Skip to main content

Microbial Metabolism of Organophosphates: Key for Developing Smart Bioremediation Process of Next Generation

  • Chapter
  • First Online:
Microbial Technology for Health and Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 22))

Abstract

Currently organophosphate compounds constitute one of the largest families of chemical compounds that are used for pest control, mainly for better crop yield worldwide. Due to their toxicity, persistence, and adverse effects, some organophosphates (like parathion and methyl parathion) were classified and registered as extremely hazardous by the World Health Organization (WHO) and US EPA (US Environmental Protection agency) and have been banned in many countries. Some of the hydrolysis intermediates (such as 4-nitrophenol and trichloropyridinol) of these organophosphates are more toxic and environmentally mobile (due to greater water solubility) and therefore more dangerous. However, existing reports suggest their illegal, extensive use and application without proper technical know-how (especially by illiterate farmers in underdeveloped/developing countries). Their indiscriminate and extensive application and use are responsible for possible contamination of several ecosystems and groundwater. Continuous and excessive use of organophosphates has been reported to be responsible for various ever-ending global problems such as contamination of air, water, and terrestrial ecosystems, decline in diversity of productive soil microflora, disruption of biogeochemical cycles, and death of nontarget macroscopic life forms. Organophosphates have been documented as neurotoxic and are potent inhibitors of acetylcholinesterase. They are responsible for serious adverse effect on the nervous, excretion, endocrine, reproductive, cardiovascular, and respiratory systems of target as well as nontarget organisms including humans. Moreover, these compounds are one of the major causes of accidental and suicidal deaths in rural population of the world. The situation therefore is of huge public interest, and hence, suitable cost-effective bioremediation technique must be developed for the restoration of organophosphate-contaminated environmental niches. Bioremediation of pollutants by biological system has emerged as the most effective method for clean up the contaminated sites. In order to implement bioremediation approach, proper understanding of microbial metabolism of these organophosphates compounds is of extreme importance. Microbial metabolism of OP compounds can be carried out catabolically (with organophosphates serving either as a sole source for C, N, or P) or co-metabolically (in the presence of other compounds, mainly carbohydrates). The metabolic conversion of organophosphates to CO2 and H2O (i.e., complete mineralization) is carried out through three main processes such as degradation, conjugation, and rearrangements that involves reactions like oxidation, hydrolysis, and reduction, all mediated through the enzyme-mediated pathways. The main enzymes that are involved in hydrolysis are phosphotriesterases (PTE) and phosphatase. The three major types of PTE are reported so far, such as organophosphate hydrolase (OPH), methyl parathion hydrolase (MPH), and organophosphorus acid anhydrolase (OPAA) encoded by opd, mpd, and opaA genes, which are either located on plasmid or on chromosomal DNA. Since most of the organophosphates are less soluble to make it physiologically available for microbes, solubilization is carried out either through the secretion of organic acid or by biosurfactants by the microbial cells. This is followed by adsorption and or uptake. Most of these adsorption and uptake mechanisms remain largely unknown. However, being lipophilic and small in size, these organophosphates can be transported to the periplasmic space where the metabolic transformation starts. The metabolic transformation involves either an initial oxidation or reduction followed by hydrolysis to release the toxic functional group and phosphate group. This hydrolysis step is most critical as it reduces the toxicity of organophosphates. The metabolic transformation of the toxic functional group is most well-studied and reported in literature. This is followed by a series of reactions that involves interconversion ultimately leading to ring cleavage reaction that opens up the molecule. Further reactions then convert these intermediates into a product that can act as suitable metabolite to be entered into the TCA cycle. The end products released from the TCA cycle are CO2 and H2O. Most of initial reactions are mediated in the periplasmic space of the bacterial cell. The interconversion of much less toxic metabolites occurs in the cytoplasm. Although many facets of organophosphates biodegradation have been excavated, still there remain many lacunas. Understanding microbial diversity, ecological aspects, and adaptation strategies might cater better prospects to hope for smart technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe K, Yoshida S, Suzuki Y, Mori J et al (2014) Haloalkylphosphorus hydrolases purified from Sphingomonas sp. strain TDK1 and Sphingobium sp. strain TCM1. Appl Environ Microbiol 80:5866–5873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abhilash PC, Singh N (2009) Pesticide use and application: an Indian scenario. J Hazard Mater 165:1–12

    Article  CAS  PubMed  Google Scholar 

  • Abraham J, Silambarasan S (2013) Biodegradation of chlorpyrifos and its hydrolyzing metabolite 3,5,6-trichloro-2-pyridinol by Sphingobacterium sp. JAS3. Process Biochem 48:1559–1564

    Article  CAS  Google Scholar 

  • Afriat L, Roodveldt C, Manco G, Tawfik DS (2006) The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemist 45:13677–13686

    Article  CAS  Google Scholar 

  • Afriat-Jurnou L, Jackson CJ, Tawfik DS (2012) Reconstructing a missing link in the evolution of a recently diverged phosphotriesterase by active-site loop remodeling. Biochemistry 51:6047–6055

    Article  CAS  PubMed  Google Scholar 

  • Ajaz M, Rasool SA, Sherwani SK, Ali TA (2012) High profile chlorpyrifos degrading Pseudomonas putida MAS-1 from indigenous soil: gas chromatographic analysis and molecular characterization. Int J Basic Med Sci Pharma 2:58–61

    CAS  Google Scholar 

  • Aktar MW, Paramasivam M et al (2009) Impact assessment of pesticide residues in fish of Ganga river around Kolkata in West Bengal. Environ Monit Assess 157:97–104

    Article  CAS  PubMed  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation. Academic Press, London

    Google Scholar 

  • Ali M, Naqvi TA, Kanwal M et al (2012) Detection of the OP degrading gene opdA in the newly isolated bacterial strain Bacillus pumilus W1. Ann Microbiol 62:233–239

    Article  CAS  Google Scholar 

  • Al-Qurainy F, Abdel-Megeed A (2009) Phytoremediation and detoxification of two organophosphorous pesticides residues in Riyadh area. World Appl Sci J 6:987–998

    CAS  Google Scholar 

  • Alzahrani AM (2009) Insects cytochrome P450 enzymes: evolution, functions and methods of analysis. Global J Mol Sci 4:167–179

    CAS  Google Scholar 

  • Amitai G, Adani R et al (1998) Oxidative biodegradation of phosphorothiolates by fungal laccase. FEBS Lett 438:195–200

    Article  CAS  PubMed  Google Scholar 

  • Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–405

    Article  CAS  PubMed  Google Scholar 

  • Armstrong RN (1997) Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem Res Toxicol 10:2–18

    Article  CAS  PubMed  Google Scholar 

  • Aronstein BN, Calvillo YM, Alexander M (1991) Effect of surfactants at low concentrations on the desorption and biodegradation of sorbed aromatic compounds in soil. Environ Sci Technol 25:1728–1731

