of extruded cellulose nano-crystal reinforced polystyrene nanocomposites. Macromolecules 46(14):5570–5583

    Article  CAS  Google Scholar 

  14. Cui G, Liu M, Chen Y et al (2016) Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater. Carbohydr Polym 154:40–47

    Article  CAS  Google Scholar 

  15. Khajeh M, Laurent S, Dastafkan K (2013) Nanoadsorbents: classification, preparation, and applications (with emphasis on aqueous media). Chem Rev 113(10):7728–7768

    Article  CAS  Google Scholar 

  16. Carpenter AW, de Lannoy CF, Wiesner MR (2015) Cellulose nanomaterials in water treatment technologies. Environ Sci Tech 49:5277–5287

    Article  CAS  Google Scholar 

  17. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173

    Article  CAS  Google Scholar 

  18. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724

    Article  CAS  Google Scholar 

  19. Liu P, Sehaqui H, Tingaut P et al (2014) Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption. Cellulose 21:449–461

    Article  CAS  Google Scholar 

  20. Kardam A, Raj KR, Srivastava S et al (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393

    Article  CAS  Google Scholar 

  21. Yu X, Tong S, Ge M et al (2013) Adsorption of heavy metal ions from aqueous solution by car-boxylated cellulose nanocrystals. J Environ Sc 25:933–943

    Article  CAS  Google Scholar 

  22. Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47

    Article  CAS  Google Scholar 

  23. Sehaqui H, de Larraya UP, Liu P et al (2014) Enhancing adsorption of heavy metal ions onto bi-obased nanofibers from waste pulp residues for application in wastewater treatment. Cellulose 21:2831–2844

    Article  CAS  Google Scholar 

  24. Ma H, Hsiao BS, Chu B (2012) Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water. ACS Macro Lett 1:213–216

    Article  CAS  Google Scholar 

  25. Kardam A, Rohit Raj K, Srivastava S (2012) Novel nano cellulosic fibers for remediation of heavy metals from synthetic water. Int J Nano Dimens 3:155–162

    Google Scholar 

  26. Srivastava S, Kardam A, Raj KR (2012) Nanotech reinforcement onto cellulosic fibers: green re-mediation of toxic metals. Int J Green Nanotechnol 4:46–53

    Article  CAS  Google Scholar 

  27. Hokkanen S, Repo E, Suopajärvi T et al (2014) Adsorption of Ni(II): Cu(II) and Cd(II) from aqueous solutions by amino modified nanostructured microfibrillated cellulose. Cellulose 21:1471–1487

    Article  CAS  Google Scholar 

  28. Hokkanen S, Repo E, Westholm LJ et al (2014) Adsorption of Ni2+, Cd2+, PO43− and NO3 from aqueous solutions by nanostructured microfibrillated cellulose modified with carbonated hydroxyapatite. Chem Eng J 252:64–74

    Article  CAS  Google Scholar 

  29. Kanel SR, Manning B, Charlet L et al (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Tech 39:1291–1298

    Article  CAS  Google Scholar 

  30. Zhang N, Zang GL, Shi C et al (2016) A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(II) removal. J Hazard Maters 316:11–18

    Article  CAS  Google Scholar 

  31. Liu P, Borrell PF, Božič M et al (2015) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Maters 294:177–185

    Article  CAS  Google Scholar 

  32. Sirviö JA, Hasa T, Leiviskä T et al (2016) Bisphosphonate nanocellulose in the removal of vanadium(V) from water. Cellulose 23:689–697

    Article  CAS  Google Scholar 

  33. Sheikhi A, Safari S, Yang H et al (2015) Copper removal using electrosterically stabilized nano-crystalline cellulose. ACS Appl Mater Interfaces 7:11301–11308

    Article  CAS  Google Scholar 

  34. Mohammed N, Baidya A, Murugesan V et al (2016) Diffusion-controlled simultaneous sensing and scavenging of heavy metal ions in water using atomically precise cluster-cellulose nanocrystal composites. ACS Sustain Chem Eng 4:6167–6176

    Article  CAS  Google Scholar 

  35. Anirudhan TS, Deepa JR, Christa J (2016) Nanocellulose/nanobentonite composite anchored with multi-carboxyl functional groups as an adsorbent for the effective removal of cobalt(II) from nuclear industry wastewater samples. J Colloid Interface Sci 467:307–320

