Skip to main content

Alterations in Metabolite-Driven Gene Regulation in Cancer Metabolism

  • Chapter
  • First Online:
Cancer Cell Metabolism: A Potential Target for Cancer Therapy

Abstract

Cancer is the leading cause of mortality among humans globally. Knowing about the etiology underlying the advancement of cancer is imperative for curtailing the monetary and social burden of cancer. In addition to genetic mutations, altered metabolism involved metabolic rewiring is needed in cancer cells to support their high nutritional demand needed for energy generation. Cancer metabolism also refers to the perturbations in biochemical pathways that are reported in tumor cells compared with most of the normal cells. Metabolic impairments in tumor cells are more frequent which include aerobic glycolysis, decreased oxidative phosphorylation, and the accelerated production of biosynthetic intermediates crucial to the proliferative cells for their growth and development. Interruptions in metabolic cascades responsible for fueling energy into the cancer cells for their growth has been observed in most of the cancer forms. These interruptions, in turn, facilitates growth in tumor cells by ceasing biochemical signals used to inhibit tumor initiation, hence eventually increase the metastatic character of the tumor cells. However, the precise mechanisms whereby metabolic pathways contribute to the cancer prognosis remain uncertain. This chapter thus consolidates recent findings regarding cross talk between metabolic alterations and cancer biology. Further, a concrete and deep understanding of this heterogeneity may enable the advancement and optimization of potential therapeutic approaches that target biochemical pathways associated with proliferation of malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amelio I, Cutruzzolá F, Antonov A, Agostini M, Melino G (2014) Serine and glycine metabolism in cancer. Trends Biochem Sci 39(4):191–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bar-Peled L, Sabatini DM (2014) Regulation of mTORC1 by amino acids. Trends Cell Biol 24(7):400–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns RA, Harris IS, Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11:85–95

    Article  CAS  PubMed  Google Scholar 

  • Cantor JR, Sabatini DM (2012) Cancer cell metabolism: one hallmark, many faces. Cancer Discov 2(10):881–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardaci S, Ciriolo MR (2012) TCA cycle defects and cancer: when metabolism tunes redox state. Int J Cell Biol 2012:161837

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5(10):786–795

    Article  CAS  PubMed  Google Scholar 

  • Chajès V, Cambot M, Moreau K, Lenoir GM, Joulin V (2006) Acetyl-CoA carboxylase alpha is essential to breast cancer cell survival. Cancer Res 66(10):5287–5294

    Article  PubMed  CAS  Google Scholar 

  • Chiacchiera F, Simone C (2010) The AMPK-FoxO3A axis as a target for cancer treatment. Cell Cycle 9(6):1091–1096

    Article  CAS  PubMed  Google Scholar 

  • Cloughesy TF, Yoshimoto K, Nghiemphu P, Brown K, Dang J, Zhu S, Hsueh T, Chen Y, Wang W, Youngkin D, Liau L, Martin N, Becker D, Bergsneider M, Lai A, Green R, Oglesby T, Koleto M, Trent J, Horvath S, Mischel PS, Mellinghoff IK, Sawyers CL (2008) Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5(1):e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colegio OR, Chu NQ, Szabo AL, Chu T, Rhebergen AM, Jairam V, Cyrus N, Brokowski CE, Eisenbarth SC, Phillips GM, Cline GW, Phillips AJ, Medzhitov R (2014) Functional polarization of tumor-associated macrophages by tumour-derived lactic acid. Nature 513(7519):559–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV (2010) Rethinking the Warburg effect with Myc micromanaging glutamine metabolism. Cancer Res 70:859–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res 15:6479–6483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon BJ, Prieto VG, Curley SA, Ensor CM, Holtsberg FW, Bomalaski JS, Clark MA (2004) Incidence and distribution of argininosuccinate synthetase deficiency in human cancers:a method for identifying cancers sensitive to arginine deprivation. Cancer 100(4):826–833

    Article  CAS  PubMed  Google Scholar 

  • Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L, Jiang F (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol Lett 11(3):1980–1986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, Vander Heiden MG, MacKeigan JP, Finan PM, Clish CB, Murphy LO, Manning BD (2010) Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 39(2):171–183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eberlé D, Hegarty B, Bossard P, Ferré P, Foufelle F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86:839–848

    Article  PubMed  CAS  Google Scholar 

  • Ettinger SL, Sobel R, Whitmore TG, Akbari M, Bradley DR, Gleave ME, Nelson CC (2004) Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res 64(6):2212–2221

    Article  CAS  PubMed  Google Scholar 

  • Faller WJ, Jackson TJ, Knight JR, Ridgway RA, Jamieson T, Karim SA, Jones C, Radulescu S, Huels DJ, Myant KB, Dudek KM, Casey HA, Scopelliti A, Cordero JB, Vidal M, Pende M, Ryazanov AG, Sonenberg N, Meyuhas O, Hall MN, Bushell M, Willis AE, Sansom OJ (2015) mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517(7535):497–500