    Article  CAS  Google Scholar 

  • Arora PK, Sasikala C et al (2012) Degradation of chlorinated nitroaromatic compounds. Appl Microbiol Biotechnol 93:2265–2277

    Article  CAS  PubMed  Google Scholar 

  • Attaway H, Nelson JO et al (1987) Bacterial detoxification of diisopropyl fluorophosphate. Appl Environ Microbiol 53:1685–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad NS, Sabit HH et al (2011) Isolation, characterization and fingerprinting of some chlorpyrifos-degrading bacterial strains isolated from Egyptian pesticides-polluted soils. Afr J Microbiol Res 5:2855–2862

    Article  CAS  Google Scholar 

  • Baker MD, Wolanin PM, Stock JB (2005) Signal transduction in bacterial chemotaxis. Bio Essays 28:9–22

    Google Scholar 

  • Balamurugan K, Ramakrishnan M et al (2010) Biodegradation of methyl parathion and monochrotophos by Pseudomonas aeruginosa and Trichoderma viridae. Asian J Sci Technol 6:123–126

    Google Scholar 

  • Barman DN, Haque MA et al (2014) Cloning and expression of ophB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide chlorpyrifos. Ecotoxicol Environ Saf 108:135–141

    Article  CAS  PubMed  Google Scholar 

  • Barton JW, Kuritz T et al (2004) Reductive transformation of methyl parathion by the cyanobacterium Anabaena sp. strain PCC7120. Appl Microbiol Biotechnol 65:330–335

    Article  CAS  PubMed  Google Scholar 

  • Begum SS, Arundhati A (2016) A study of bioremediation of methyl parathion in vitro using potential Pseudomonas sp. isolated from agricultural Soil, Visakhapatnam, India. Int J Curr Microbiol App Sci 5:464–474

    Article  CAS  Google Scholar 

  • Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  PubMed  Google Scholar 

  • Benning MM, Kuo JM et al (1995) Three dimensional structure of the binuclear metal center of phosphotriesterase. Biochemist 34:7973–7978

    Article  CAS  Google Scholar 

  • Berg G, Grube M et al (2014) The plant microbiome and its importance for plant and human health. Front Microbiol 5:491. https://doi.org/10.3389/fmicb.2014.00491

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhagobaty RK, Malik A (2008) Utilization of chlorpyrifos as a sole source of carbon by bacteria isolated from wastewater irrigated agricultural soils in an industrial area of western Uttar Pradesh, India. Res J Microbiol 3:293–307

    Article  CAS  Google Scholar 

  • Bhushan B, Samanta SK et al (2000) Chemotaxis and biodegradation of 3-methyl-4-nitrophenol by Ralstonia sp. SJ98. Biochem Biophys Res Commun 275:129–133

    Article  CAS  PubMed  Google Scholar 

  • Bhushan B, Halasz A et al (2004) Chemotaxis-mediated biodegradation of cyclic nitramine explosives RDX, HMX, and CL-20 by Clostridium sp. EDB2. Biochem Biophys Res Commun 316:816–821

    Article  CAS  PubMed  Google Scholar 

  • Block R, Stroo H, Swett GH (1993) Bioremediation- why doesn’t it work sometimes? Chem Eng Prog 89:44–50

    Google Scholar 

  • Briceño G, Fuentes MS et al (2012) Chlorpyrifos biodegradation and 3,5,6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeterior Biodegrad 73:1–7

    Article  CAS  Google Scholar 

  • Brown D, Jaffe PR (2006) Effects of nonionic surfactants on the cell surface hydrophobicity and Apparent Hamaker constant of a Sphingomonas sp. Environ Sci Technol 40:195–201

    Article  CAS  PubMed  Google Scholar 

  • Bumpus JA, Kakar SN, Coleman RD (1993) Fungal degradation of organophosphorus insecticides. Appl Biochem Biotechnol 39:715–726

    Article  PubMed  Google Scholar 

  • Chao Y, Zhu Y et al (2008) Development of an autofluorescent whole-cell biocatalyst by displaying dual functional moieties on Escherichia coli cell surfaces and construction of a co-culture with OP-mineralizing activity. Appl Environ Microbiol 74:7733–7739

    Article  CAS  Google Scholar 

  • Chaudhry GR, Ali AN, Wheeler WB (1988) Isolation of a methyl parathion-degrading Pseudomonas sp. that possesses DNA homologous to the opd gene from a Flavobacterium sp. Appl Environ Microbiol 54:288–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CM, Ye QZ et al (1990) Molecular biology of carbon-phosphorus bond cleavage. Cloning and sequencing of the phn (psiD) genes involved in alkylphosphonate uptake and C-P lyase activity in Escherichia coli B. J Biol Chem 265:4461–4471

    CAS  PubMed  Google Scholar 

  • Chen S, Yang L et al (2011) Biodegradation of fenvalerate and 3-phenoxybenzoic acid by a novel Stenotrohomonas sp. strain ZS-S-01 and its use in boremediation of contaminated soils. Appl Microbiol Biotechnol 90:755–767

    Google Scholar 

  • Chen S, Liu C et al (2012) Biodegradation of Chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7:e47205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L-Z, Li Y-L, Yu Y-L (2014) Soil bacterial and fungal community successions under the stress of chlorpyrifos application and molecular characterization of chlorpyrifos-degrading isolates using ERIC-PCR. J Zhejiang Univ-Sci B (Biomed & Biotechnol) 15:322–332

    Article  CAS  Google Scholar 

  • Chen J, Luo X-J et al (2015) Marked enhancement of Acinetobacter sp. organophosphorus hydrolase activity by a single residue substitution Ile211Ala. Bioresour Bioprocess 2:39

    Article  Google Scholar 

  • Chen Q, Chen K et al (2016) A novel amidohydrolase (DmhA) from Sphingomonas sp. that can hydrolyze the organophosphorus pesticide dimethoate to dimethoate carboxylic acid and methylamine. Biotechnol Lett 38:703–710

    Article  CAS  PubMed  Google Scholar 

  • Cheng TC, DeFrank JJ (2000) Hydrolysis of organophosphorus compounds by bacterial prolidases. In: Zwanenburg B et al (eds) Enzymes in action green solutions for chemical problems, vol 33. Kluwer Academic, Dordrecht, pp 243–261

    Google Scholar 

  • Cheng T-C, Harvey SP, Stroup AN (1993) Purification and properties of a highly active organophosphorus acid anhydrolase from Alteromonas undina. Appl Environ Microbiol 59:3138–3140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T-C, Haevey SP, Chen GL (1996) Cloning and expression of a gene encoding a bacterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme. Appl Environ Microbiol 62:1636–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Liu L et al (1997) Nucleotide sequence of a gene encoding an organophosphorus nerve agent degrading enzyme from Alteromonas haloplanktis. J Ind Microbiol Biotechnol 18:49–55

    Article  CAS  PubMed  Google Scholar 

  • Cheng T-C, DeFrank JJ, Rastogi VK (1999) Alteromonas prolidase for organophosphorus G-agent decontamination. Chem Biol Interact 120:455–462