    Article  CAS  Google Scholar 

  36. Anirudhan TS, Shainy F (2015) Effective removal of mercury(II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose com-posite. J Colloid Interface Sci 456:22–31

    Article  CAS  Google Scholar 

  37. Hokkanen S, Repo E, Lou S et al (2015) Removal of arsenic(V) by magnetic nanoparticle activated microfibrillated cellulose. Chem Eng J 260:886–894

    Article  CAS  Google Scholar 

  38. Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118

    Article  CAS  Google Scholar 

  39. Zhou Y, Fu S, Zhang L et al (2014) Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr Polym 101:75–82

    Article  CAS  Google Scholar 

  40. Mohammed N, Grishkewich N, Tam KC (2018) Cellulose nanomaterials: Promising sustainable nanomaterials for application in water/wastewater treatment processes. Environ Sci-Nano 5:623–658

    Article  CAS  Google Scholar 

  41. Crini G (2006) Non-conventional low-cost adsorbents for dye removal: a review. Bioresour Technol 97:1061–1085

    Article  CAS  Google Scholar 

  42. Rafatullah M, Sulaiman O, Hashim R et al (2010) Adsorption of methylene blue on low-cost ad-sorbents: a review. J Hazard Maters 177(1–3):70–80

    Article  CAS  Google Scholar 

  43. He X, Male KB, Nesterenko PN et al (2013) Adsorption and desorption of methylene blue on porous carbon monoliths and nanocrystalline cellulose. ACS Appl Mater Inter 5:8796–8804

    Article  CAS  Google Scholar 

  44. Yu HY, Zhang DZ, Lu FF et al (2016) New approach for single-step extraction of carboxylated cellulose nanocrystals for their use as adsorbents and flocculants. ACS Sustain Chem Eng 4:2632–2643

    Article  CAS  Google Scholar 

  45. Batmaz R, Mohammed N, Zaman M et al (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21:1655–1665

    Article  CAS  Google Scholar 

  46. Jin L, Li W, Xu Q et al (2015) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22:2443–2456

    Article  CAS  Google Scholar 

  47. Eyley S, Thielemans W (2011) Imidazolium grafted cellulose nanocrystals for ion exchange appli-cations. Chem Commun 47:4177–4179

    Article  CAS  Google Scholar 

  48. Qiao H, Zhou Y, Yu F et al (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303

    Article  CAS  Google Scholar 

  49. Zhou C, Lee S, Dooley K et al (2013) A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. J Hazard Maters 263:334–341

    Article  CAS  Google Scholar 

  50. Zhou C, Wu Q, Lei T et al (2014) Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nanocomposite hydrogels. Chem Eng J 251:17–24

    Article  CAS  Google Scholar 

  51. Mohammed N, Grishkewich N, Berry RM et al (2015) Cellulose nanocrystal–alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions. Cellulose 22:3725–3738

    Article  CAS  Google Scholar 

  52. Mohammed N, Grishkewich N, Waeijen HA et al (2016) Continuous flow adsorption of methylene blue by cellulose nanocrystal-alginate hydrogel beads in fixed bed columns. Carbohydr Polym 136:1194–1202

    Article  CAS  Google Scholar 

  53. Wang Y, Zhang X, He X et al (2014) In situ synthesis of MnO2 coated cellulose nanofibers hybrid for effective removal of methylene blue. Carbohydr Polym 110:302–308

    Article  CAS  Google Scholar 

  54. Xie K, Zhao W, He X (2011) Adsorption properties of nano-cellulose hybrid containing polyhedral oligomeric silsesquioxane and removal of reactive dyes from aqueous solution. Carbohydr Polym 83:1516–1520

    Article  CAS  Google Scholar 

  55. Jin L, Sun Q, Xu Q et al (2015) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresour Technol 197:348–355

    Article  CAS  Google Scholar 

  56. Pei A, Butchosa N, Berglund LA et al (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9:2047–2055

    Article  CAS  Google Scholar 

  57. Nypelö T, Rodriguez-Abreu C, Kolen’ko YV et al (2014) Microbeads and hollow microcapsules obtained by self-assembly of Pickering magneto-responsive cellulose nanocrystals. ACS Appl Mater Inter 6:16851–16858

