Skip to main content

Genetic Improvement for Sustainability of Coconut Production: The Sri Lankan Experience

  • Chapter
  • First Online:
Agricultural Research for Sustainable Food Systems in Sri Lanka

Abstract

Coconut (Cocos nucifera L.) is a perennial tree crop offering a multitude of uses and a major component in the daily diet of Sri Lankans. The crop is economically and socially blended into the lifestyle of people. Both inherent and external factors affect the productivity of the coconut palm and the sustainability of coconut industry. Comparatively long juvenile phase, long economically productive life span (generally exceeding 50 years), varying genetic potential of different cultivars and levels of germplasm diversity are a few of the main inherent factors, while the environmental factors, biotic and abiotic stresses, represent the main challenges for the sustainability of the coconut cultivation. In addition to the above factors, the general factors such as low soil fertility, old age or senility of palms and the recent undesirable trends in global climate change are important factors that need to be addressed in ensuring the sustainability of coconut cultivation. The sustainability of the food systems in which coconut is a main constituent depends on the productivity of cultivations and the viability of the coconut industry. This chapter elaborates the contribution of genetic improvement programmes for the productivity enhancement, industry development and sustainability of the food systems related to coconut in Sri Lanka with reference to global scenario as appropriate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anonymous (1979) Technical data handbook on the coconut, its products and by products, a compilation. Philippines Coconut Authority, Quezon City, p 123

    Google Scholar 

  • Anonymous (2015) Asia Pacific statistical year book. Asia Pacific Coconut Community, Jakartha

    Google Scholar 

  • Anonymous (2017) Annual report of the Central Bank of Sri Lanka. Colombo: Central Bank of Sri Lanka. https://www.cbsl.gov.lk/en/publications/economic-and-financial-reports/annual-reports/annual-report-2017. Accessed 24 Jun 2019

  • Ashburner GR, Thompson WK, Halloran GM (1997) RAPD analysis of South Pacific coconut palm populations. Crop Sci 37:992–997

    Article  Google Scholar 

  • Bandupriya HDD, Fernando SC, Vidhanarachchi VRM (2016) Micropropagation and androgenesis in coconut: an assessment of Sri Lankan implication. Cocos 22:31–47

    Article  Google Scholar 

  • Banzon JA (1977) Industrial coconut research and development. Philip J Coconut Stud 2:13–17

    Google Scholar 

  • Baudouin L, Lebrun P (2002) The development of a microsatellite kit and dedicated software use with coconuts. Burot Bull 17:16–20

    Google Scholar 

  • Baudouin L, Lebrun P, Konan JL, Ritter E, Berger A, Billottee N (2006) QTL analysis of fruit components in the progeny of a Rennell Island tall coconut (Cocos nucifera L.) individual. Theor Appl Genet 112:258–268

    Article  CAS  PubMed  Google Scholar 

  • Baudouin L, Philippe R, Quaicoe R, Dery S, Dollet M (2009) General overview of genetic research and experimentation on coconut varieties tolerant/resistant to Lethal Yellowing. OCL 16(2):127–131

    Article  Google Scholar 

  • Bawalan DD, Chapman KR (2006) Virgin coconut oil; production manual for macro- and village-scale processing. FAO, Thammada Press, Bangkok

    Google Scholar 

  • Bourdeix R, Santos G, Labouisse JP, Baudouin L (2005) Useful definition of terms and nomenclature. In: Batugal P, Ramanatha Rao V, Oliver J (eds) Coconut genetic resources. IPGRI, Rome, pp 9–10

    Google Scholar 

  • Brown WL (1983) Genetic diversity and genetic vulnerability: an appraisal. Econ Bot 37(1):4–12

    Article  Google Scholar 

  • Dassanayaka PN, Everard JMDT, Karunanayake EH, Nandadasa HG (2003) Characterization of coconut germplasm by microsatellite markers. Trop Agric Res 15:51–61

    Google Scholar 

  • Devakumar K, Thomas RJ, Nair RV, Jerard BA, Rajesh MK, Jacob PM et al (2011) Analysis of population structure and genetic relatedness among root (wilt) disease-resistant and susceptible west coast tall coconut palms (Cocos nucifera L.) using microsatellite markers. Indian J Agric Sci 81:487–493

    Google Scholar 

  • Dissanayaka HDMAC, Perera SACN, Fernando WBS, Attanayake RB, Meegahakumbura MGMK, Perera L (2008) Evaluation of the comparative performance of five commercial coconut cultivars under two different agro-ecological zones in Sri Lanka. In: Ninanayake A, Jayamanne E (eds) Proceedings of the second plantation crop research symposium. Samayawardena Printers, Colombo, pp 126–138