    Article  Google Scholar 

  • Cho CM-H, Mulchandani A, Chen W (2004) Altering the substrate specificity of organophosphorus hydrolase for enhanced hydrolysis of chlorpyrifos. Appl Environ Microbiol 70:4681–4685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu X-Y, Wu N-F et al (2006) Expression of organophosphorus hydrolase OPHC2 in Pichia pastoris: Purification and characterization. Protein Expr Purif 49:9–14

    Article  CAS  PubMed  Google Scholar 

  • Comeau Y, Greer CW, Samson R (1993) Role of inoculum preparation and density on the bioremediation of 2,4-D-contaminated soil by bioaugmentation. Appl Microbiol Biotechnol 38:681–687

    Article  CAS  Google Scholar 

  • Concepcio’n C-F, Danta’n-Gonza’lez E et al (2012) Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides. Biodegradation 23:387–397

    Article  CAS  Google Scholar 

  • Cycon’ M, Wojcik M et al (2011) Biodgradation kinetics of the benzimidazole fungicide thiophanate methyl by bacteria isolated from loamy sand soil. Biodegradation 22:573–583

    Article  CAS  Google Scholar 

  • Daughton CG, Hsieh DP (1977) Parathion utilization by bacterial symbionts in a chemostat. Appl Environ Microbiol 34:175–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Lorenzo V (2008) Systems biology approaches to bioremediation. Curr Opin Biotechnol 19:579–589

    Article  CAS  PubMed  Google Scholar 

  • Deng S, Chen Y et al (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J Hazard Mater 297:17–24

    Article  CAS  PubMed  Google Scholar 

  • Dong Y-J, Bartlam M et al (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. J Mol Biol 353:655–663

    Article  CAS  PubMed  Google Scholar 

  • Dotson SB, Smith CE et al (1996) Identification, characterization and cloning of a phosphonate monoester hydrolase from Burkholderia caryophilli PG2982. J Biol Chem 271:25754–25761

    Article  CAS  PubMed  Google Scholar 

  • Dubey KK, Fulekar MH (2012) Chlorpyrifos bioremediation in Pennisetum rhizosphere by a novel potential degrader Stenotrophomonas maltophilia MHF ENV20. World J Microbiol Biotechnol 28:1715–1725

    Article  CAS  PubMed  Google Scholar 

  • Dumas DP, Caldwell SR et al (1989) Purification and properties of the phosphotriesterase from Pseudomonas diminuta. J Biol Chem 264:19659–19665

    CAS  PubMed  Google Scholar 

  • Ekkhunnatham A, Jongsareejit B et al (2012) Purification and characterization of methyl parathion hydrolase from Burkholderia cepacia capable of degrading OP insecticides. World J Microbiol Biotechnol 28:1739–1746

    Article  CAS  PubMed  Google Scholar 

  • Fang H, Xiang YQ et al (2008) Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi. Int Biodeterior Biodegrad 61:294–303

    Article  CAS  Google Scholar 

  • Fang L-C, Chen Y-F et al (2016) Complete genome sequence of a novel chlorpyrifos degrading bacterium, Cupriavidus nantongensis X1. J Biotechnol 227:1–2

    Article  CAS  PubMed  Google Scholar 

  • Fang-Yao L, Ming-zhang H et al (2007) Biodegradation of methyl parathion by Acinetobacter radioresistens USTB-04. J Environ Sci 19:1257–1260

    Article  Google Scholar 

  • Farhan M, Khan AU et al (2012) Biodegradation of Chlorpyrifos using indigenous Pseudomonas sp. isolated from industrial drain. Pak J Nutr 11:1183–1189

    Article  CAS  Google Scholar 

  • Farivar TN, Peymani A et al (2017) Biodegradation of paraoxon as an OP pesticide with Pseudomonas plecoglossicida transfected by opd gene. Biotech Health Sci. https://doi.org/10.17795/bhs-45055

  • Fodale R, Pasquale CD et al (2010) Isolation of organophosphorus-degrading bacteria from agricultural mediterranean soils. Fresenius Environ Bull 19:2396–2403

    CAS  Google Scholar 

  • Fulekar MH, Geetha M (2008) Bioremediation of Chlorpyrifos by Pseudomonas aeruginosa using scale up technique. J Appl Biosci 12:657–660

    Google Scholar 

  • Gallo MA, Lawryk NJ (1991) Organic phosphorus pesticides. In: Hayes WJ, Laws ER (eds) Handbook of pesticide toxicology. Academic Press, San Diego, pp 917–1123

    Google Scholar 

  • Gao Y, Chen S et al (2012) Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One 6:e38137

    Article  CAS  Google Scholar 

  • Ghanem I, Orfi M, Shamma M (2007) Biodegradation of Chlorpyrifos by Klebsiella sp. isolated from an activated sludge sample of waste water treatment plant in damascus. Folia Microbiol 52:423–427

    Article  CAS  Google Scholar 

  • Ghosh PG, Sawant NA et al (2010) Microbial biodegradation of OP pesticides. Int J Biotech Biochem 6:871–876

    Google Scholar 

  • Goda SK, Elsayed IE et al (2010) Screening for and isolation and identification of malathion-degrading bacteria: cloning and sequencing a gene that potentially encodes the malathion-degrading enzyme, carboxylesterase in soil bacteria. Biodegradation 21:903–913

    Article  CAS  PubMed  Google Scholar 

  • Greenhalgh R, Dhawan KL, Weinberger P (1980) Hydrolysis of Fenitrothion in model and natural aquatic systems. J Agrlc Food Chem 28:102–105

    Article  CAS  Google Scholar 

  • Guha A, Kumari B, Roy MK (1997) Possible involvement of plasmid in degradation of malathion and chlorpyrifos by Micrococcus sp. Folia Microbiol 42:574–576

    Article  CAS  Google Scholar 

  • Guo Z, Yuan Y et al (2009) Function analysis of OP pesticides hydrolase from Pseudomonas stutzeri HS-D36. doi: https://doi.org/10.1109/ICBBE.2009.5162870.