    Article  CAS  Google Scholar 

  58. Ma H, Wang S, Meng F et al (2017) A hydrazone-carboxyl ligand-linked cellulose nanocrystal aerogel with high elasticity and fast oil/water separation. Cellulose 24:797–809

    Article  CAS  Google Scholar 

  59. Yang X, Cranston ED (2014) Chemically cross-linked cellulose nanocrystal aerogels with shape recovery and superabsorbent properties. Chem Mater 26:6016–6025

    Article  CAS  Google Scholar 

  60. Jiang F, Hsieh YL (2014) Amphiphilic superabsorbent cellulose nanofibril aerogels. J Mater Chem A 2:6337–6342

    Article  CAS  Google Scholar 

  61. Abraham E, Weber DE, Sharon S et al (2017) Multifunctional cellulosic scaffolds from modified cellulose nanocrystals. ACS Appl Mater Inter 9:2010–2015

    Article  CAS  Google Scholar 

  62. Zhu G, Xu H, Dufresne A et al (2018) High-adsorption, self-extinguishing, thermal, and acoustic-resistance aerogels based on organic and inorganic waste valorization from cellulose nanocrystals and red mud. ACS Sustain Chem Eng 6:7168–7180

    Article  CAS  Google Scholar 

  63. Zhang Z, Sèbe G, Rentsch D et al (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668

    Article  CAS  Google Scholar 

  64. Korhonen JT, Kettunen M, Ras RH et al (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Inter 3:1813–1816

    Article  CAS  Google Scholar 

  65. Renault F, Sancey B, Charles J et al (2009) Chitosan flocculation of cardboard-mill secondary biological wastewater. Chem Eng J 155:775–783

    Article  CAS  Google Scholar 

  66. Divakaran R, Pillai VS (2001) Flocculation of kaolinite suspensions in water by chitosan. Water Res 35:3904–3908

    Article  CAS  Google Scholar 

  67. Nasser MS, James AE (2006) The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions. Sep Purif Technol 52:241–252

    Article  CAS  Google Scholar 

  68. Singh RP, Pal S, Mal D (2006) A high performance flocculating agent and viscosifiers based on cationic guar gum. Macromol Symp 242:227–234

    Article  CAS  Google Scholar 

  69. Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324

    Article  CAS  Google Scholar 

  70. Özacar M, Şengil İA (2003) Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloids Surf A 229:85–96

    Article  CAS  Google Scholar 

  71. Khiari R, Dridi-Dhaouadi S, Aguir C et al (2010) Experimental evaluation of eco-friendly flocculants prepared from date palm rachis. J Environ Sci 22:1539–1543

    Article  CAS  Google Scholar 

  72. Vandamme D, Eyley S, Van den Mooter G et al (2015) Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Bioresour Technol 194:270–275

    Article  CAS  Google Scholar 

  73. Eyley S, Vandamme D, Lama S et al (2015) CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals. Nanoscale 7:14413–14421

    Article  CAS  Google Scholar 

  74. Sun X, Danumah C, Liu Y et al (2012) Flocculation of bacteria by depletion interactions due to rod-shaped cellulose nanocrystals. Chem Eng J 198:476–481

    Article  CAS  Google Scholar 

  75. Suopajärvi T, Liimatainen H, Hormi O et al (2013) Coagulation–flocculation treatment of munici-pal wastewater based on anionized nanocelluloses. Chem Eng J 231:59–67

    Article  CAS  Google Scholar 

  76. Suopajärvi T, Koivuranta E, Liimatainen H et al (2014) Flocculation of municipal wastewaters with anionic nanocelluloses: Influence of nanocellulose characteristics on floc morphology and strength. J Environ Chem Eng 2:2005–2012

    Article  CAS  Google Scholar 

  77. Quinlan PJ, Tanvir A, Tam KC (2015) Application of the central composite design to study the flocculation of an anionic azo dye using quaternized cellulose nanofibrils. Carbohydr Polym 133:80–89

    Article  CAS  Google Scholar 

  78. Szyguła A, Guibal E, Palacín MA et al (2009) Removal of an anionic dye (Acid Blue 92) by coagulation–flocculation using chitosan. J Environ Manage 90:2979–2986

