Skip to main content

Downsizing of High-Endurance and Long-Retention Pt/CaySr1−yBi2Ta2O9/(HfO2)x(Al2O3)1−x/Si FeFETs

  • Chapter
  • First Online:
Ferroelectric-Gate Field Effect Transistor Memories

Part of the book series: Topics in Applied Physics ((TAP,volume 131))

  • 1776 Accesses

Abstract

Downsizing process of Pt/CaySr1−yBi2Ta2O9/(HfO2)x(Al2O3)1−x/Si ferroelectric-gate field-effect transistors (FeFETs) were reviewed. Self-aligned-gate process was applied for developing the FeFETs. We measured memory windows, endurances, and retentions of the self-aligned-gate FeFETs carefully in order to confirm that they showed as good quality as the conventional non-self-aligned-gate FeFETs using the same materials and thicknesses in the gate stacks. In this work, high-quality FeFETs with metal gate lengths from sub-micron to 100 nm were introduced with measured evidences of the high endurances over 108 cycles and the long stable retentions for at least 105 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Tarui, T. Hirai, K. Teramoto, H. Koike, K. Nagashima, Appl. Surf. Sci. 113–114, 656 (1997)

    Google Scholar 

  2. C.A. Paz de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Nature (London) 374, 627 (1995)

    Google Scholar 

  3. Y. Noguchi, H. Shimizu, M. Miyayama, K. Oikawa, T. Kamiyama, Jpn. J. Appl. Phys. 40, 5812 (2001)

    Google Scholar 

  4. R.R. Das, P. Bhattacharya, W. Perez, R.S. Katiyar, S.B. Desu, Appl. Phys. Lett. 80, 637 (2002)

    Google Scholar 

  5. R.R. Das, P. Bhattacharya, W. Perez, R.S. Katiyar, Jpn. J. Appl. Phys. 42, 163 (2003)

    Google Scholar 

  6. AIST press release on October 24, 2002

    Google Scholar 

  7. S. Sakai, R. Ilangovan, IEEE Electron Devices Lett. 25, 369 (2004)

    Google Scholar 

  8. S. Sakai, M. Takahashi, R. Ilangovan, IEDM Tech. Dig. 915 (2004)

    Google Scholar 

  9. S. Sakai, R. Ilangovan, M. Takahashi, in Extended Abstracts of 2004 International Workshop on Dielectric Thin Films For Future ULSI Devices Science and Technology (IWDTF 2004), Tokyo (2004), pp. 55–56

    Google Scholar 

  10. S. Sakai, R. Ilangovan, M. Takahashi, Jpn. J. Appl. Phys. 43, 7876 (2004)

    Google Scholar 

  11. AIST press release on December 15, 2004

    Google Scholar 

  12. M. Takahashi, S. Sakai, Jpn. J. Appl. Phys. 44, L800 (2005)

    Google Scholar 

  13. Q.-H. Li, S. Sakai, Appl. Phys. Lett. 89, 222910 (2006)

    Google Scholar 

  14. M. Takahashi, T. Horiuchi, S. Wang, Q.-H. Li, S. Sakai, J. Vac. Sci. Technol. B 26, 1585 (2008)

    Google Scholar 

  15. Q.-H. Li, T. Horiuchi, S. Wang, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 24, 025012 (2009)

    Google Scholar 

  16. T. Horiuchi, M. Takahashi, K. Ohhashi, S. Sakai, Semicond. Sci. Technol. 24, 105026 (2009)

    Google Scholar 

  17. T. Horiuchi, M. Takahashi, Q.-H. Li, S. Wang, S. Sakai, Semicond. Sci. Technol. 25, 055005 (2010)

    Google Scholar 

  18. L.V. Hai, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 25, 115013 (2010)

    Google Scholar 

  19. L.V. Hai, M. Takahashi, S. Sakai, in Proceedings of 2011 Materials Research Society (MRS), 1337, Symposium Q—New Functional Materials and Emerging Device Architectures for Nonvolatile Memories, mrss11-1337-q02-02 (2011)

    Google Scholar 

  20. L.V. Hai, M. Takahashi, S. Sakai, in Proceedings of 3rd IEEE International Memory Workshop (2011), p. 175

    Google Scholar 

  21. W. Zhang, M. Takahashi, S. Sakai, Semicond. Sci. Technol. 28, 085003 (2013)

    Google Scholar 

  22. L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, in Extended Abstracts of the 2014 International Conference on Solid State Devices and Materials, Tsukuba (2014), p. 434

    Google Scholar 

  23. L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, Semicond. Sci. Technol. 30, 015024 (2015)

    Google Scholar 

  24. L.V. Hai, M. Takahashi, W. Zhang, S. Sakai, Jpn. J. Appl. Phys. 54, 088004 (2015)

    Google Scholar 

  25. S. Sakai, M. Takahashi, K. Motohashi, Y. Yamaguchi, N. Yui, T. Kobayashi, J. Vac. Sci. Technol. A 25, 903 (2007)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Le Van Hai and the other staffs for their diligent working.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsue Takahashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takahashi, M., Sakai, S. (2020). Downsizing of High-Endurance and Long-Retention Pt/CaySr1−yBi2Ta2O9/(HfO2)x(Al2O3)1−x/Si FeFETs. In: Park, BE., Ishiwara, H., Okuyama, M., Sakai, S., Yoon, SM. (eds) Ferroelectric-Gate Field Effect Transistor Memories. Topics in Applied Physics, vol 131. Springer, Singapore. https://doi.org/10.1007/978-981-15-1212-4_3

Download citation

Publish with us

Policies and ethics