    Article  CAS  PubMed  Google Scholar 

  • Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T et al (2009) c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458:762–765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordan JD, Thompson CB, Simon MC (2007) HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12:108–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottlieb E, Vousden KH (2010) p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2:a001040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greer SN, Metcalf JL, Wang Y, Ohh M (2012) The updated biology of hypoxia-inducible factor. EMBO J 31:2448–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Prins RM, Dang J, Kuga D, Iwanami A, Soto H, Lin KY, Huang TT, Akhavan D, Hock MB, Zhu S, Kofman AA, Bensinger SJ, Yong WH, Vinters HV, Horvath S, Watson AD, Kuhn JG, Robins HI, Mehta MP, Wen PY, DeAngelis LM, Prados MD, Mellinghoff IK, Cloughesy TF, Mischel PS (2009) EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal 2(101):ra82

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo H, Xiang Z, Zhang Y, Sun D (2019) Inhibiting 6-phosphogluconate dehydrogenase enhances chemotherapy efficacy in cervical cancer via AMPK-independent inhibition of RhoA and Rac1. Clin Transl Oncol 21(4):404–411

    Article  CAS  PubMed  Google Scholar 

  • Haimovitz-Friedman A, Kolesnick RN, Fuks Z (1997) Ceramide signaling in apoptosis. Br Med Bull 53(3):539–553

    Article  CAS  PubMed  Google Scholar 

  • Hamanaka RB, Chandel NS (2012) Targeting glucose metabolism for cancer therapy. J Exp Med 209(2):211–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D, Hingorani SR, Tuveson DA, Thompson CB (2005) ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8(4):311–321

    Article  CAS  PubMed  Google Scholar 

  • Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100(21):12027–12032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707

    Article  CAS  PubMed  Google Scholar 

  • Huang WC, Li X, Liu J, Lin J, Chung LW (2012) Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res 10(1):133–142

    Article  CAS  PubMed  Google Scholar 

  • Kaelin WG Jr, Ratcliffe PJ (2008) Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 30(4):393–402

    Article  CAS  PubMed  Google Scholar 

  • Kennedy KM, Dewhirst MW (2010) Tumor metabolism of lactate: the influence and therapeutic potential for MCT and CD147 regulation. Future Oncol 6(1):127–148

    Article  CAS  PubMed  Google Scholar 

  • Kerr EM, Martins CP (2018) Metabolic rewiring in mutant Kras lung cancer. FEBS J 285(1):28–41

    Article  CAS  PubMed  Google Scholar 

  • Knelson EH, Nee JC, Blobe GC (2014) Heparan sulfate signaling in cancer. Trends Biochem Sci 39(6):277–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komada Y, Zhang XL, Zhou YW, Ido M, Azuma E (1997) Apoptotic cell death of human T lymphoblastoid cells induced by arginine deiminase. Int J Hematol 65(2):129–141

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482

    Article  CAS  PubMed  Google Scholar 

  • Laplante M, Sabatini DM (2009) An emerging role of mTOR in lipid biosynthesis. Curr Biol 19(22):R1046–R1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Yoon JH (2015) Metabolic interplay between glycolysis and mitochondrial oxidation: the reverse Warburg effect and its therapeutic implication. World J Biol Chem 6(3):148–161

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine AJ, Puzio-Kuter AM (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science 330(6009):1340–1344

    Article  CAS  PubMed  Google Scholar 

  • Li W, Saud SM, Young MR, Chen G, Hua B (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6(10):7365–7378

    Article  PubMed  PubMed Central  Google Scholar 

  • Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locasale JW, Cantley LC (2011) Metabolic flux and the regulation of mammalian cell growth. Cell Metab 14(4):443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu H, Forbes RA, Verma A (2002) Hypoxia-inducible factor 1activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. J Biol Chem 277(26):23111–23115

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Tan M, Cai Q (2015) The Warburg effect in tumor progression: mitochondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Lett 356(2 Pt A):156–164

    Article  CAS  PubMed  Google Scholar 

  • Magda D, Lecane P, Prescott J, Thiemann P, Ma X, Dranchak PK, Toleno DM, Ramaswamy K, Siegmund KD, Hacia JG (2008) mtDNA depletion confers specific gene expression profiles in human cells grown in culture and in xenograft. BMC Genomics 3(9):521

    Article  CAS  Google Scholar 

  • Morales DR, Morris AD (2015) Metformin in cancer treatment and prevention. Annu Rev Med 66:17–29

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan A, Malvi P, Wajapeyee N (2016) Oncogene-directed alterations in cancer cell metabolism. Trends Cancer 2(7):365–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishioka T, Oda Y, Seino Y, Yamamoto T, Inagaki N, Yano H, Imura H, Shigemoto R, Kikuchi H (1992) Distribution of the glucose transporters in human brain tumors. Cancer Res 52(14):3972–3979

    CAS  PubMed  Google Scholar 

  • Parker SJ, Metallo CM (2015) Metabolic consequences of oncogenic IDH mutations. Pharmacol Ther 152:54–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P (2006) Glycolysis inhibition for anticancer treatment. Oncogene 25(34):4633–4646