    Google Scholar 

  • Dollet M, Quaicoe R, Pilet F (2009) Review of coconut lethal yellowing diseases. Diversity, variability and diagnosis. OCL 16(2):1–5

    Google Scholar 

  • Duran Y, Rohde W, Kullaya A, Goikoetxea P, Ritter E (1997) Molecular analysis of east African tall coconut genotypes by DNA marker technology. J Genet Breed 51:279–288

    CAS  Google Scholar 

  • Ekanayake GK, Perera SACN, Dassanayaka PN, Everard JMDT (2010) Varietal classification of new coconut (Cocos nucifera L.) forms identified from southern Sri Lanka. Cocos 19:41–50

    Article  Google Scholar 

  • Everard JMDT (1996) Use of molecular markers for breeding of the coconut palm (Cocos nucifera L.), MSc thesis, University of New England, Armidale, Australia

    Google Scholar 

  • Feng LH, Zhang XC (2005) Quantitative expression on drought magnitude and disaster intensity. Nat Haz Earth Syst Sci 5:495–498

    Article  Google Scholar 

  • Gomes F, Prado CHBA (2007) Ecophysiology of coconut palm under water stress. Braz J Plant Physiol 19(4):377–391

    Article  CAS  Google Scholar 

  • Harries HC (1978) The evolution, dissemination and classification of Cocos nucifera L. Bot Rev 44:205–317

    Article  Google Scholar 

  • Herran A, Estioko L, Becker D, Rodriguez MJB, Rohde W, Ritter E (2000) Linkage mapping and QTL analysis in coconut (Cocos nucifera L.). Theor Appl Genet 101:292–300

    Article  CAS  Google Scholar 

  • Kamaral LCJ, Dassanayaka PN, Perera KLNS, Perera SACN (2017) Characterization of Sri Lanka yellow dwarf coconut (Cocos nucifera L.) by DNA fingerprinting with SSR markers. J Natl Sci Found 45(4):405–412. https://doi.org/10.4038/jnsfsr.v45i4.8234

    Article  Google Scholar 

  • Kamaral LCJ, Perera SACN, Dassanayaka PN (2016) Sri Lanka yellow semi tall; a new addition to the coconut (Cocos nucifera L.). Cocos 22:49–55

    Article  Google Scholar 

  • Lambers H, Chapin IFS, Pons TL (1998) Plant physiological ecology. Springer-Verlag, New York

    Book  Google Scholar 

  • Lebrun P, Baudouin L, Bourdeix R, Louis Konan J, Barker JHA, Aldam C, Herran A, Ritter E (2001) Construction of a linkage map of the Rennell Island tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44:962–970

    Article  CAS  PubMed  Google Scholar 

  • Lebrun P, N’Cho YP, Bourdeix R, Baudouin L (1999) Le cocotier. In: Hamon P, Seguin M, Perrier X, Glaszmann JC (eds) Diversité génétique des plantes cultivées. CIRAD, Montpellier, pp 219–240

    Google Scholar 

  • Liyanage DV (1955) Planting materials for coconut. Ceylon Cocon Quart 6:75–80

    Google Scholar 

  • Liyanage DV (1958) Varieties and forms of coconut palms grown in Ceylon. Ceylon Cocon Quart 9(1):1–10

    Google Scholar 

  • Liyanage DV (1972) Production of improved coconut seeds by hybridization. Oleagineux 27(12):597–599

    Google Scholar 

  • Liyanage DV, Wickramaratne MRT, Jayasekera C (1988) Coconut breeding in Sri Lanka. Cocos 6:1–26

    Article  Google Scholar 

  • Marcus JG, Puri PS (1978) Manufactured hard butters. J Am Oil Chem Soc 55:610A–612A

    Article  CAS  Google Scholar 

  • Marikkar JMN, Jayasundara JMMA, Prasadika SAH, Jayasingha CVL, Premakumara GAS (2007) Assessment of stability of virgin coconut oil during deep frying. CORD 23(1):62–70

    Google Scholar 

  • Meerow AW, Wisser RJ, Brown JS, Kuhn DN, Schnell RJ, Broschat TK (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm using microsatelite DNA, with special emphasis on the Fiji dwarf cultivar. Theor Appl Genet 106:715–726

    Article  PubMed  Google Scholar 

  • Nair MK, Koshy PK, Nair RV, Rao EVVB, Nampoothiri KUK, Iyer RD (1996) A root (wilt) disease resistant coconut hybrid and strategy for resistance breeding. Ind Cocon J 27(1):2–5

    Google Scholar 

  • Nair RV, Jacob PM, Nair SN (2006) Breeding for resistance to coconut root (wilt) disease. In: Nair RV, Krishnakumar V, Thomas RJ, Muralidharan K, Thomas GV (eds) Breeding for resistance to diseases and insect pests in plantation crops. CPCRI, Kasaragod, pp 63–69

