Skip to main content

Nature-Inspired Algorithm-Based Feature Optimization for Epilepsy Detection

  • Conference paper
  • First Online:
Machine Intelligence and Signal Processing (MISP 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1085))

Included in the following conference series:

  • 482 Accesses

Abstract

Epilepsy or seizure is a prevalent neurological disorder present among all age of people. However, there is still a lack of precise automated detection methods for epilepsy. We present a computer-aided diagnosis system using nature-inspired algorithms for automatic detection of epilepsy from EEG data. Unlike the traditional approaches, we propose to employ nature-inspired algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for feature optimization before the detection process. Time–frequency domain features have been extracted using discrete wavelet transform from the time-series EEG data. Out of these features, discriminatory and optimized set of features are obtained using GA and PSO, which are used further to diagnose a person into an epileptic and non-epileptic class. As compared to the non-optimization-based approaches, the proposed method performs better in terms of improved detection accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Witte, H., Iasemidis, L.D., Litt, B.: Special issue on epileptic seizure prediction. IEEE Trans. Biomed. Eng. 50(5), 537–539 (2003)

    Article  Google Scholar 

  2. Nashef, L., Ryvlin, P.: Sudden unexpected death in epilepsy (SUDEP): update and reflections. Neurol. Clin. 27(4), 1063–1074 (2009)

    Article  Google Scholar 

  3. Tellez-Zenteno, J., Hernandez Ronquillo, L., Moien-Afshari, F., Samuel Wiebe, S.: Surgical outcomes in lesional and non-lesional epilepsy: a systematic review and meta-analysis, Epilepsy Res. 89 (2010)

    Article  Google Scholar 

  4. Hughes, J.R.: A review of sudden unexpected death in epilepsy: prediction of patients at risk. Epilepsy Behav. 14(2), 280–287 (2009)

    Article  Google Scholar 

  5. Hassan, A.R., Bhuiyan, M.I.H.: An automated method for sleep staging from EEG signals using normal inverse Gaussian parameters and adaptive boosting. Neurocomputing 219(5), 76–87 (2017)

    Article  Google Scholar 

  6. Kuzneicky, R.I.: MRI in cerebral developmental malformations and epilepsy. Magn Reson. Imaging 13, 1137–1145 (1995)

    Article  Google Scholar 

  7. Hassan, A.R., Bhuiyan, M.I.H.: A decision support system for automatic sleep staging from EEG signals using tunable Q-factor wavelet transform and spectral features. J. Neurosci. Methods 271(15), 107–118 (2016)

    Article  Google Scholar 

  8. Shoeb, A.: Application of Machine Learning to Epileptic Seizure Onset Detection and Treatment. Ph.D thesis, Massachusetts Institute of Technology (2009)

    Google Scholar 

  9. Hassan, A.R., Subasi, A.: A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowl. Based Syst. 128(15), 115–124 (2017)

    Article  Google Scholar 

  10. Wang, G., Worrell, G., Yang, L., Wilke, C., He, B.: Interictal spike analysis of high-density EEG in patients with partial epilepsy. Clin. Neurophysiol. 122(6), 1098–1105 (2011)

    Article  Google Scholar 

  11. Sanei, S., Chambers, J.A.: EEG Signal Processing. Wiley, New York (2007)

    Book  Google Scholar 

  12. Lehnertz, K.: Non-linear time series analysis of intracranial EEG recordings in patients with epilepsy–an overview. Int. J. Psychophysiol. 34(1), 45–52 (1999)

    Article  Google Scholar 

  13. Murro, A.M., King, D.W., Smith, J.R., Gallagher, B.B., Flanigin, H.F., Meador, K.: Computerized seizure detection of complex partial seizures. Electroencephalogr. Clin. Neurophysiol. 79(4), 330–333 (1991)

    Article  Google Scholar 

  14. Franaszczuk, P.J., Bergey, G.K.: Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr. 11(1), 13–21 (1998)

    Article  Google Scholar 

  15. Altunay, S., Telatar, Z., Erogul, O.: Epileptic EEG detection using the linear prediction error energy. Expert Syst. Appl. 37(8), 5661–5665 (2010)

    Article  Google Scholar 

  16. Zhang, Y., Zhou, W., Yuan, S., Yuan, Q.: Seizure detection method based on fractal dimension and gradient boosting. Epilepsy Behav. 43C(27), 30–38 (2014)

    Google Scholar 

  17. Hesse, C.W., James, C.J.: Tracking and detection of epileptic form activity in multichannel ictal EEG using signal subspace correlation of seizure source scalp topographies. Med. Biol. Eng. Compu. 45(10), 909–916 (2007)

    Article  Google Scholar 

  18. Kiranyaz, S., et al.: Automated patient-specific classification of long-term electroencephalography. J. Biomed. Inform. 49, 16–31 (2014)

    Article  Google Scholar 

  19. Ovchinnikov, A., et al.: An algorithm for real-time detection of spike-wave discharges in rodents. J. Neurosci. Methods 194(1), 172–178 (2010)

    Article  MathSciNet  Google Scholar 

  20. Conradsen, I., Beniczky, S., Wolf, P., Kjaer, T.W., Sams, T., Sorensen, H.B.: Automatic multi-modal intelligent seizure acquisition (MISA) system for detection of motor seizures from electromyographic data and motion data. Comput. Methods Programs Biomed. 107(2), 97–110 (2012)

    Article  Google Scholar 

  21. Kannathal, N., Choo, M.L., Acharya, U.R., Sadasivan, P.K.: Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80(3), 187–194 (2005)

    Article  Google Scholar 

  22. Faust, O., Acharya, U.R., Min, L.C., Sputh, B.H.: Automatic identification of epileptic and background EEG signals using frequency domain parameters. Int. J. Neural Syst. 20(2), 159–176 (2010)

    Article  Google Scholar 

  23. Shoeb, A., Guttag, J.: Application of machine learning to epiliptic seizure onset detection. In: 27th International Conference on Machine Learning (ICML), Haifa (2010)

    Google Scholar 

  24. Xiang, J., Li, C., Li, H., Cao, R., Wang, B., Han, X., Chen, J.: The detection of epileptic seizure signals based on fuzzy entropy. J. Neurosci. Methods. 243, 18–25 (2015)

    Article  Google Scholar 

  25. Wang, G., Sun, Z., Tao, R., Li, K., Bao, G., Yan, X.: Epileptic seizure detection based on partial directed coherence analysis. IEEE J. Biomed. Health Inform. 20(3), 873–879 (2016)

    Article  Google Scholar 

  26. Tiwari, A.K., Pachori, R.B., Kanhangad, V., Panigrahi, B.K.: Automated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signals. IEEE J. Biomed. Health. Inf. 21(4), 888–896 (2017)

    Article  Google Scholar 

  27. Patnaik, L.M., Manyam, O.K.: Epileptic EEG detection using neural networks and post-classification. Comput. Methods Programs Biomed. 91, 100–108 (2008)

    Article  Google Scholar 

  28. Goldberg, D.E., Holland, J.H.: Genetic algorithms and machine learning. Mach. Learn. 3(2), 95–99 (1988)

    Article  Google Scholar 

  29. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

    Google Scholar 

  30. Andrzejak, R.G. et al.: Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E. 64: 061907 (2001) [Online]. Available: http://www.meb.unibonn.de/epileptologie/science/physik/eegdata.html

  31. Nicolaou, N., Georgiou, J.: Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Syst. Appl. 39(1), 202–209 (2012)

    Article  Google Scholar 

  32. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizures detection in EEG using DWT-based ApEn and artificial neural network. Sign. Image Video Proc. 8(7), 1323–1334 (2014)

    Article  Google Scholar 

  33. Kumar, Y., Dewal, M.L., Anand, R.S.: Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing 133, 271–279 (2014)

    Article  Google Scholar 

  34. Pippa, E., Zacharaki, E.I., Mporas, I., Tsirka, V., Richardson, M.P., Koutroumanidis, M., Megalooikonomou, V.: Improving classification of epileptic and non-epileptic EEG events by feature selection. Neurocomputing 171, 576–585 (2016)

    Article  Google Scholar 

  35. Harpale, V., Bairagi, V.: An adaptive method for feature selection and extraction for classification of epileptic EEG signal in significant states, J. King Saud University Comput. Inform. Sci. (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, A., Sharma, S., Mukundan, V., Kumar, T., Pusarla, N. (2020). Nature-Inspired Algorithm-Based Feature Optimization for Epilepsy Detection. In: Agarwal, S., Verma, S., Agrawal, D. (eds) Machine Intelligence and Signal Processing. MISP 2019. Advances in Intelligent Systems and Computing, vol 1085. Springer, Singapore. https://doi.org/10.1007/978-981-15-1366-4_21

Download citation

Publish with us

Policies and ethics