    Article  CAS  PubMed  Google Scholar 

  • Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146:408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponzoni M, Bocca P, Chiesa V, Decensi A, Pistoia V, Raffaghello L, Rozzo C, Montaldo PG (1995) Differential effects of N-(4-hydroxyphenyl)retinamide and retinoic acid on neuroblastoma cells: apoptosis versus differentiation. Cancer Res 55(4):853–861

    CAS  PubMed  Google Scholar 

  • Romero IL, Mukherjee A, Kenny HA, Litchfield LM, Lengyel E (2015) Molecular pathways: trafficking of metabolic resources in the tumor microenvironment. Clin Cancer Res 21(4):680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20:51–56

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL (2012) Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harb Symp Quant Biol 76:347–353

    Article  CAS  Google Scholar 

  • Shao W, Espenshade PJ (2012) Expanding roles for SREBP in metabolism. Cell Metab 16(4):414–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanton RC, Seifter JL, Boxer DC, Zimmerman E, Cantley LC (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. Correlation with increased enzymatic activity. J Biol Chem 266(19):12442–12448

    Article  CAS  PubMed  Google Scholar 

  • Su TS, Tsai TF, Chi CW, Han SH, Chou CK (1990) Elevation of facilitated glucose-transporter messenger RNA in human hepatocellular carcinoma. Hepatology 11(1):118–122

    Article  CAS  PubMed  Google Scholar 

  • Swinnen JV, Brusselmans K, Verhoeven G (2006) Increased lipogenesis in cancer cells: new players, novel targets. Curr Opin Clin Nutr Metab Care 9(4):358–365

    Article  CAS  PubMed  Google Scholar 

  • Tsun ZY, Possemato R (2015) Amino acid management in cancer. Semin Cell Dev Biol 43:22–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9(10):1269–1274

    Article  CAS  PubMed  Google Scholar 

  • van Horssen R, Buccione R, Willemse M, Cingir S, Wieringa B, Attanasio F (2013) Cancer cell metabolism regulates extracellular matrix degradation by invadopodia. Eur J Cell Biol 92(3):113–121

    Article  PubMed  CAS  Google Scholar 

  • Vega-Naredo I, Loureiro R, Mesquita KA, Barbosa IA, Tavares LC, Branco AF, Erickson JR, Holy J, Perkins EL, Carvalho RA, Oliveira PJ (2014) Mitochondrial metabolism directs stemness and differentiation in P19 embryonal carcinoma stem cells. Cell Death Differ 21(10):1560–1574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vlodavsky I, Mohsen M, Lider O, Svahn CM, Ekre HP, Vigoda M, Ishai-Michaeli R, Peretz T (1994) Inhibition of tumor metastasis by heparanase inhibiting species of heparin. Invasion Metastasis 14(1–6):290–302

    CAS  PubMed  Google Scholar 

  • Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9:691–700

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2012) Mitochondria and cancer. Nat Rev Cancer 12(10):685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92(12):5510–5514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  • Whitaker-Menezes D, Martinez-Outschoorn UE, Flomenberg N, Birbe RC, Witkiewicz AK, Howell A, Pavlides S, Tsirigos A, Ertel A, Pestell RG, Broda P, Minetti C, Lisanti MP, Sotgia F (2011) Hyperactivation of oxidative mitochondrial metabolism in epithelial cancer cells in situ: visualizing the therapeutic effects of metformin in tumor tissue. Cell Cycle 10(23):4047–4064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wick AN, Drury DR, Nakada HI, Wolfe JB (1957) Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem 224(2):963–969

    Article  CAS  PubMed  Google Scholar 

  • Wise DR, DeBeradinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A 105:18782–18787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484

    Article  CAS  PubMed  Google Scholar 

  • Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, Ito S, Yang C, Wang P, Xiao MT, Liu LX, Jiang WQ, Liu J, Zhang JY, Wang B, Frye S, Zhang Y, Xu YH, Lei QY, Guan KL, Zhao SM, Xiong Y (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, Yamada Y, Inoue K, Manabe T, Imura H (1990) Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 170(1):223–230

    Article  CAS  PubMed  Google Scholar 

  • Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y (2007) Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J Cell Biol 178:93–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Dong LW, Tan YX, Zhang J, Pan YF, Yang C, Li MH, Ding ZW, Liu LJ, Jiang TY, Yang JH, Wang HY (2013) Asparagine synthetase is an independent predictor of surgical survival and a potential therapeutic target in hepatocellular carcinoma. Br J Cancer 109(1):14–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurabh Kumar Jha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jha, S.K. et al. (2020). Alterations in Metabolite-Driven Gene Regulation in Cancer Metabolism. In: Kumar, D. (eds) Cancer Cell Metabolism: A Potential Target for Cancer Therapy. Springer, Singapore. https://doi.org/10.1007/978-981-15-1991-8_10

Download citation

Publish with us

Policies and ethics