  • Gupta PK (2004) Pesticide exposure-Indian scene. Toxicology 198:83–90

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Liu J, Sun M (2014) Identification of a marine Bacillus strain C5 and parathion-methyl degradation characteristics of the extracellular esterase B1. Bio Med Research Int 2014:863094. https://doi.org/10.1155/2014/863094

    Article  Google Scholar 

  • Harish R, Supreeth M, Chauhan JB (2013) Biodegradation of OP pesticide by soil fungi. Advanced Bio Tech 12:04–08

    Google Scholar 

  • Harper LL, McDaniel CS et al (1988) Dissimilar plasmids isolated from Pseudomonas diminuta MG and a Flavobacterium sp. (ATCC 27551) contains identical opd genes. Appl Environ Microbiol 54:2586–2589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins AC, Harwood CS (2002) Chemotaxis of Ralstonia eutropha JMP134 (pJ4) to the herbicide 2,4-dichlorophenoxyacetate. Appl Environ Microbiol 68:968–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayatsu M, Hirano M, Tokuda S (2000) Involvement of two plasmids in fenitrothion degradation by Burkholderia sp. strain NF100. Appl Environ Microbiol 66:1737–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  PubMed  Google Scholar 

  • Horne I, Sutherland TD et al (2002a) Identification of an opd (OP degradation) gene in an Agrobacterium isolate. Appl Environ Microbiol 68:3371–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horne I, Sutherland TD et al (2002b) Cloning and expression of the phosphotriesterase gene hocA from Pseudomonas monteilii C11. Microbiologica 148:2687–2695

    CAS  Google Scholar 

  • Hua F, Yunlong Y et al (2009) Degradation of chlorpyrifos in laboratory soil and its impact on soil microbial functional diversity. J Environ Sci 21:380–386

    Article  CAS  Google Scholar 

  • Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacterial for degradation of selected pesticides. Adv Biores 4:82–85

    Google Scholar 

  • Ifediegwu MC, Agu KC et al (2015) Isolation, growth and identification of chlorpyrifos degrading bacteria from agricultural soil in Anambra State, Nigeria. Univ J Microbiol Res 3:46–52

    CAS  Google Scholar 

  • Islam SMA, Math RK, Cho KM (2010) Organophosphorus hydrolase (OpdB) of Lactobacillus brevis WCP902 from Kimchi is able to degrade organophosphorus pesticides. J Agric Food Chem 58:5380–5386

    Article  CAS  PubMed  Google Scholar 

  • Iyer R, Iken B, Tamez T (2011) Isolation, molecular and biochemical identification of Paraoxon-metabolizing Pseudomonas Species. J Bioremed Biodegra 2:132

    Article  CAS  Google Scholar 

  • Iyer R, Stepanov VG, Iken B (2013) Isolation and molecular characterization of a novel Pseudomonas putida strain capable of degrading OP and aromatic compounds. Adv Biol Chem 3:564–578

    Article  CAS  Google Scholar 

  • Jabeen H, Iqbal S, Anwar S (2015) Biodegradation of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol by a novel rhizobial strain Mesorhizobium sp. HN3. Water Environ J 29:151–160

    Article  CAS  Google Scholar 

  • Jao S-C, Huang L-F et al (2004) Hydrolysis of OP triesters by Escherichia coli aminopeptidase P. J Mol Catalys B: Enz 27:7–12

    Article  CAS  Google Scholar 

  • Jayasri Y, Naidu MD, Malllkarjuna M (2015) Biodegradation of the chlorpyrifos pesticide by bacteria isolated from groundnut agricultural soils in Kadapa Basin. The Ecoscan 9:143–146

    CAS  Google Scholar 

  • Jeffries TC, Rayu S et al (2018) Metagenomic functional potential predicts degradation rates of a model organophosphorus xenobiotic in pesticide contaminated soils. Front Microbiol 9:147. https://doi.org/10.3389/fmicb.2018.00147

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhang R et al (2007) Parameters controlling the gene-targeting frequency at the Sphingomonas species rrn site and expression of the methyl parathion hydrolase gene. J Appl Microbiol 102:1578–1585

    Article  CAS  PubMed  Google Scholar 

  • John EM, Sreekumar J, Jisha MS (2016) Optimization of chlorpyrifos degradation by assembled bacterial consortium using response surface methodology. Soil Sediment Contam: An Int J 25:668–682. https://doi.org/10.1080/15320383.2016.1190684

    Article  CAS  Google Scholar 

  • Jones AS, Hastings FL (1981) Soil microbe studies. In: Hastings FL, Coster JE (eds) Field and laboratory evaluations of insecticides for southern pine beetle control, vol 21. Southern Forest Experiment Station, Forest Service, SE, USDA, pp 13–14

    Google Scholar 

  • Kadiyala V, Spain JC (1998) A two component monooxygenase catalyzes both the hydroxylation of p-nitrophenol and the oxidative release of nitrite from 4-nitrocatechol in Bacillus sphaericus JS905. Appl Environ Microbiol 64:2479–2484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanekar PP, Bhadbhade BJ, Deshpande NM (2004) Biodegradation of OP pesticides. Proc Indian Natri Sci Acad B70:57–70

    Google Scholar 

  • Kannan K, Tanabe S, Giesy JP, Tatsukawa R (1997) Organochlorine pesticides and polychlorinated biphenyls in food stuffs from Asian and oceanic countries. Rev Environ Contam Toxicol 152:1–55

    CAS  PubMed  Google Scholar 

  • Karolin KP, Meenakumari KS, Subha P (2015) Isolation and characterization of novel chlorpyrifos degrading fungus Isaria Farinosa. J Chem Chem Eng 9:403–407

    CAS  Google Scholar 

  • KaviKarunya S, Reetha D (2012) Biological degradation of chlorpyrifos and monocrotophos by bacterial isolates. Int J Pharm Biol Arch 3:685–691

    Google Scholar 

  • Kawahara K, Tanaka A et al (2010) Reclassification of a parathione degrading Flavobacterium sp. ATCC 27551 as Sphingobium fuliginis. J Gen Appl Microbiol 56:249–255

    Article  CAS  PubMed  Google Scholar 

  • Keprasertsupa C, Suchart Upatham ES et al (2001) Degradation of methyl parathion in an aqueous medium by soil bacteria. Sci Asia 27:261–270

    Article  Google Scholar 

  • Khaled A, Miia T et al (2012) Metabolism of pesticides by human cytochrome P450 enzymes. In: Vitro-a survey, insecticides-advances in integrated pest management. InTech. Available at: http://cdn.intechopen.com/pdfs/25674/InTechMetabolism_of_pesticides_b_human_cytochrome_p450_enzymes_in_vitro_a_survey.pdf

  • Kim J-R, Ahn Y-J (2009) Identification and characterization of chlorpyrifos-methyl and 3,5,6-trichloro-2-pyridinol degrading Burkholderia sp. strain KR100. Biodegradation 20:487–497

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Ahn J-H et al (2007) Cloning and expression of a parathion hydrolase gene from a soil bacterium, Burkholderia sp. JBA3. J Microbiol Biotechnol 17:1890–1893

    CAS  PubMed  Google Scholar 

  • Kim CH, Choi JS et al (2013) Biodegradation of chlorpyrifos (CP) by a newly isolated Naxibacter sp. strain CY6 and its ability to degrade CP in soil. Korean J Microbiol 49:83–89

    Article  Google Scholar 

  • Kitagawa W, Kimura N, Kamagata Y (2004) A novel p-Nitrophenol degradation gene cluster from a Gram-Positive bacterium, Rhodococcus opacus SAO101. J Bacteriol 186:4894–4902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219–225

    Article  CAS  Google Scholar 

  • Kumar S (2011a) Isolation, characterization and growth response study of chlorpyrifos degrading bacteria from cultivated soil. Int J Adv Engineer Technol 2:199–203

    Google Scholar 

  • Kumar S (2011b) Bioremediation of chlorpyrifos by bacteria isolated from the cultivated soils. Int J Pharm Bio Sci 2:359–366

    CAS  Google Scholar 

  • Kumar J, D’Souza SF (2010) An optical microbial biosensor for detection of methyl parathion using Sphingomonas sp. immobilized on micro plate as a reusable biocomponent. Biosens Bioelectron 26:1292–1296

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Jha SK, D’Souza SF (2006) Optical microbial biosensor for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens Bioelectron 21:2100–2105

    Article  CAS  PubMed  Google Scholar 

  • Kumar SV, Fareedullah M et al (2010) Current review on Organophosphorous poisoning. Archives Appl Sci Res 2:199–215

    CAS  Google Scholar 

  • Kuo JM, Raushel FM (1994) Identification of the histidine ligands to the binuclear metal center of phosphotriesterase by site-directed mutagenesis. Biochemistry 33:4265–4272

    Article  CAS  PubMed  Google Scholar 

  • Lakshmi A (1993) Pesticides in India: risk assessment to aquatic ecosystems. Sci Total Environ 134:243–253

    Article  Google Scholar 

  • Lakshmi CV, Kumar M, Khanna S (2009) Biodegradation of chlorpyrifos in soil by enriched cultures. Curr Microbol 58:35–38

    Article  CAS  Google Scholar 

  • Latifi AM, Khodi S et al (2012) Isolation and characterization of five chlorpyrifos degrading bacteria. Afr J Biotechnol 11:3140–3146

    CAS  Google Scholar 

  • Li X, Schuler MA, Berenbaum MR (2007a) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol 52:231–253

    Article  CAS  PubMed  Google Scholar 

  • Li X, He J, Li S (2007b) Isolation of chlorpyrifos degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143–149

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Li W, Zhang C, Yan Y (2008a) Isolation, characterization of methyl-parathion degrading strain L1 and cloning of the mpd gene. Biotechnol Bull:2008-06

    Google Scholar 

  • Li XH, Jiang JD et al (2008b) Diversity of chlorpyrifos degrading bacteria isolated from chlorpyrifos-contaminated samples. Int Biodeterior Biodegrad 62:331–335

    Article  CAS  Google Scholar 

  • Liu X, Parales RE (2009) Bacterial chemotaxis to atrazine and related s-triazines. Appl Environ Microbiol 75:5481–5488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y-H, Chung Y-C, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256, isolated from sewage. Appl Environ Microbiol 67:3746–3749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, You M et al (2003) Isolation of chlorpyrifos-degrading Aspergillus sp. Y and measurement of degradation efficiency. Chinese J Appl Environ Biol 9:78–80

    CAS  Google Scholar 

  • Liu Y-H, Liu Y et al (2004) Purification and characterization of a novel organophosphorus pesticide hydrolase from Penicillium lilacinum BP303. Enz Microbial Technol 34:297–303

    Article  CAS  Google Scholar 

  • Liu H, Zhang J-J et al (2005) Plasmid-borne catabolism of methyl parathion and p-nitrophenol in Pseudomonas sp. strain WBC-3. Biochem Biophys Res Commun 334:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Chen X et al (2012) Bacterial degradation of Chlorpyrifos by Bacillus cereus. Adv Mater Res 356–360:676–680

    Google Scholar 

  • Liu Z, Xie J et al (2014) Isolation of an organophosphorus-degrading strain Pseudomonas sp. strain YF-5 and cloning of mpd gene from this strain. J Pure Appl Microbiol 8:587–591

    Google Scholar 

  • Longkumar T, Parthasarathy S et al (2014) OxyR dependent expression of a novel glutathione S-tranferase (Abgst01) gene in Acinetobacter baumannii DS002 and its role in biotransformation of OP insecticides. Microbiologica 160:102–112

    Google Scholar 

  • Lu P, Li Q et al (2013) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by Cupriavidus sp. DT-1. Bioresour Technol 127:337–342

    Article  CAS  PubMed  Google Scholar 

  • Madhuri RJ, Rangaswamy V (2009) Biodegradation of selected insecticides by Bacillus and Pseudomonas sps in ground nut fields. Toxicol Int 16:127–132

    Google Scholar 

  • Marinho G, Rodrigues K et al (2011) Glucose effect on degradation kinetics of methyl parathion by filamentous fungi species Aspergillus niger AN400. Eng Sanit Ambient 16:225–230

    Article  Google Scholar 

  • Mastumura F, Boush GM (1968) Degradation of insecticides by a soil fungus, Trichoderma viridae. J Econ Entomol 61:610–612

    Article  Google Scholar 

  • Maya K, Singh RS et al (2011) Kinetic analysis reveals bacterial efficacy for biodegradation of chlorpyrifos and its hydrolyzing metabolite TCP. Process Biochem 46:2130–2136

    Article  CAS  Google Scholar 

  • Maya K, Upadhyay SN et al (2012) Degradation kinetics of chlorpyrifos and 3,5,6-trichloro-2-pyridinol (TCP) by fungal communities. Bioresour Technol 126:216–223

    Article  CAS  PubMed  Google Scholar 

  • Mazur A (1946) An enzyme in animal tissue capable of hydrolyzing the phosphorous-fluorine bond of alkyl fluorophosphates. J Biol Chem 164:271–289

    CAS  PubMed  Google Scholar 

  • McDaniel CS, Harper LL, Wild JR (1988) Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol 170:2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min-Kyeong C, Kim K-D et al (2009) Genetic and phenotypic diversity of parathion-degrading bacteria isolated from rice paddy soils. J Microbiol Biotechnol 19:1679–1687

    Article  CAS  Google Scholar 

  • Mishra A (2015) Microbial degradation of methyl parathion by a soil bacterial isolate and consortium. Int J Res Studies Biosci:15–19

    Google Scholar 

  • Misra D, Bhuyan S et al (1992) Accelerated degradation of methyl parathion, parathion and fenitrothion by suspensions from methyl parathion and p-nitrophenol-treated soils. Soil Biol Biochem 24:1035–1042

    Article  CAS  Google Scholar 

  • Monteiro SA, Sassaki GL et al (2007) Molecular and structural characterization of the biosurfactant produced by Pseudomonas aeruginosa DAUPE 614. Chem Phys Lipids 147:1–13

    Article  CAS  PubMed  Google Scholar 

  • Morra MJ (1996) Bioremediation in soil: Influence of soil properties on organic contaminants and bacteria. In: Crawford RL, Crawford DL (eds) Bioremediation: principles and application. Cambridge University Press, Cambridge, pp 35–60

    Chapter  Google Scholar 

  • Mulbry WW (1992) The aryldialkylphosphatase-encoding gene adpB from Nocardia sp. strain B-l: cloning, sequencing and expression in Escherichia coli. Gene 121:149–153

