Skip to main content

Mechanically Flexible Nonvolatile Field Effect Transistor Memories with Ferroelectric Polymers

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

  • 1858 Accesses

Abstract

Great efforts have been devoted to improve the properties of nonvolatile memory with field effect transistor architecture containing ferroelectric polymers (NV-FeFETs) due to the potential advantages of the ferroelectric polymers including their low cost, easy fabrication based on solution processes, and mechanical flexibility. Here, we review the current status of development in particular on mechanically flexible NV-FeFETs. In addition, recent researches that demonstrate the importance of the analysis techniques to characterize the mechanical properties of thin films composing a FeFET are discussed, including nano-indentation and nano-scratch test.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Jang, F. Pan, K. Braam, V. Subramanian, Adv. Mater. 24, 3573 (2012)

    Google Scholar 

  2. S. Lee, H. Kim, D.-J. Yun, S.-W. Rhee, K. Yong, Appl. Phys. Lett. 95, 262113 (2009)

    Google Scholar 

  3. C.-H. Cheng, F.-S. Yeh, A. Chin, Adv. Mater. 23, 902 (2011)

    Google Scholar 

  4. S.-J. Kim, J.-S. Lee, Nano Lett. 10, 2884–2890 (2010)

    Google Scholar 

  5. S.-J. Kim, J.-M. Song, J.-S. Lee, J. Mater. Chem. 21, 14516 (2011).

    Google Scholar 

  6. Y. Zhou, S.-T. Han, Z.-X. Xu, V.A.L. Roy, Nanotechnology 23, 344014 (2012)

    Google Scholar 

  7. A.K. Tripathi, A.J.J.M. van Breeman, J. Shen, Q. Gao, M.G. Ivan, K. Reimann, E.R. Meinders, H. Gelinck, Adv. Mater. 23, 4146 (2011)

    Google Scholar 

  8. G.-G. Lee, E. Tokumitsu, S.-M. Yoon, Y. Fujisaki, J.-W. Yoon, H. Ishiwara, Appl. Phys. Lett. 99, 012901 (2011).

    Google Scholar 

  9. A. van Breemen, B. Kam, B. Cobb, F.G. Rodriguez, G. van Heck, K. Myny, A. Marrani, V. Vinciguerra, G. Gelinck, Org. Electron. 14, 1966 (2013)

    Google Scholar 

  10. S.-W. Jung, J.B. Koo, C.W. Park, B.S. Na, J.-Y. Oh, S.S. Lee, J. Vac. Sci. Technol. B 33, 051201 (2015)

    Google Scholar 

  11. K.H. Lee, G. Lee, K. Lee, M.S. Oh, S. Im, S.-M. Yoon, Adv. Mater. 21, 4287 (2009)

    Google Scholar 

  12. S.-M. Yoon, S. Yang, S.-H.K. Park, J. Electrochem. Soc. 158, H892 (2011)

    Google Scholar 

  13. S.H. Noh, W. Choi, M.S. Oh, D.K. Hwang, K. Lee, S. Jang, E. Kim, S. Im, Appl. Phys. Lett. 90, 253504 (2007)

    Google Scholar 

  14. Y.T. Lee, P.J. Jeon, K.H. Lee, R. Ha, H.-J. Choi, S. Im, Adv. Mater. 24, 3020 (2012)

    Google Scholar 

  15. H.S. Lee, S.-W. Min, M.K. Park, Y.T. Lee, P.J. Jeon, J.H. Kim, S. Ryu, S. Im, Small 20, 3111 (2012)

    Google Scholar 

  16. M.A. Khan, J.A. Caraveo-Frescas, H.N. Alshareef, Org. Electron. 16, 9 (2015)

    Google Scholar 

  17. G.A. Salvatore, D. Bouvet, I. Stolitchnov, N. Setter, A.M. Ionescu, Solid-State Device Research Conference, 38th European (2008), p. 162

    Google Scholar 

  18. S. Das, J. Appenzeller, Nano Lett. 11, 4003 (2011)

    Google Scholar 

  19. K.H. Lee, G. Lee, K. Lee, M.S. Oh, S. Im, Appl. Phys. Lett. 94, 093304 (2009)

    Google Scholar 

  20. M.A. Khan, U.S. Bhansali, H.N. Alshareef, Adv. Mater. 24, 2165 (2012)

    Google Scholar 

  21. B. Kam, X. Li, C. Cristoferi, E.C.P. Smits, A. Mityashin, S. Schols, J. Genoe, G. Gelinck, P. Heremans, 101, 033304 (2012)

    Google Scholar 

  22. B. Kam, T.-H. Ke, A. Chasin, M. Tyagi, C. Cristoferi, K. Tempelarrs, A.J.J.M. van Breemen, K. Myny, S. Schols, J. Genoe, G.H. Gelinck, P. Heremans, IEEE Electron Device Lett. 35, 539 (2014)

