Skip to main content

Abstract

During the entire life cycle, plants always encounter various stresses due to their nonmobile trait. Among these stresses, heat stress is a major stressor limiting cellular anabolism and catabolism, seed germination, seedling growth, development, geographical distribution, production, and even survival. Looking for the useful methods to boost thermotolerance and expounding the mechanism of plant adaptation and tolerance to heat stress is of vital importance for agricultural production. Heat stress commonly leads to different injuries at molecular, metabolic, physiological, biochemical, and even whole plant levels depending on the intensity of and endurance to high temperature. The adaptation and tolerance of plants to heat stress also is a sophisticated chemical and biological event, implicating heat stress perception, signaling transduction, gene expression, and physio-biochemical changes. This chapter discusses the heat injury, heat stress perception, signaling transduction, and mechanisms of adaptation and tolerance of plants to high temperature, which lays the foundation of further understanding the mechanisms of heat injury and heat tolerance and acquiring genetically modified plants with heat tolerance and even multiple stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelrahman M, Al-Sadi AM, Pour-Aboughadareh A, Burritt DJ, Tran LSP (2018) Genome editing using CRISPR/Cas9–targeted mutagenesis: an opportunity for yield improvements of crop plants grown under environmental stresses. Plant Physiol Biochem 131:31–36

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, Li X, Zhou J, Zhou YH, Yu JQ (2016) Role of hormones in plant adaptation to heat stress. In: Ahammed GJ, Yu JQ (eds) Plant hormones under challenging environmental factors. Springer, Dordrecht, pp 1–21

    Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23:139–150

    Google Scholar 

  • Anaraki ZE, Tafreshi SAH, Shariati M (2018) Transient silencing of heat shock proteins showed remarkable roles forHSP70 during adaptation to stress in plants. Environ Exp Bot 155:142–157

    CAS  Google Scholar 

  • Arnao MB, Hernández-Ruiz J (2018) Melatonin: anew plant hormone and/or a plant master regulator? Trends Plant Sci 24:38–48

    PubMed  Google Scholar 

  • Aroca A, Gotor C, Romero LC (2018) Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front Plant Sci 9:1369. https://doi.org/10.3389/fpls.2018.01369

    Article  PubMed  PubMed Central  Google Scholar 

  • Asthir B (2015) Mechanisms of heat tolerance in crop plants. Biol Plant 59:620–628

    CAS  Google Scholar 

  • Banerjee A, Tripathi DK, Roychoudhury A (2018) Hydrogen sulfide trapeze: environmental stress amelioration and phytohormone crosstalk. Plant Physiol Biochem 132:46–53

    CAS  PubMed  Google Scholar 

  • Barrero-Sicilia C, Silvestre S, Haslam RP, Michaelson LV (2017) Lipid remodelling: unravelling the response to cold stress in Arabidopsis and its extremophile relative Eutrema salsugineum. Plant Sci 263:194–200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    PubMed  PubMed Central  Google Scholar 

  • Bouchard JN, Yamasaki H (2008) Heat stress stimulates nitric oxide production in Symbiodinium microadriaticum: a possible linkage between nitric oxide and the coral bleaching phenomenon. PlantCellPhysiol 49:641–652

    CAS  Google Scholar 

  • Bouchard JN, Yamasaki H (2009) Implication of nitric oxide in theheat-stress-induced cell death of the symbiotic alga Symbiodinium microadriaticum. Mar Biol 156:2209–2220

    CAS  Google Scholar 

  • Calderwood A, Kopriva S (2014) Hydrogen sulfide in plants: from dissipation of excess sulfur to signaling molecule. Nitric Oxide 41:72–78

    CAS  PubMed  Google Scholar 

  • Campbell AK (2018) Fundamentals of intracellular calcium. John Wiley and Sons Ltd, Chichester