    Article  CAS  PubMed  Google Scholar 

  • Mulbry WW, Karns JS (1989) Parathion hydrolase specified by the Flavobacterium opd gene: Relationship between the gene and protein. J Bacteriol 171:6740–6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulbry WW, Karns JS et al (1986) Identification of a plasmid-borne parathion hydrolase gene from Flavobacterium sp. by southern hybridization with opd from Pseudomonas diminuta. Appl Environ Microbiol 51:926–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulbry WW, Zhu H et al (2002) The triazine hydrolase gene trzN from Nocardioides sp. strain C190: Cloning and construction of gene-specific primers. FEMS Microbiol Lett 206:75–79

    Article  CAS  PubMed  Google Scholar 

  • Munnecke DM, Hsieh DPH (1974) Microbial decontamination of parathion and p-nitrophenol in aqueous media. Appl Microbiol 28:212–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munnecke DM, Hsieh DPM (1976) Pathways of microbial metabolism of parathion. Appl Environ Microbiol 31:63–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson LM (1982) Biologically-induced hydrolysis of parathion in soil: isolation of hydrolyzing bacteria. Soil Biol Biochem 14:219–222

    Article  CAS  Google Scholar 

  • Neti N, Zakkula V (2013) Analysis of chlorpyrifos degradation by Kocuria sp. using GC and FTIR. Curr Biotica 6:466–472

    Google Scholar 

  • Ningfeng W, Minijie D et al (2004) Isolation, purification and characterization of a new organophosphorous hydrolase OPH2. Chin Sci Bull 49:268–272

    Google Scholar 

  • Oakley AJ (2005) Glutathione transferases: new functions. Curr Opin Struct Biol 15:716–723

    Article  CAS  PubMed  Google Scholar 

  • Omar SA (1998) Availability of phosphorus and sulfur of insecticide origin by fungi. Biodegradation 9:327–336

    Article  CAS  PubMed  Google Scholar 

  • Omburo GA, Kuo JM et al (1992) Characterization of the zinc binding site of bacterial phosphotriesterase. J Biol Chem 267:13278–13283

    CAS  PubMed  Google Scholar 

  • Ortiz-Hernandez ML, Sanchez-Salinas E (2010) Biodegradation of the OP pesticide tetrachlorvinphos by bacteria isolated from agricultural soils in Mexico. Rev Int Contam Ambient 26:27–38

    CAS  Google Scholar 

  • Pailan S, Saha P (2015) Chemotaxis and degradation of OP compound by a novel moderately thermo-halo tolerant Pseudomonas sp. strain BUR11: evidence for possible existence of two pathways for degradation. PeerJ 3:e1378. https://doi.org/10.7717/peerj.1378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pailan S, Gupta D et al (2015) Degradation of OP insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India. Int Biodeterior Biodegrad 103:191–195

    Article  CAS  Google Scholar 

  • Pailan S, Sengupta K et al (2016) Evidence of biodegradation of Chlorpyrifos by a newly isolated heavy metal tolerant bacterium Acinetobacter sp. strain MemCl4. Environ Earth Sci 75:1019. https://doi.org/10.1007/s12665-016-5834-8

    Article  CAS  Google Scholar 

  • Pakala SB, Gorla P et al (2007) Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001. Appl Microbiol Biotechnol 73:1452–1462

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Jain RK (2002) Bacterial chemotaxis toward environmental pollutants: role in bioremediation. Appl Environ Microbiol 68:5789–5795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey S, Singh DK (2004) Total bacterial and fungal population after chlorpyrifos and quinalphos treatments in groundnut (Arachis hypogaea L.) soil. Chemosphere 55:197–205

    Article  CAS  PubMed  Google Scholar 

  • Pandey G, Chauhan A et al (2002) Chemotaxis of a Ralstonia sp. SJ98 toward co-metabolizable nitroaromatic compounds. Biochem Biophys Res Commun 299:404–409

    Article  CAS  PubMed  Google Scholar 

  • Park N-J, Kamble ST (2001) Decapitation impact effect of topically applied chlorpyrifos on acetylcholinesterase and general esterases in susceptible and resistant German Cockroaches (Dictyoptera: Blattellidae). J Econ Entomol 94:499–505

    Article  CAS  PubMed  Google Scholar 

  • Parthasarathy S, Parapatla H, Nandavaram A et al (2016) OP Hydrolase is a lipoprotein and interacts with pi-specific transport system to facilitate growth of Brevundimonas diminuta Using op insecticide as source of phosphate. J Biol Chem 291:7774–7785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy S, Azam S, Lakshman Sagar A et al (2017a) Genome-guided insights reveal OP-degrading Brevundimonas diminuta as Sphingopyxis wildii and define its versatile metabolic capabilities and environmental adaptations. Genome Biol Evol 9:77–81

    CAS  PubMed  Google Scholar 

  • Parthasarathy S, Parapatla H, Siddavattam D (2017b) Topological analysis of the lipoprotein OP hydrolase from Sphingopyxis wildii reveals a periplasmic localization. FEMS Microbiol Lett 364:fnx187. https://doi.org/10.1093/femsle/fnx187

    Article  CAS  Google Scholar 

  • Penaloza-Vazquez A, Mena GL et al (1995) Cloning and sequencing of the genes involved in glyphosate utilization by Pseudomonas pseudomallei. Appl Environ Microbiol 61:538–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peter JK, Masih H et al (2014) OP pesticide (methyl parathion) degrading bacteria isolated from rhizospheric soil of selected plants and optimization of growth conditions for degradation. Int J Res 1

    Google Scholar 

  • Pino N, Peñuela G (2011) Simultaneous degradation of the pesticides methyl parathion and chlorpyrifos by an isolated bacterial consortium from a contaminated site. Int Biodeterior Biodegrad 65:827–831

    Article  CAS  Google Scholar 

  • Pino NJ, Dominguez MC, Penuela GA (2011) Isolation of a selected microbial consortium capable of degrading methyl parathion and p-nitrophenol from a contaminated soil site. J Environ Sci Health 46:173–180

    Article  CAS  Google Scholar 

  • Puri SN, Murthy KS, Sharma OP (2013) Pest problems in India-current status. Ind J Plant Protec 27:20–31

    Google Scholar 

  • Qiu X-H, Bai W-Q et al (2006) Isolation and characterization of a bacterial strain of the genus Ochrobactrum with methyl parathion mineralizing activity. J Appl Microbiol 101:986–994

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan B, Megharaj M et al (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. Rev Environ Contam Toxicol 211:63–120

    CAS  PubMed  Google Scholar 

  • Ramanathan MP, Lalithakumari D (1996) Methyl parathion degradation by Pseudomonas sp. A3 immobilized in sodium alginate beads. World J Microbiol Biotechnol 12:107–108

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan MP, Lalithakumari D (1999) Complete Mineralization of Methyl parathion by Pseudomonas sp. A3. Appl Biochem Biotechnol 80:1–12

    Article  CAS  PubMed  Google Scholar 

  • Rani NL, Lalithakumari D (1994) Degradation of methyl parathion by Pseudomonas putida. Can J Microbiol 4:1000–1004