    Google Scholar 

  23. J. Chang, C.H. Shin, Y.J. Park, S.J. Kang, H.J. Jeong, K.J. Kim, C.J. Hawler. T.P. Russell, D.Y. Ryu, C. Park, Org. Electron. 10, 849 (2009)

    Google Scholar 

  24. W.-H. Kim, J.-H. Bae, M.-H. Kim, C.-M. Keum, J. Park, S.-D. Lee, J. Appl. Phys. 109, 024508 (2011)

    Google Scholar 

  25. C.W. Choi, A.A. Prabu, Y.M. Kim, S. Yoon, K.J. Kim, C. Park, Appl. Phys. Lett. 93, 182902 (2008)

    Google Scholar 

  26. S.J. Kang, Y.J. Park, J. Sung, P.S. Jo, B.O. Cho, C. Park, Appl. Phys. Lett. 92, 012921 (2008)

    Google Scholar 

  27. T. Kanashima, K. Yabe, M. Okuyama, Jpn. J. Appl. Phys. 51, 02BK06 (2012)

    Google Scholar 

  28. C.A. Nguyen, S.G. Mhaisalkar, J. Ma, P.S. Lee, Org. Electron. 9, 1087 (2008)

    Google Scholar 

  29. Y.J. Park, S.J. Kang, B. Lotz, M. Brinkmann, A. Thierry, K.J. Kim, C. Park, Macromolecules 41, 8648 (2008)

    Google Scholar 

  30. T. Kanashima, Y. Katsura, M. Okuyama, Jpn. J. Appl. Phys. 53, 04ED11 (2014)

    Google Scholar 

  31. S.J. Kang, I. Bae, Y.J. Park, T.H. Park, J. Sung, S.C. Yoon, K.H. Kim, D.H. Choi, C. Park, 19, 1609 (2009)

    Google Scholar 

  32. S.J. Kang, I. Bae, Y.J. Shin, Y.J. Park, J. Huh, S.-M. Park, H.-C. Kim, C. Park, Nano Lett. 11, 138 (2011)

    Google Scholar 

  33. I. Bae, S.J. Kang, Y.J. Park, T. Furukawa, C. Park, 10, e54 (2010)

    Google Scholar 

  34. S.J. Kang, Y.J. Park, I. Bae, K.J. Kim, H.-C. Kim, S. Bauer, E.L. Thomas, C. Park, Adv. Funct. Mater. 19, 2812 (2009)

    Google Scholar 

  35. R.H. Kim, S.J. Kang, I. Bae, Y.S. Choi, Y.J. Park, C. Park, Org. Electron. 13, 491 (2012)

    Google Scholar 

  36. Y.J. Shin, S.J. Kang, H.J. Jung, Y.J. Park, I. Bae, D.H. Choi, C. Park, ACS Appl. Mater. Interfaces 3, 582 (2011)

    Google Scholar 

  37. I. Bae, R.H. Kim, S.K. Hwang, S.J. Kang, C. Park, ACS Appl. Mater. Interfaces 6, 15171 (2014)

    Google Scholar 

  38. R.H. Kim, H.J. Kim, I. Bae, S.K. Hwang, D. B. Velusamy, S.M. Cho, K. Takaishi, T. Muto, D. Hashizume, M. Uchiyama, P. Andre, F. Mathevet, B. Heinrich, T. Aoyama, D.-E. Kim, H. Lee, J.-C. Ribierre, C. Park, Nat. Commun. 5, 3583 (2014)

    Google Scholar 

  39. D.B. Velusamy, R.H. Kim, K. Takaishi, T. Muto, D. Hashizume, S. Lee, M. Uchiyama, T. Aoyama, J.-C. Ribierre, C. Park, Org. Electron. 15, 2719 (2014)

    Google Scholar 

  40. I. Bae, S.K. Hwang, R.H. Kim, S.J. Kang, C. Park, ACS Appl. Mater. Interfaces 5, 10696 (2013)

    Google Scholar 

  41. R.C.G. Naber, C. Tanase, P.W.M. Blom, G.H. Gelinck, A.W. Marsman, F.J. Touwslager, S. Setayesh, D.M. de Leeuw, Nat. Mater. 4, 243 (2005)

    Google Scholar 

  42. R.C.G. Naber, P.W.M. Blom, G.H. Gelinck, A. W. Marsman, D.M. de Leeuw, Adv. Mater. 17, 2692 (2005)

    Google Scholar 

  43. R.C.G. Naber, B. de Boer, D.M. de Leeuw, P. W.M. Blom, Appl. Phys. Lett. 87, 203509 (2005)

    Google Scholar 

  44. S.K. Hwang, I. Bae, S.M. Cho, R.H. Kim, H. J. Jung, C. Park, Adv. Funct. Mater. 23, 5484 (2013)

    Google Scholar 

  45. S.J. Kang, I. Bae, J.-H. Choi, Y.J. Park, P.J. Jo, Y. Kim, K.J. Kim, J.-M. Myoung, E. Kim, C. Park, J. Mater. Chem. 21, 3619 (2011)