    Article  CAS  Google Scholar 

  79. Renault F, Sancey B, Badot PM et al (2009) Chitosan for coagulation/flocculation processes—an eco-friendly approach. Eur Polym J 45:1337–1348

    Article  CAS  Google Scholar 

  80. Bina B, Mehdinejad M, Nikaeen M et al (2009) Effectiveness of chitosan as natural coagulant aid in treating turbid waters. J Environ Health Sci Eng 6:247–252

    CAS  Google Scholar 

  81. Hesami F, Bina B, Ebrahimi A et al (2012) Arsenic removal by coagulation using ferric chloride and chitosan from water. Int J Environ Health Eng 1:1–6

    Article  Google Scholar 

  82. Leiviskä T, Sarpola A, Tanskanen J (2012) Removal of lipophilic extractives from debarking wastewater by adsorption on kaolin or enhanced coagulation with chitosan and kaolin. Appl Clay Sci 61:22–28

    Article  CAS  Google Scholar 

  83. Martínez TDCC, Rodríguez RA, Voltolina D et al (2016) Effectiveness of coagulants-flocculants for removing cells and toxins of Gymnodinium catenatum. Aquaculture 452:188–193

    Article  CAS  Google Scholar 

  84. Rios-Donato N, Navarro R, Avila-Rodriguez M et al (2012) Coagulation–flocculation of colloidal suspensions of kaolinite, bentonite, and alumina by chitosan sulfate. J Appl Polym Sci 123:2003–2010

    Article  CAS  Google Scholar 

  85. Wang JP, Chen YZ, Yuan SJ et al (2009) Synthesis and characterization of a novel cationic chi-tosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res 43:5267–5275

    Article  CAS  Google Scholar 

  86. Yang Z, Yang H, Jiang Z et al (2013) Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide. J Hazard Maters 254:36–45

    Article  CAS  Google Scholar 

  87. Yang Z, Shang Y, Lu Y et al (2011) Flocculation properties of biodegradable amphoteric chitosan-based flocculants. Chem Eng J 172:287–295

    Article  CAS  Google Scholar 

  88. Lu Y, Shang Y, Huang X et al (2011) Preparation of strong cationic chitosan-graft-polyacrylamide flocculants and their flocculating properties. Ind Eng Chem Res 50:7141–7149

    Article  CAS  Google Scholar 

  89. Park HB, Kamcev J, Robeson LM et al (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:eaab0530

    Article  CAS  Google Scholar 

  90. Pearce G (2007) Introduction to membranes: filtration for water and wastewater treatment. Filtr Separat 44:24–27

    Article  CAS  Google Scholar 

  91. Metreveli G, Wågberg L, Emmoth E et al (2014) A size-exclusion nanocellulose filter paper for virus removal. Adv Healthcare Mater 3:1546–1550

    Article  CAS  Google Scholar 

  92. Quellmalz A, Mihranyan A (2015) Citric acid cross-linked nanocellulose-based paper for size-exclusion nanofiltration. ACS Biomater Sci Eng 1:271–276

    Article  CAS  Google Scholar 

  93. Asper M, Hanrieder T, Quellmalz A et al (2015) Removal of xenotropic murine leukemia virus by nanocellulose based filter paper. Biologicals 43:452–456

    Article  CAS  Google Scholar 

  94. Ma H, Burger C, Hsiao BS et al (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282

    Article  CAS  Google Scholar 

  95. Ma H, Burger C, Hsiao BS et al (2011) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromol 13:180–186

    Article  CAS  Google Scholar 

  96. Wang R, Guan S, Sato A et al (2013) Nanofibrous microfiltration membranes capable of remov-ing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382

    Article  CAS  Google Scholar 

  97. Wang X, Yeh TM, Wang Z et al (2014) Nanofiltration membranes prepared by interfacial polymerization on thin-film nanofibrous composite scaffold. Polymer 55:1358–1366

    Article  CAS  Google Scholar 

  98. Wang Z, Ma H, Hsiao BS et al (2014) Nanofibrous ultrafiltration membranes containing cross-linked poly (ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer 55:366–372