    Article  Google Scholar 

  • Rani MS, Lakshmi KV et al (2008) Isolation and characterization of a chlorpyrifos degrading bacterium from agricultural soil and its growth response. Afr J Microbiol Res 2:026–031

    Google Scholar 

  • Rao AV, Sethunathan N (1974) Degradation of parathion by Penicillium waksmani isolated from flooded acid sulphate soil. Arch Microbiol 97:203–208

    Article  CAS  PubMed  Google Scholar 

  • Rayu S, Nielsen UN, Nazaries L, Singh BK (2018) Isolation and molecular characterization of novel chlorpyrifos and 3,5,6- trichloro-2-pyridinol-degrading bacteria from sugarcane farm soils. Front Microbiol 8:518. https://doi.org/10.3389/fmicb.2017.00518

    Article  Google Scholar 

  • Rodrigues GN, Alvarenga N et al (2016) Biotransformation of methyl-parathion by marine-derived fungi isolated from ascidian Didemnum ligulum. Biocatalys Agri Biotechnol 7:24–30

    Article  Google Scholar 

  • Romeh AA, Hendawi MY (2014) Bioremediation of certain organophosphorus pesticides by two biofertilizers, Paenibacillus (Bacillus) polymyxa (Prazmowski) and Azospirillum lipoferum (Beijerinck). J Agric Sci Technol 16:265–276

    Google Scholar 

  • Rosenberg A, Alexander M (1979) Microbial cleavage of various organophosphorus insecticides. Appl Environ Microbiol 37:886–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabdono A (2007) Biodegradation of chlorpyrifos by a marine bacterium Bacillus firmus strain BY6 associated with branching coral Acropora sp. J Coastal Develop 10:115–123

    Google Scholar 

  • Sabdono A, Radjasa OK (2008) Phylogenetic diversity of OP pesticides-degrading coral bacteria from mild-West coast of Indonesia. Biotechnology 7:694–701

    Article  CAS  Google Scholar 

  • Samanta SK, Bhushan B et al (2000) Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun 269:117–123

    Article  CAS  PubMed  Google Scholar 

  • Sasikala C, Jiwal S et al (2012) Biodegradation of chlorpyrifos by bacterial consortium isolated from agriculture soil. World J Microbiol Biotechnol 28:1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Savitha K, Raman DNS (2012) Isolation, identification, resistance profile and growth kinetics of chlorpyrifos resistant bacteria from agricultural soil of Bangalore. Res Biotechnol 3:08–13

    Google Scholar 

  • Scott C, Pandey G et al (2008) The enzymatic basis for pesticide bioremediation. Indian J Microbiol 48:65–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serdar CM, Gibson DT et al (1982) Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta. Appl Environ Microbiol 44:246–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethunathan N, Yoshida T (1973) A Flavobacterium sp. that degrades diazinon and parathion. Can J Microbiol 19:873–875

    Article  CAS  PubMed  Google Scholar 

  • Shan M, Fang H et al (2006) Effect of chlorpyrifos on soil microbial populations and enzyme activities. J Environ Sci 18:4–5

    CAS  Google Scholar 

  • Sharma J, Gupta KC, Goel AK (2013) Isolation and identification of potential methyl parathion degrading bacteria from Gwalior arable soil. Int J Pharm Bio Sci 4:192–202

    CAS  Google Scholar 

  • Sharmila M, Ramanand K, Sethunathan N (1989) Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Can J Microbiol 35:1105–1110

    Article  CAS  Google Scholar 

  • Sheehan D, Meade G et al (2001) Structure, function and evolution of glutathione transferases: implications for classification of non mammalian members of an ancient enzyme superfamily. Biochem J 360:1–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen YJ, Hong YF et al (2007) Isolation, identification and characteristics of a phoxim-degrading bacterium XSP-1. Huan Jing Ke Xue 28:2833–2837

    CAS  PubMed  Google Scholar 

  • Shen Y-J, Lu P, Mei H et al (2010a) Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792

    Article  CAS  PubMed  Google Scholar 

  • Shen Y-J, Lu P et al (2010b) Isolation of a methyl parathion-degrading strain Stenotrophomonas sp. SMSP-1 and cloning of the ophc2 gene. Biodegradation 21:785–792

    Article  CAS  PubMed  Google Scholar 

  • Shimazu M, Mulchandani A, Chen W (2001) Simultaneous degradation of organophosphorous pesticides and p-nitrophenol by genetically engineered Moraxella sp. with surface expressed organophosphorous hydrolase. Biotechnol Bioeng 4:318–324

    Article  Google Scholar 

  • Siddaramappa R, Rajaram KP, Sethunathan N (1973) Degradation of Parathion by bacteria isolated from flooded soil. Appl Microbiol 26:846–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddavattam D, Khajamohiddin S et al (2003) Transposon-like organization of the plasmid-borne OP degradation (opd) gene cluster found in Flavobacterium sp. Appl Environ Microbiol 69:2533–2539

    Article  PubMed  PubMed Central  Google Scholar 

  • Silambarasan S, Abraham J (2013) Ecofriendly method for bioremediation of chlorpyrifos from agricultural soil by novel fungus Aspergillus terreus JAS1. Water Air Soil Pollut 224:1369

    Article  CAS  Google Scholar 

  • Singh BK (2009) Organophosphorous-degrading bacteria: ecology and industrial applications. Nat Rev Microbiol 7:156–164

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A (2006) Microbial degradation of organophosphorous compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Walker A et al (2003) Effect of soil pH on the biodegradation of chlorpyrifos and isolation of a chlorpyrifos-degrading bacterium. Appl Environ Microbiol 69:5198–5206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BK, Walker A et al (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh DP, Khattar JIS et al (2011) Chlorpyrifos degradation by the cyanobacterium Synechocystis sp. strain PUPCCC 64. Environ Sci Pollut Res 18:1351–1359

    Article  CAS  Google Scholar 

  • Somara S, Siddavattam D (1995) Plasmid mediated OP pesticide degradation by Flavobacterium balustinum. Biochem Mol Biol Int 36:627–631

    CAS  PubMed  Google Scholar 

  • Spain JC, Gibson DT (1991) Pathway for Biodegradation of p-Nitrophenol in a Moraxella sp. Appl Environ Microbiol 57:812–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreenivasulu C, Aparna Y (2001) Bioremediation of methyl Parathion by free and immobilized cells of Bacillus sp. isolated from soil. Bull Environ Contam Toxicol 67:98–105

    CAS  PubMed  Google Scholar 

  • Sukirtha TH, Usharani MV (2013) Production and qualitative analysis of biosurfactant and biodegradation of the OP by Nocardia mediterranei. J Bioremed Biodeg 4:198. https://doi.org/10.4172/2155-6199.1000198

    Article  CAS  Google Scholar 

  • Taesung K, Ahn J-H et al (2007) Cloning and expression of a parathion hydrolase gene from a soil bacterium, Burkholderia sp. JBA3. J Microbiol Biotechnol 17:1890–1893

