Skip to main content

Microalgal Technology: A Promising Tool for Wastewater Remediation

  • Chapter
  • First Online:
Microbial Technology for Health and Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 22))

Abstract

Many species of microalgae have excellent ability to remove nitrogen, phosphorus, heavy metals, pesticides, organic and inorganic compounds, and pathogens from wastewater. Microalgae species grow well in wastewater and may be used for treatment of municipal, industrial, agro-industrial, and livestock wastewaters. Furthermore, microalgae biomass is an excellent source of production of various valuable products. In this chapter, applications of microalgae for treatment of wastewater and production of valuable products are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment review. Saudi J Biol Sci 19:257–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Raouf N, Ibraheem IBM, Hammouda O (2003) Eutrophication of river Nile as indicator of pollution. In: Al-Azhar Bull. of Sci Proceeding of 5th Int. Sci. Conf. 25–27 March 2003 pp. 293–306

    Google Scholar 

  • Abeliovich A (1986) Algae in wastewater oxidation ponds. In: Richmond A (ed) Handbook of microbial mass culture. CRC Press, Boca Raton, pp 331–338

    Google Scholar 

  • Abraham PJV, Butter RD, Sigene DC (1997) Seasonal changes in whole-cell metal levels in protozoa of activated sludge. Ecotox Environ Safe 38:272–280

    Article  Google Scholar 

  • Aharon A, Yosef A (1976) Toxicity of ammonia to algae in sewage oxidation ponds. Appl Environ Microbiol 31:801–806

    Article  Google Scholar 

  • Akpor OB (2011) Wastewater effluent discharge: effects and treatment processes. 3rd international conference on chemical biological and environmental engineering. Biol Environ Eng 20:85–91

    Google Scholar 

  • Aksu Z, Dönmez G (2000) The use of molasses in copper (II) containing wastewaters: effects on growth and copper (II) bioaccumulation properties of Kluyveromyces marxianus. Process Biochem 36:451–458

    Article  CAS  Google Scholar 

  • Aksu Z, Dönmez G (2005) Combined effects of molasses sucrose and reactive dye on the growth and dye bioaccumulation properties of Candida tropicalis. Process Biochem 40:2443–2454

    Article  CAS  Google Scholar 

  • Ansa EDO, Lubberding HJ, Ampofo JA, Gijzen HJ (2011) The role of algae in the removal of Escherichia coli in a tropical eutrophic lake. Ecol Eng 37(2):317–324

    Article  Google Scholar 

  • Arvin E (1983) Observations supporting phosphate removal by biologically mediated chemical precipitation: a review. Water Sci Technol 15:43–63

    Article  CAS  Google Scholar 

  • Asulabh KS, Supriya G, Ramachandra TV (2012) Effect of salinity concentrations on growth rate and lipid concentration in Microcystis sp., Chlorococcum sp. and Chaetoceros sp. microalgae for use in tropical aquaculture. Proceedings of the National conference on conservation and management of wetland ecosystem Nov 6–9 lake kottayam Kerala. pp. 27–32

    Google Scholar 

  • Azov Y (1982) Effect of pH on inorganic carbon uptake in algal cultures. Appl Environ Microbiol 43:1300–1306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba M, Snoeck R, Pauwels R, De Clercq E (1998) Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother 32:1742–1745

    Article  Google Scholar 

  • Baicha Z, Salar-Garcia MJ, Ortiz-Martinez VM, Hernandez-Fernandez FJ, De los Rios AP, Labjar N, Lotfi E, Elmahi M (2016) A critical review on microalgae as an alternative source for bioenergy production: a promising low cost substrate for microbial fuel cells. Fuel Process Technol 154:104–116

    Article  CAS  Google Scholar 

  • Bansal A, Shinde O, Sarkar S (2018) Industrial wastewater treatment using phycoremediation technologies and co-production of value-added products. J BioremedBiodeg 9(1):1–10

    Google Scholar 

  • Becker EW (1994) Microalgae, biotechnology and microbiology. Cambridge University Press, Cambridge. 10:1-291. Incomplete

    Google Scholar 

  • Béress A, Wassermann O, Tahhan S, Bruhn T, Béress L, Kraiselburd N, Gonzales LV, Motta GE, Chavez PI (1993) A new procedure for the isolation of anti-HIV compounds (polysaccharides and polyphenols) from the marine alga Fucus vesiculosus. J Nat Prod 56:478–488

    Article  PubMed  Google Scholar 

  • Bhaya D, Schwarz R, Grossman AR (2000) Molecular responses to environmental stress, in the ecology of cyanobacteria. Springer, Dordrecht, pp 397–442

    Google Scholar 

  • Borowitzka MA (1988) Vitamins and fine chemicals from microalgae. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, Cambridge, pp 153–196