    Google Scholar 

  • Nair RV, Rajesh MG, Jacob PM (2000) Chowghat green dwarf—a suitable variety for the coconut root (wilt) diseased tract. Ind Cocon J 31(3):55

    Google Scholar 

  • Nkansah-Poku J, Philippe R, Quacoe N, Dery S, Ransford A (2009) Cape Saint Paul Wilt Disease of coconut in Ghana: surveillance and management of disease spread. OCL 16(2):111–115

    Article  Google Scholar 

  • Omamor IB, Eziashi EI, Asemota OA, Aisagbonhi CI, Ogunkanmi LA (2011) DNA molecular analysis between lethal yellowing disease and non-lethal yellowing disease of coconut palms (Cocos nucifera L.) in Nigeria. Trends Mol Sci 3:25–31

    Article  Google Scholar 

  • Perera KNS, Herath HMNB, Attanayaka DPSTG, Perera SACN (2015a) Assessment of the diversity in fruit yield and fruit components among Sri Lanka tall coconut accessions conserved ex-situ. CORD 31(2):33–41

    Google Scholar 

  • Perera L, Padmasiri MHL, Peries RRA (1997) Brown dwarf: a recent addition to the varieties and forms of coconut palm grown in Sri Lanka. Cocos 12:82–84

    Article  Google Scholar 

  • Perera L, Russell JR, Provan J, McNicol JW, Powell W (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96:545–550

    Article  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (1999) Identification and characterization of microsatellites in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8:344–346

    CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (2000) Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L.). Genome 43:15–21

    Article  CAS  PubMed  Google Scholar 

  • Perera L, Russell JR, Provan J, Powell W (2003) Studying genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132:121–126

    Article  CAS  Google Scholar 

  • Perera L, Sarathchandra SR, Wickramananda IR (2013) Screening coconut cultivars for tolerance to infestation by the coconut mite, Aceria guerreronis (Keifer) in Sri Lanka. CORD 29(1):46–51

    Google Scholar 

  • Perera PIP, Hocher V, Verdeil J, Doulbeau S, Yakandawala DMD, Weerakoon LK (2007) Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep 26:1–8

    Google Scholar 

  • Perera PIP, Yakandawala DMD, Verdeil JL, Hocher V, Weerakoon LK (2010) Morphological aspects of coconut anther culture derived structures. J Nat Sci Found 38(1):69–74

    Google Scholar 

  • Perera SACN (2005) Report of the genetics and plant breeding division, Annual Report of the Coconut Research Institute of Sri Lanka. Coconut Research Institute of Sri Lanka, Lunuwila

    Google Scholar 

  • Perera SACN (2010a) In: Gupta SH (ed) Technological innovations in major world oil crops. Springer, New York, pp 201–218

    Google Scholar 

  • Perera SACN (2010b) QTL analysis in coconut via genome mapping; principles, requirements and prospects. Cocos 20:1–9

    Google Scholar 

  • Perera SACN (2011) Development of coconut hybrids for tolerance to Aceria mite infestation. Annual Report of the Coconut Research Institute of Sri Lanka. Coconut Research Institute of Sri Lanka, Lunuwila, pp 36–37

    Google Scholar 

  • Perera SACN (2015) Breeding coconuts for resistance to Weligama Coconut Leaf Wilt Disease. In: Annual report of the Coconut Research Institute of Sri Lanka. Coconut Research Institute of Sri Lanka, Lunuwila

    Google Scholar 

  • Perera SACN, Dissanayake HDMAC (2013) Management of the Weligama Coconut Leaf Wilt Disease: screening and breeding coconuts for resistance/tolerance to WCLWD. Weligama Coconut Leaf Wilt Disease. Coconut Research Institute Sri Lanka, Lunuwila, pp 96–106

    Google Scholar 

  • Perera SACN, Herath HMNB, Perera KNS, Fernando WBS (2016) Detection of Marker Trait Associations: a step towards marker assisted selection in coconut (Cocos nucifera L.). In: Vidhanaarachchi VRM, Herath HMIK, Meegahakumbura MK, Kumara ADNT, Nadheesha MKF (eds) Proceedings of the sixth symposium on Plantation Crops Research. Coconut Research Institute of Sri Lanka, Lunuwila, pp 229–237. isbn:978-955-9013-19-8

    Google Scholar 

  • Perera SACN, Herath HMNB, Wijesekera HTR, Subhathma WGR, Weerakkody WATL (2014) Evaluation of coconut germplasm in Weligama and Matara area of the Southern Province of Sri Lanka for resistance to Weligama coconut leaf wilt disease. Cocos 21:15–20