    Article  CAS  Google Scholar 

  99. Karim Z, Mathew AP, Grahn M et al (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676

    Article  CAS  Google Scholar 

  100. Karim Z, Claudpierre S, Grahn M et al (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428

    Article  CAS  Google Scholar 

  101. Xiong R, Kim HS, Zhang S et al (2017) Template-guided assembly of silk fibroin on cellulose nanofibers for robust nanostructures with ultrafast water transport. ACS Nano 11:12008–12019

    Article  CAS  Google Scholar 

  102. Yang R, Aubrecht KB, Ma H et al (2014) Thiol-modified cellulose nanofibrous composite membranes for chromium(VI) and lead(II) adsorption. Polymer 55:1167–1176

    Article  CAS  Google Scholar 

  103. Cruz-Tato P, Ortiz-Quiles EO, Vega-Figueroa K et al (2017) Metalized nanocellulose composites as a feasible material for membrane supports: design and applications for water treatment. Environ Sci Tech 51:4585–4595

    Article  CAS  Google Scholar 

  104. Lalia BS, Guillen E, Arafat HA et al (2014) Nanocrystalline cellulose reinforced PVDF-HFP membranes for membrane distillation application. Desalination 332:134–141

    Article  CAS  Google Scholar 

  105. Karl TR, Trenberth KE (2003) Modern global climate change. Science 302:1719–1723

    Article  CAS  Google Scholar 

  106. Nel A, Xia T, Mädler L et al (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  107. Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18:5326–5334

    Article  CAS  Google Scholar 

  108. Bhardwaj R, Mohanty AK, Drzal LT et al (2006) Renewable resource-based green composites from recycled cellulose fiber and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Biom-acromolecules 7:2044–2051

    Article  CAS  Google Scholar 

  109. Mubashir M, Yeong YF, Lau KK et al (2018) Efficient CO2/N2 and CO2/CH4 separation using NH2-MIL-53 (Al)/cellulose acetate (CA) mixed matrix membranes. Sep Purif Technol 199:140–151

    Article  CAS  Google Scholar 

  110. Matsumoto M, Kitaoka T (2016) Ultraselective gas separation by nanoporous metal–organic frameworks embedded in gas-barrier nanocellulose films. Adv Mater 28:1765–1769

    Article  CAS  Google Scholar 

  111. Valdebenito F, García R, Cruces K et al (2018) CO2 adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes. ACS Sustain Chem Eng 6:12603–12612

    Article  CAS  Google Scholar 

  112. Liu S, Zhang Y, Jiang H et al (2018) High CO2 adsorption by amino-modified bio-spherical cellulose nanofibres aerogels. Environ Chem Lett 16:605–614

    Article  CAS  Google Scholar 

  113. Sujan A, Pang SH, Zhu G et al (2019) Direct CO2 capture from air using poly (ethyleneimine)-loaded polymer/silica fiber sorbents. ACS Sustain Chem Eng 33:1745–1752

    Google Scholar 

  114. Hou C, Wu Y, Wang T et al (2018) Preparation of quaternized bamboo cellulose and its implication in direct air capture of CO2. Energ Fuel 33:1745–1752

    Article  CAS  Google Scholar 

  115. Shah KJ, Imae T (2016) Selective gas capture ability of gas-adsorbent-incorporated cellulose nanofiber films. Biomacromol 17:1653–1661

    Article  CAS  Google Scholar 

  116. Wu SY, Hsiao IC, Liu CM et al (2017) A novel bio-cellulose membrane and modified adsorption approach in CO2/H2 separation technique for PEM fuel cell applications. Int J Hydrogen Macromol 42:27630–27640

    Article  CAS  Google Scholar 

  117. Campbell S, Bernard FL, Rodrigues DM et al (2019) Performance of metal-functionalized rice husk cellulose for CO2 sorption and CO2/N2 separation. Fuel 239:737–746

    Article  CAS  Google Scholar 

  118. Zhang F, Dou J, Zhang H (2018) Mixed membranes comprising carboxymethyl cellulose (as capping agent and gas barrier matrix) and nanoporous ZIF-L nanosheets for gas separation applications. Polymers 10:1340

    Article  CAS  Google Scholar 

  119. Yang Q, Zhang M, Song S et al (2017) Surface modification of PCC filled cellulose paper by MOF-5 (Zn3(BDC)2) metal–organic frameworks for use as soft gas adsorption composite materials. Cellulose 24:3051–3060

    Article  CAS  Google Scholar 

  120. Kumar S, Prasad K, Gil JM et al (2018) Mesoporous zeolite-chitosan composite for enhanced capture and catalytic activity in chemical fixation of CO2. Carbohydr Polym 198:401–406

    Article  CAS  Google Scholar 

  121. Hsan N, Dutta PK, Kumar S et al (2019) Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. Int J Biol Macromol 125:300–306

    Article  CAS  Google Scholar 

  122. Zhang S, Tang N, Cao L et al (2016) Highly integrated polysulfone/polyacrylonitrile/polyamide-6 air filter for multilevel physical sieving airborne particles. ACS Appl Mater Inter 8:29062–29072

    Article  CAS  Google Scholar 

  123. Zhang Y, Yuan S, Feng X et al (2016) Preparation of nanofibrous metal–organic framework filters for efficient air pollution control. J Am Chem Soc 138:5785–5788

    Article  CAS  Google Scholar 

  124. Souzandeh H, Scudiero L, Wang Y et al (2017) A disposable multi-functional air filter: Paper towel/protein nanofibers with gradient porous structures for capturing pollutants of broad species and sizes. ACS Sustain Chem Eng 5:6209–6217

    Article  CAS  Google Scholar 

  125. Nemoto J, Saito T, Isogai A (2015) Simple freeze-drying procedure for producing nanocellulose aerogel-containing, high-performance air filters. ACS Appl Mater Inter 7:19809–19815

    Article  CAS  Google Scholar 

  126. Xu J, Liu C, Hsu PC et al (2016) Roll-to-roll transfer of electrospun nanofiber film for high-efficiency transparent air filter. Nano Lett 16:1270–1275

    Article  CAS  Google Scholar 

  127. Zhang S, Liu H, Zuo F et al (2017) A controlled design of ripple-like polyamide-6 nano-fiber/nets membrane for high-efficiency air filter. Small 13:1603151

    Article  CAS  Google Scholar 

  128. Ma S, Zhang M, Nie J et al (2018) Multifunctional cellulose-based air filters with high loadings of metal–organic frameworks prepared by in situ growth method for gas adsorption and antibacterial ap-plications. Cellulose 25:5999–6010

    Article  CAS  Google Scholar 

  129. Su Z, Zhang M, Lu Z et al (2018) Functionalization of cellulose fiber by in situ growth of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals for preparing a cellulose-based air filter with gas ad-sorption ability. Cellulose 25:1997–2008

    Article  CAS  Google Scholar 

  130. Yang Z, Miao H, Rui Z et al (2019) Enhanced formaldehyde removal from air using fully biodegradable chitosan grafted β-cyclodextrin adsorbent with weak chemical interaction. Polymers 11:276

    Article  CAS  Google Scholar 

  131. Souzandeh H, Johnson KS, Wang Y et al (2016) Soy-protein-based nanofabrics for highly efficient and multifunctional air filtration. ACS Appl Mater Inter 8:20023–20031

    Article  CAS  Google Scholar 

  132. Liu X, Souzandeh H, Zheng Y et al (2017) Soy protein isolate/bacterial cellulose composite membranes for high efficiency particulate air filtration. Compos Sci and Technol 138:124–133

    Article  CAS  Google Scholar 

  133. Kim SY, Yoon YH, Kim KS (2016) Performance of activated carbon-impregnated cellulose filters for indoor VOCs and dust control. Int J Environ Sci Technol 13:2189–2198

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the support of China Scholarship Council (CSC) under Grant No. 201806950016. LGP2 is part of the LabEx Tec 21 (Investissements d’Avenir—grant agreement n° ANR-11-LABX-0030) and of the PolyNat Carnot Institut (Investissements d’Avenir—grant agreement n° ANR-11-CARN-030-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Dufresne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, G., Lin, N., Dufresne, A. (2019). Nanopolysaccharides in Environmental Treatments. In: Lin, N., Tang, J., Dufresne, A., Tam, M. (eds) Advanced Functional Materials from Nanopolysaccharides. Springer Series in Biomaterials Science and Engineering, vol 15. Springer, Singapore. https://doi.org/10.1007/978-981-15-0913-1_7

Download citation

Publish with us

Policies and ethics