    Google Scholar 

  • Burlew JS (1953) Algal culture from laboratory to pilot plant. Algal Culture 600(1):49–50

    Google Scholar 

  • Canada Gazzette (2010) Wastewater systems effluent regulations. Regulatory impact analysis statement. Canada Gazzette 144:12–22

    Google Scholar 

  • Cardozo KHM, Guaratini T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Colepicolo C, Pinto E (2007a) Metabolites from algae with economical impact. Comp Biochem Physiol Toxicol Pharmacol 146(2):60–78

    Article  CAS  Google Scholar 

  • Cardozo KHM, Guaratinin T, Barros MP, Falcao VR, Tonon AP, Lopes NP, Campos S, Torres MA, Souza AO, Coepicolo C, Pinto E (2007b) Metabolites from algae with economical impact. Comp Biochem Physiol Part C 146:60–78

    Article  CAS  Google Scholar 

  • Carlsson H, Aspegren H, Lee N, Hilmer A (1997) Calcium phosphate precipitation in biological phphosphorus removal systems. Water Res 31(5):1047–1055

    Article  CAS  Google Scholar 

  • Chaiwong K, Kiatsirioat T, Vorayos N, Thararax C (2013) Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass Bioenergy 56:600–606

    Article  CAS  Google Scholar 

  • Chevalier P, De la Noüe J (1985a) Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzym Microb Technol 7:621–624

    Article  CAS  Google Scholar 

  • Chevalier P, De la Noüe P (1985b) Efficiency of immobilized hyperconcentrated algae for ammonium and orthophosphate removal from wastewaters. Biotechnol Lett 7:395–400

    Article  CAS  Google Scholar 

  • Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS (2015) Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol 184:179–189

    Article  CAS  PubMed  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of cr3þ, cd2þ, and cu2þ ions by blue-green alga Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  PubMed  Google Scholar 

  • Christenson L, Sims R (2011) Production and harvesting of microalgae for wastewater treatment, biofuels and byproducts. Biotechnol Adv 29:686–702

    Article  CAS  PubMed  Google Scholar 

  • Clarens AF, Nassau H, Resurreccion EP, White MA, Colosi LM (2011) Environmental impacts of algae-derived biodiesel and bioelectricity for transportation. Environ Sci Technol 45:7554–7560

    Article  CAS  PubMed  Google Scholar 

  • Colak O, Kaya Z (1988) A study on the possibilities biological wastewater treatment using algae. Tur J Biol 12(1):18–29

    Google Scholar 

  • Colley Davies RJ, Donnison AM, Speed DJ (2000) Towards a mechanistic understanding of pond disinfection. Water Sci Technol 42:149–158

    Article  Google Scholar 

  • Commault AS, Lear G, Novis P (2014) Photosynthetic biocathode enhances the power output of a sediment-type microbial fuel cell. N Z J Bot 52:48–59

    Article  Google Scholar 

  • Cossich ES, Tavares CRG, Ravagnani TMK (2002) Biosorption of chromium(III) by Sargassum sp. biomass. Electron J Biotechnol 5(2):133–140

    Google Scholar 

  • Curtis TP, Mara DD, Silva SA (1992) Influence of pH, oxygen and humid substances on ability of sunlight to damage fecal coliforms in waste stabilization pond water. Appl Environ Microbiol 58:1335–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day JG, Gong Y, Hu Q (2017) Microzooplanktonic grazers–a potentially devastating threat to the commercial success of microalgal mass culture. Algal Res 27:356–365

    Article  Google Scholar 

  • De Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101(6):1611–1627

    Article  CAS  PubMed  Google Scholar 

  • De la Noüe J, Laliberete´ G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254

    Article  Google Scholar 

  • De la Noüe J, Proulx D (1988) Biological tertiary treatment of urban wastewater by chitosan-immobilized Phormidium. Appl Microbiol Biotechnol 29(2):356–365

    Google Scholar 

  • De la Noüe J, Chevalier P, Proulx D (1990) Effluent treatment with immobilized microalgae and cyanobacteria: a critical assessment. In: Vembuk TRD (ed) Wastewater treatment by immobilized cells. CRC Press, Boca Raton, pp 143–152

    Google Scholar 

  • De Morias MG, Costa JAV (2007) Carbon dioxide fixation by Chlorella kessleri, C. vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in the photobioreactors. Biotechnol Lett 29(9):1349–1352. Incomplete

    Article  CAS  Google Scholar 

  • Deng X, Wilson DB (2001) Bioaccumulation of mercury from wastewater by genetically engineered Escherichia coli. Appl Microbiol Biotechnol 56:276–279

    Article  CAS  PubMed  Google Scholar 

  • DeSiloniz MI, Balsalobre L, