Skip to main content

Finite and Instantaneous Screw Theory

  • Chapter
  • First Online:
Finite and Instantaneous Screw Theory in Robotic Mechanism

Abstract

This chapter presents fundamental concepts, expressions, operations, and properties of FIS theory. Firstly, the finite screw in quasi-vector form and its composition operation, i.e., the screw triangle product, is derived from dual quaternion for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sun T, Yang SF, Huang T et al (2017) A way of relating instantaneous and finite screws based on the screw triangle product. Mech Mach Theory 108:75–82

    Article  Google Scholar 

  2. Sun T, Yang SF, Huang T et al (2018) A finite and instantaneous screw based approach for topology design and kinematic analysis of 5-axis parallel kinematic machines. Chin J Mech Eng 31:44

    Google Scholar 

  3. Sun T, Yang SF (2019) An approach to formulate the Hessian matrix for dynamic control of parallel robots. IEEE-ASME Trans Mechatron 24(1):271–281

    Article  Google Scholar 

  4. Sun T, Song YM, Gao H et al (2015) Topology synthesis of a 1-translational and 3-rotational parallel manipulator with an articulated traveling plate. J Mech Rob Trans ASME 7(3):031015

    Google Scholar 

  5. Yang SF, Sun T, Huang T et al (2016) A finite screw approach to type synthesis of three-DOF translational parallel mechanisms. Mech Mach Theory 104:405–419

    Article  Google Scholar 

  6. Sun T, Huo XM (2018) Type synthesis of 1T2R parallel mechanisms with parasitic motions. Mech Mach Theory 128:412–428

    Article  Google Scholar 

  7. Sun T, Song YM, Li YG et al (2010) Workspace decomposition based dimensional synthesis of a novel hybrid reconfigurable robot. J Mech Rob Trans ASME 2(3):031009

    Google Scholar 

  8. Sun T, Song YM, Dong G et al (2012) Optimal design of a parallel mechanism with three rotational degrees of freedom. Rob Comput Integr Manuf 28(4):500–508

    Article  Google Scholar 

  9. Sun T, Liang D, Song YM (2018) Singular-perturbation-based nonlinear hybrid control of redundant parallel robot. IEEE Trans Industr Electron 65(4):3326–3336

    Article  Google Scholar 

  10. Sun T, Lian BB, Song YM et al (2019) Elastodynamic optimization of a 5-DoF parallel kinematic machine considering parameter uncertainty. IEEE ASME Trans Mechatron 24(1):315–325

    Article  Google Scholar 

  11. Ball RS (1900) A treatise on the theory of screws. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  12. McCarthy JM, Soh GS (2011) Geometric design of linkages, 2nd edn. Springer, New York

    Book  Google Scholar 

  13. Hunt KH, Parkin IA (1995) Finite displacements of points, planes, and lines via screw theory. Mech Mach Theory 30(2):177–192

    Article  Google Scholar 

  14. Huang C, Chen CM (1995) The linear representation of the screw triangle—a unification of finite and infinitesimal kinematics. J Mech Des Trans ASME 117(4):554–560

    Article  Google Scholar 

  15. Hervé JM (1999) The Lie group of rigid body displacements, a fundamental tool for mechanism design. Mech Mach Theory 34(5):719–730

    Article  MathSciNet  Google Scholar 

  16. Ceccarelli M (2000) Screw axis defined by Giulio Mozzi in 1763 and early studies on helicoidal motion. Mech Mach Theory 35(6):761–770

    Article  Google Scholar 

  17. Tsai LW (1999) Robot analysis: the mechanics of serial and parallel manipulators. Wiley, New York

    Google Scholar 

  18. Huang Z, Li QC, Ding HF (2013) Theory of parallel mechanisms. Springer, Berlin

    Book  Google Scholar 

  19. Meng J, Liu GF, Li ZX (2007) A geometric theory for analysis and synthesis of sub-6 DoF parallel manipulators. IEEE Trans Rob 23(4):625–649

    Article  Google Scholar 

  20. Murray RM, Li ZX, Sastry SS (1994) A mathematical introduction to robotic manipulation. CRC Press, Boca Raton

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, T., Yang, S., Lian, B. (2020). Finite and Instantaneous Screw Theory. In: Finite and Instantaneous Screw Theory in Robotic Mechanism. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-1944-4_2

Download citation

Publish with us

Policies and ethics