    Google Scholar 

  • Charng YC, Liu HC, Liu NY, Hsu FC, Ko SU (2006) Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140:1297–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Chen Q, Zhang X, Li R, Jia Y, Ef AA, Jia A, Hu L, Hu X (2016) Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions. Plant Physiol Biochem 104:174–179

    CAS  PubMed  Google Scholar 

  • Christou A, Filippou P, Manganaris GA, Fotopoulos V (2014) Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biol 14:42

    PubMed  PubMed Central  Google Scholar 

  • Ciura J, Kruk J (2018) Phytohormones as targets for improving plant productivity and stress tolerance. J Plant Physiol 229:32–40

    CAS  PubMed  Google Scholar 

  • Costa A, Navazio L, Szabo I (2018) The contribution of organelles to plant intracellular calcium signalling. J Exp Bot 69:4175–4193

    CAS  Google Scholar 

  • Demidchik V, Maathuis F, Voitsekhovskaja O (2018) Unravelling the plant signalling machinery: an update on the cellular and genetic basis of plant signal transduction. Funct Plant Biol 45:1–8

    CAS  PubMed  Google Scholar 

  • Dickinson PJ, Kumar M, Martinho C, Yoo SJ, Lan H, Artavanis G, Charoensawan V, Schottler MA, Bock R, Jaeger KE, Wigge PA (2018) Chloroplast signaling gates thermotolerance in Arabidopsis. Cell Rep 22:1657–1665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    CAS  PubMed  Google Scholar 

  • Domingos P, Prado AM, Wong A, Gehring C, Feijo JA (2015) Nitric oxide: a multitasked signaling gas in plants. Mol Plant 8:506–520

    CAS  PubMed  Google Scholar 

  • Figueroa-Soto CG, Valenzuela-Soto EM (2018) Glycine betaine rather than acting only as an osmolyte also plays a role as regulator in cellular metabolism. Biochimie 147:89–97

    CAS  PubMed  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant PhysiolBiochem 48:909–930

    CAS  Google Scholar 

  • Gong M, van der Luit AH, Knight MR, Trewavas AJ (1998a) Heat-shock-induced changes in intracellular Ca2+ level in tobacco seedlings in relation to thermotolerance. Plant Physiol 116:429–437

    CAS  PubMed Central  Google Scholar 

  • Gong M, Li YJ, Chen SN (1998b) Abscisic acid-induced thermotolerance in maize seedlings is mediated by calcium and associated with antioxidant systems. J Plant Physiol 153:488–496

    CAS  Google Scholar 

  • Gong M, Chen B, Li ZG, Guo LH (2001) Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J Plant Physiol 158:1125–1130

    CAS  Google Scholar 

  • Hancock JT (2018) Hydrogen sulfide and environmental stresses. Environ Exp Bot 161:50–56

    Google Scholar 

  • Hancock JT, Whiteman M (2014) Hydrogen sulfide and cell signaling: team player or referee? Plant Physiol Biochem 78:37–42

    CAS  PubMed  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman M, Anee TI, Bhuiyan TF, Nahar K, Fujita M (2019) Emerging role of osmolytes in enhancing abiotic stress tolerance in rice. In: Advances in rice research for abiotic stress tolerance. Elsevier, Kidlington, pp 677–708

    Google Scholar 

  • He Y, Li Z (2018) Epigenetic environmental memories in plants: establishment, maintenance, and reprogramming. Trends Genet 34:856–866

    CAS  PubMed  Google Scholar 

  • Hemmati H, Gupta D, Basu C (2015) Molecular physiology of heat stress responses in plants. In: Pandey GK (ed) Elucidation of abiotic stress signaling in plants: functional genomics perspectives. Springer, New York, pp 109–142

    Google Scholar 

  • Hoque TS, Hossain MA, Mostofa MG, Burritt DJ, Fujita M, Tran LSP (2016) Methylglyoxal: an emerging signaling molecule in plant abiotic stress responses and tolerance. Front Plant Sci 7:1341. https://doi.org/10.3389/fpls.2016.01341

    Article  PubMed  PubMed Central  Google Scholar 

  • Hossain KK, Itoh RD, Yoshimura G, Tokuda G, Oku H, Cohen MF, Yamasaki H (2010) Effects of nitric oxide scavengers on thermoinhibition of seed germination in Arabidopsis thaliana. Russ J Plant Phys 57:222–232

    CAS  Google Scholar 

  • Hu X, Jiang M, Zhang J, Zhang A, Lin F, Tan M (2007) Calcium–calmodulin is required for abscisic acid-induced antioxidant defense and functions both upstream and downstream of H2O2 production in leaves of maize (Zea mays) plants. New Phytol 173:27–38

    CAS  PubMed  Google Scholar 

  • Iqbal N, Nazar R, Khan NA (2016) Osmolytes and plants acclimation to changing environment: emerging omics technologies. Springer, London

    Google Scholar 

  • Kaur C, Singla-Pareek SL, Sopory SK (2014) Glyoxalase and methylglyoxal as biomarkers for plant stress tolerance. Crit Rev Plant Sci 33:429–456

    CAS  Google Scholar 

  • Kaur C, Sharma S, Singla-Pareek SL, Sopory SK (2016) Methylglyoxal detoxification in plants: role of glyoxalase pathway. Indian J Plant Physiol 21:377–390

    Google Scholar 

  • Keller T, Damude HG, Werner D, Doerner P, Dixon RA, Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phoxsubunit gene encodes a plasma membrane protein with Ca21 binding motifs. Plant Cell 10:255–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Plant Sci 24:25–37

    CAS  PubMed  Google Scholar 

  • Kolupaev YE, Firsova EN, Yastreb TO, Lugovaya AA (2017) The participation of calcium ions and reactive oxygen species in the induction of antioxidant enzymes and heat resistance in plant cells by hydrogen sulfide donor. ApplBiochem Microbiol 53:573–579

    CAS  Google Scholar 

  • Konrad KR, Maierhofer T, Hedrich R (2018) Spatio-temporal aspects of Ca2+−signalling: lessons from guard cells and pollen tubes. J Exp Bot 69:4195–4214

    Google Scholar 

  • Ku YS, Sintaha M, Cheung MY, Lam HM (2018) Plant hormone signaling crosstalks between biotic and abiotic stress responses. Int J Mol Sci 19:3206. https://doi.org/10.3390/ijms19103206

    Article  CAS  PubMed Central  Google Scholar 

  • Kumar PP (2016) Regulation of biotic and abiotic stress responses by plant hormones. Plant Cell Rep 32:943–943

    Google Scholar 

  • Larkindale J, Knight MR (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol 128:682–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leshem YY (2000) Nitric oxide in plants: occurrence, function and use. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Li ZG (2013) Hydrogen sulfide: a multifunctional gaseous molecule in plants. RussJ Plant Physiol 60:733–740

    CAS  Google Scholar 

  • Li ZG (2016) Methylglyoxal and glyoxalase system in plants: old players, new concepts. Bot Rev 82:183–203

    Google Scholar 

  • Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ (2013) Hydrogen sulfide may be a novel downstream signal molecule in nitric oxide-induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ 36:1564–1572

    CAS  PubMed  Google Scholar 

  • Li ZG, Long WB, Yang SZ, Wang YC, Tang JH, Wen L, Zhu BY, Min X (2015) Endogenous hydrogen sulfide regulated by calcium is involved in thermotolerance in tobacco Nicotiana tabacum L. suspension cell cultures. Acta Physiol Plant 37:219. https://doi.org/10.1007/s11738-015-1971-z

    Article  CAS  Google Scholar 

  • Li ZG, Min X, Zhou ZH (2016) Hydrogen sulfide: a signal molecule in plant cross-adaptation. Front Plant Sci 7:1621. https://doi.org/10.3389/fpls.2016.01621

    Article  PubMed  PubMed Central  Google Scholar 

  • Li ZG, Long WB, Yang SZ, Wang YC, Tang JH (2018a) Signaling molecule methylglyoxal-induced thermotolerance is partly mediated by hydrogen sulfide in maize (Zea mays L.) seedlings. Acta Physiol Plant 40:76. https://doi.org/10.1007/s11738-018-2653-4

    Article  CAS  Google Scholar 

  • Li J, Zhang J, Jia H, Yue Z, Lu M, Xin X, Hu J (2018b) Genome-wide characterization of the sHsp gene family in Salix suchowensis reveals its functions under different abiotic stresses. Int J Mol Sci 19:3246. https://doi.org/10.3390/ijms19103246

    Article  CAS  PubMed Central  Google Scholar 

  • Liu Y, Zhang C, Chen J, Guo L, Li X, Li W, Yu Z, Deng J, Zhang P, Zhang K, Zhang L (2013) Arabidopsis heat shock factor HsfA1a directly senses heat stress, pH changes, and hydrogen peroxide via the engagement of redox state. Plant Physiol Biochem 64:92–98

    CAS  PubMed  Google Scholar 

  • Ma F, Lu R, Liu H, Shi B, Zhang J, Tan M, Zhang A, Jiang M (2012) Nitric oxide-activated calcium/calmodulin-dependent protein kinase regulates the abscisic acid-induced antioxidant defence in maize. J Exp Bot 63:4835–4847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Margutti MP, Reyna M, Vilchez CA, Villasuso AL (2019) Lipid profiling shows tissue-specific differences in barley for glycerolipid composition in response to chilling. Environ Exp Bot 158:150–160

    Google Scholar 

  • Mhamdi A, Breusegem FV (2018) Reactive oxygen species in plant development. Development 145:dev164376. https://doi.org/10.1242/dev.164376

    Article  CAS  PubMed  Google Scholar 

  • Mishra D, Shekhar D, Singh D, Chakraborty S, Chakraborty N (2018) Heat shock proteins and abiotic stress tolerance in plants. In: Asea AAA, Kaur P (eds) Regulation of heat shock protein responses. Springer, Cham, pp 41–69

    Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    CAS  PubMed  Google Scholar 

  • Mohanta TK, Bashir T, Hashem A, Abd_Allah EF, Khan AL, Al-Harrasi AS (2018) Early events in plant abiotic stress signaling: interplay between calcium, reactive oxygen species and phytohormones. J Plant Growth Regul 37:1033–1049

    CAS  Google Scholar 

  • Mostofa MG, Ghosh A, Li ZG, Siddiqui MN, Fujitad M, Trane LSP (2018) Methylglyoxal—a signaling molecule in plant abiotic stress responses. Free Rad Biol Med 122:96–109

    CAS  PubMed  Google Scholar 

  • Niu Y, Xiang Y (2018) An overview of biomembrane functions in plant responses to high-temperature stress. Front Plant Sci 9:915. https://doi.org/10.3389/fpls.2018.00915

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohama N, Sato H, Shinozaki K, Yamaguchi-Shinozaki K (2017) Transcriptional regulatory network of plant heat stress response. Trends Plant Sci 22:53–65

    CAS  PubMed  Google Scholar 

  • Park CJ, Seo YS (2015) Heat shock proteins: a review of the molecular chaperones for plant immunity. Plant Pathol J 31:323–333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406:731–734

    CAS  PubMed  Google Scholar 

  • Per TS, Khan MIR, Anjum NA, Masood A, Hussain SJ, Khan NA (2018) Jasmonates in plants under abiotic stresses: crosstalk with other phytohormones matters. Environ Exp Bot 145:104–120

    CAS  Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ, Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6:1301–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu AL, Ding YF, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. BiochemBiophys Res Commun 432:203–207