    Article  Google Scholar 

  • Perera SACN, Kamaral LCJ, Fernando WBS (2015b) Molecular assessment of Cocos nucifera L. Var. Sri Lanka yellow dwarf for genetic purity and aceria mite tolerance. Intl J Mol Evol Biodivers 5(1):1–5. https://doi.org/10.5376/ijmeb.2015.05.0001

    Article  Google Scholar 

  • Perera SACN, Kilian A (2008) Diversity arrays technology: a high throughput molecular marker system for coconut. J Inst Fund Stud xix(1 Special issue):60–64

    Google Scholar 

  • Quaicoe R, Dery S, Philippe R, Baudouin L, Nipah J, Nkansah Poku J et al (2009) Resistance screening trials on coconut varieties to Cape Saint Paul Wilt Disease in Ghana. OCL 16(2):132–136

    Article  Google Scholar 

  • Rajagopal V, Kasturi Bai KV (2002) Drought tolerance mechanism in coconut. Burot Bull 17:21–22

    Google Scholar 

  • Rajagopal V, Shivashankar S, Mathew J (1996) Impact of dry spells on the ontogeny of coconut fruits and its relation to yield. Plant Res Dev 3:251–255

    Google Scholar 

  • Rivera R, Edwards KJ, Barker JHA, Arnold GM, Ayad G, Hodgkin T et al (1999) Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42:668–675

    Article  CAS  PubMed  Google Scholar 

  • Rohde W, Becker D, Kullaya A, Rodriguez MJB, Herran A, Ritter E (1999) Analysis of coconut germplasm biodiversity by DNA marker technologies and construction of a first genetic linkage map. In: Oropeza C, Verdeil JL, Ashburner GR, Cardega R, Santamaria JM (eds) Current advances in coconut biotechnology. Kluwer Academic Publishers, Dordrecht, pp 99–120

    Chapter  Google Scholar 

  • Rohde W, Herran A, Estioko L, Sinje S, Becker D, Kullaya A, et al (2000) Mapping of DNA markers, homeotic genes and QTLs in coconut (Cocos nucifera L.) and synteny studies with oil palm, International Symposium on Oil Palm genetic resources and Utilization, AC1–AC2

    Google Scholar 

  • Shalini KV, Manjunatha S, Lebrun P, Berger L, Baudouin N, Pirany N et al (2006) Identification of molecular markers associated with mite resistance in coconut, Cocos nucifera L. Genome 50:35–42

    Article  Google Scholar 

  • Teulat B, Aldam C, Trehin R, Lebrun L, Barker GM, Karp A et al (2000) An analysis of genetic diversity in coconut (Cocos nucifera) populations from across the geographic range using sequence–tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100:764–771

    Article  CAS  Google Scholar 

  • Varshney RK, Glaszmann J, Leung H, Ribaut J (2010) More genomic resources for less-studied crops. Trends Biotechnol 28:452–460

    Article  CAS  PubMed  Google Scholar 

  • Waidyarathne KP, Dissanayake HDMAC, Perera SACN, Chandrathilake TH (2017) Temporal yield stability of coconuts to extreme weather events—a case study. Proceedings of the international statistics conference. Colombo, IASSL, p 90

    Google Scholar 

  • Wickremaratne MRT (1984) Report of the genetics and plant breeding division. Coconut Research Institute of Sri Lanka, Lunuwila, p 45

    Google Scholar 

  • Wright H (1980) Commercial hybrid production. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. The American Society of Agronomy, Wisconsin, p 162

    Google Scholar 

  • Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S et al (2017) The genome draft of coconut (Cocos nucifera). Gigascience 6(11):1–11. https://doi.org/10.1093/gigascience/gix095

    Article  PubMed  PubMed Central  Google Scholar 

  • Zizumbo-Villarreal D, Ruiz-Rodriguez M, Harries H, Colunga-Garcia Martin C (2006) Population genetics, lethal yellowing disease, and relationships among Mexican and imported coconut ecotypes. Crop Sci 46:2509–2516

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Roshan Silva and Mrs. Nilmini Jayalath of the Coconut Research Institute (CRI) of Sri Lanka are acknowledged for providing Figs. 7.2 and 7.3, respectively. The untiring efforts of all the past and present coconut breeders at the CRI of Sri Lanka are greatly appreciated.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Perera, S.A.C.N. (2020). Genetic Improvement for Sustainability of Coconut Production: The Sri Lankan Experience. In: Marambe, B., Weerahewa, J., Dandeniya, W. (eds) Agricultural Research for Sustainable Food Systems in Sri Lanka. Springer, Singapore. https://doi.org/10.1007/978-981-15-2152-2_7

Download citation

Publish with us

Policies and ethics