    Google Scholar 

  • Tago K, Sekiya E et al (2006) Diversity of fenitrothion- degrading bacteria in soil from distant geographical areas. Microbes Environ 21:58–64

    Article  Google Scholar 

  • Tehara SK, Keasling JD (2003) Gene cloning, purification, and characterization of a phosphodiesterase from Delftia acidovorans. Appl Environ Microbiol 69:504–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thengodkar RRM, Sivakami S (2010) Degradation of chlorpyrifos by an alkaline phosphatase from the cyanobacterium Spirulina platensis. Biodegradation 21:637–644

    Article  CAS  PubMed  Google Scholar 

  • Theriot CM, Grunden AM (2011) Hydrolysis of OP compounds by microbial enzymes. Appl Microbiol Biotechnol 89:35–43

    Article  CAS  PubMed  Google Scholar 

  • Tian J, Wang P et al (2010) Enhanced thermo stability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. FEBS J 277:4901–4908

    Article  CAS  PubMed  Google Scholar 

  • Tomlin C (2000) The pesticide manual. BCPC, Surrey, UK

    Google Scholar 

  • Urlacher VB, Lutz-Wahl S, Schmid RD (2004) Microbial P450 enzymes in biotechnology. Appl Microbiol Biotechnol 64:317–325

    Article  CAS  PubMed  Google Scholar 

  • Van Eerd LL, Hoagland RE et al (2003) Pesticidemetabolism in plants and microorganisms. Weed Sci 51:472–495

    Article  Google Scholar 

  • Vanhooke JL, Benning MM et al (1996) Three dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate. Biochemist 35:6020–6025

    Article  CAS  Google Scholar 

  • Vijayalakshmi P, Usha MS (2012) Optimization of Chlorpyrifos degradation by Pseudomonas putida. J Chem Pharm Res 4:2532–2539

    CAS  Google Scholar 

  • Walker AW, Keasling JD (2002) Metabolic engineering of Pseudomonas putida for the utilization of parathion as a carbon and energy source. Biotechnol Bioeng 78:15–721

    Article  CAS  Google Scholar 

  • Wang JH, Zhu LS et al (2005) Degrading characters of 3 chlorpyrifos degrading fungus. Chinese J Appl Environ Biol 11:211–214

    Google Scholar 

  • Wang X, Chu X et al (2006) Degradation characteristics and functions of chlorpyrifos degradation bacterium Bacillus laterosporus DSP. Acta Pedol Sin 43:648–654

    CAS  Google Scholar 

  • Wang B, Li X et al (2008) Cloning and expression of the mpd gene from a newly isolated methylparathion-degrading strain of bacteria. Acta Sci Circumst 28:1969–1975

    CAS  Google Scholar 

  • Wang S, Zhang C, Yan Y (2012) Biodegradation of methyl parathion and p-nitrophenol by a newly isolated Agrobacterium sp. strain Yw12. Biodegradation 23:107–116

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Xue Q et al (2015) Isolation and characterization of a highly efficient chlorpyrifos degrading strain of Cupriavidus taiwanensis from sludge. J Basic Microbiol 55:229–235

    Article  CAS  PubMed  Google Scholar 

  • Wen Y, Jiang J-D et al (2007) Effect of mutation of chemotaxis signal transduction gene cheA in Pseudomonas putida DLL-1 on its chemotaxis and methyl parathion biodegradation. Acta Microbiol Sin 47:471–476

    CAS  Google Scholar 

  • Whitman WB, David CC, William W (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S et al (2015) Isolation and characterization of a novel native Bacillus thuringiensis strain BRC-HZM2 capable of degrading chlorpyrifos. J Basic Microbiol 55:389–397

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Zhu L et al (2010) Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation. J Environ Sci 22:930–1935

    Google Scholar 

  • Xu G, Li Y et al (2007) Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett 29:1469–1473

    Article  CAS  PubMed  Google Scholar 

  • Xu GM, Zheng W et al (2008) Biodegradation of chlorpyrifos and 3,5,6-trichloro-2-pyridinol by a newly isolated Paracoccus sp. TRP. Int Biodeterior Biodegrad 62:51–56

    Article  CAS  Google Scholar 

  • Yang L, Zhao YH et al (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Liu N et al (2006) Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil. FEMS Microbiol Lett 265:118–125

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Dong M et al (2007) Reductive transformation of parathion and methyl parathion by Bacillus sp. Biotechnol Lett 29:487–493

    Article  CAS  PubMed  Google Scholar 

  • Yu YL, Fang H et al (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegradation 17:487–494

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Cui Z et al (2005) Diversity of organophosphorus pesticide degrading bacteria in a polluted soil and conservation of their organophosphorous hydrolase genes. Can J Microbiol 51:337–343

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Cui Z et al (2006a) Cloning of the organophosphorus pesticide hydrolase gene clusters of seven degradative bacteria isolated from a methyl parathion contaminated site and evidence of their horizontal gene transfer. Biodegradation 17:465–472

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Hong Q et al (2006b) Isolation of fenitrothion-degrading strain Burkholderia sp. FDS-1 and cloning of mpd gene. Biodegradation 17:275–283

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xin Y et al (2008) Metabolism-independent chemotaxis of Pseudomonas sp. strain WBC-3 toward aromatic compounds. J Environ Sci 20:1238–1242

    Article  CAS  Google Scholar 

  • Zhang JJ, Liu H et al (2009) Identification and characterization of catabolic para-Nitrophenol 4-Monooxygenase and para- Benzoquinone reductase from Pseudomonas sp. Strain WBC-3. J Bacteriol 191:2703–2710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Wang BC et al (2012a) Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. J Hazard Mater 221-222:178–184

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Sun W et al (2012b) Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in Pseudomonas sp. 1-7. BMC Microbiol 12:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Xu X, Chen W, Huang Q (2016) Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium. Appl Microbiol Biotechnol 100:1987–1997

    Article  CAS  PubMed  Google Scholar 

  • Zhongli C, Shunnpeng L, Guoping F (2001) Isolation of Methyl parathion degrading strain M6 and cloning of the methyl parathion hydrolase gene. Appl Environ Microbiol 67:4922–4925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Zhou W (2008) Partitioning of polycyclic aromatic hydrocarbons to solid-sorbed nonionic surfactants. Environ Pollut 152:130–137

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Zhao Y, Qiu J (2010) Isolation and application of chlorpyrifos-degrading Bacillus licheniformis-ZHU-1. Afr J Microbiol Res 4:2410–2413

    CAS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to SERB, New Delhi, for providing fund to carry out work on organophosphate degradation and to the University of Burdwan, Burdwan, West Bengal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pailan, S., Sengupta, K., Saha, P. (2020). Microbial Metabolism of Organophosphates: Key for Developing Smart Bioremediation Process of Next Generation. In: Arora, P. (eds) Microbial Technology for Health and Environment. Microorganisms for Sustainability, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-15-2679-4_14

Download citation

Publish with us

Policies and ethics