    Google Scholar 

  46. S.K. Hwang, I. Bae, R.H. Kim, C. Park, Adv. Mater. 24, 5910 (2012)

    Google Scholar 

  47. F.A. Yildirim, C. Ucurum, R.R. Schliewe, R. M. Meixner, H. Goebel, W. Krautschneider, W. Bauhofer, Appl. Phys. Lett. 90, 083501 (2007)

    Google Scholar 

  48. S.K. Hwang, S.M. Cho, K.L. Kim, C. Park, Adv. Electron. Mater. 1, 1400042 (2015)

    Google Scholar 

  49. R.C.G. Naber, J. Massolt, M. Spijkman, K. Asadi, D.M. de Leeuw, P.W.M. Blom, Appl. Phys. Lett. 90, 113509 (2007)

    Google Scholar 

  50. S.K. Hwang, T.J. Park, K.L. Kim, S.M. Cho, B.J. Jeong, C. Park, ACS Appl. Mater. Interfaces 6, 20179 (2014)

    Google Scholar 

  51. S.K. Hwang, S.-Y. Min, I. Bae, S.M. Cho, K.L. Kim, T.-W. Lee, C. Park, Small, 10, 1976 (2014)

    Google Scholar 

  52. K. Asadi, P.W.M. Blom, D.M. de Leeuw, Appl. Phys. Lett. 99, 053306 (2011)

    Google Scholar 

  53. I. Katsouras, D. Zhao, M.-J. Spijkman, M. Li, P.W.M. Blo, D.M. de Leeuw, K. Asadi, Sci. Rep. 5, 12094 (2015)

    Google Scholar 

  54. T.N. Ng, B. Russo, B. Krusor, R. Kist, A.C. Arias, Org. Electron. 12, 2012 (2011)

    Google Scholar 

  55. G.H. Gelinck, A.W. Marsman, F.J. Touwslager, S. Setayesh, R.C.G. Naber, P.W.M. Blom, D.M. de Leeuw, Appl. Phys. Lett. 87, 092903 (2005)

    Google Scholar 

  56. T. Yagi, M. Tatemoto, J. Sako, Polymer J. 12, 209 (1980)

    Google Scholar 

  57. K. Tashiro, K. Takano, M. Kobayashi, Y. Chatani, H. Tadokoro, Ferroelectrics 57, 297 (1984)

    Google Scholar 

  58. R. Hasegawa, M. Kobayashi, H. Tadokoro, Polym. J. 3, 591 (1972)

    Google Scholar 

  59. R. Hasegawa, Y. Takahashi, Y. Chatani, H. Tadokoro, Polym. J. 3, 600 (1972)

    Google Scholar 

  60. M.A. Bachmann, J.B. Lando, Macromolecules 14, 40 (1981)

    Google Scholar 

  61. H. Ohigashi, Jpn. J. Appl. Phys. 24, 23 (1985)

    Google Scholar 

  62. S. Winhold, M.H. Litt, J.B. Lando, Macromolecules, 13, 1178 (1980)

    Google Scholar 

  63. G.T. Davis, J.E. McKinney, M.G. Broadhurst, S.C. Roth, J. Appl. Phys. 49, 4998 (1978)

    Google Scholar 

  64. B. Servet, J. Rault, J. de Phys. 40, 1145 (1979)

    Google Scholar 

  65. T. Furkawa, Phase Transitions 18, 143 (1989)

    Google Scholar 

  66. T. Furukawa, G.E. Johnson, H.E. Bair, Ferroelectrics 32, 61 (1981)

    Google Scholar 

  67. H.J. Kim, D.E. Kim, Tribol. Lett. 49, 85 (2013)

    Google Scholar 

  68. W. Oliver, G. Pharr, J. Mater. Res. 7, 1564 (1992)

    Google Scholar 

  69. M. Kanari, H. Kawamata, T. Wakamatsu, I. Ihara, Appl. Phys. Lett. 90, 061921 (2007)

    Google Scholar 

  70. J. Malzbender, J.M. J. den Toonder, A.R. Balkenende, G. de With, Mater. Sci. Eng. R. 36, 47 (2002)

    Google Scholar 

  71. B.R. Lawn, Proc. R. Soc. 299, 307 (1967)

    Google Scholar 

  72. M. Keer, C.H. Kuo, Int. J. Solids Struct. 29, 1819 (1992)

    Google Scholar 

  73. A.F. Bower, N.A. Fleck, J. Mech. Phys. Solids 42, 1375 (1994)

    Google Scholar 

  74. G.M. Hamilton, Proc. Inst. Mech. Eng. 197C, 53 (1983)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No.2014R1A2A1A01005046).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheolmin Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, R.H., Park, C. (2020). Mechanically Flexible Nonvolatile Field Effect Transistor Memories with Ferroelectric Polymers. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_13

Download citation

Publish with us

Policies and ethics