    CAS  Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    CAS  Google Scholar 

  • Sadura I, Janeczko A (2018) Physiological and molecular mechanisms of brassinosteroid-induced tolerance to high and low temperature in plants. Biol Plant 62:601–616

    CAS  Google Scholar 

  • Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complem Altern Med 12:221

    CAS  Google Scholar 

  • Saidi Y, Finka A, Goloubinoff P (2011) Heat perception and signalling in plants: a tortuous path to thermotolerance. New Phytol 190:556–565

    CAS  PubMed  Google Scholar 

  • Sajid M, Rashid B, Ali Q, Husnain T (2018) Mechanisms of heat sensing and responses in plants.It is not all about Ca2+ ions. Biol Plant 62:409–420

    CAS  Google Scholar 

  • Sami F, Faizan M, Faraz A, Siddiqui H, Yusuf M, Hayat S (2018) Nitric oxide-mediated integrative alterations in plant metabolism to confer abiotic stress tolerance, NO crosstalk with phytohormones and NO-mediated post translational modifications in modulating diverse plant stress. Nitric Oxide 73:22–38

    CAS  PubMed  Google Scholar 

  • Santolini J, Andre F, Jeandroz S, Wendehenne D (2017) Nitric oxide synthase in plants: where do we stand? Nitric Oxide 63:30–38

    CAS  PubMed  Google Scholar 

  • Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187. https://doi.org/10.3389/fpls.2016.00187

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Laxmi A (2016) Jasmonates: emerging players in controlling temperature stress tolerance. Front Plant Sci 6:1129

    PubMed  PubMed Central  Google Scholar 

  • Slama I, Abdelly C, Bouchereau A, Flowers T, Savouré A (2015) Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot 115:433–447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song J, Liu Q, Hu B, Wu W (2017) Photoreceptor PhyB involved in Arabidopsis temperature perception and heat-tolerance formation. Int J Mol Sci 18:1194. https://doi.org/10.3390/ijms18061194

    Article  CAS  PubMed Central  Google Scholar 

  • Szabados L, Savouré A (2010) Proline: A multifunctional amino acid. Trends Plant Sci 15:89–97

    CAS  PubMed  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation ofstress responses. BMC Plant Biol 16:86. https://doi.org/10.1186/s12870-016-0771-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620

    CAS  Google Scholar 

  • Vu LD, Gevaert K, Smet ID (2019) Feeling the heat: searching for plant thermosensors. Trends Plant Sci 24:210–219

    CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. EnvironExp Bot 61:199–223

    Google Scholar 

  • Wany A, Foyer CH, Gupta KJ (2018) Nitrate, NO and ROS signaling in stem cell homeostasis. Trends Plant Sci 23:1041–1044

    CAS  PubMed  Google Scholar 

  • Wu TY, Juan YT, Hsu YH, Wu SH, Liao HT, Fung RWH, Charng YY (2013) Interplay between heat shock proteins HSP101 andHSA32 prolongs heat acclimation memory posttranscriptionally in Arabidopsis. Plant Physiol 161:2075–2084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu ZS, Li ZY, Chen Y, Chen M, Li LC, Ma YZ (2012) Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int J Mol Sci 13:15706–15723

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao J, He Q, Chen G, Wang L, Jin B (2016) Regulation of non-coding RNAs in heat stress responses of plants. Front Plant Sci 7:1213. https://doi.org/10.3389/fpls.2016.01213

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou ZH, Wang Y, Ye XY, Li ZG (2018) Signaling molecules hydrogen sulfide improves seed germination and seedling growth of maize (Zea mays L.) under high temperature by inducing antioxidant system and osmolyte biosynthesis. Front Plant Sci 9:1288. https://doi.org/10.3389/fpls.2018.01288

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, ZG. (2020). Mechanisms of Plant Adaptation and Tolerance to Heat Stress. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_3

Download citation

Publish with us

Policies and ethics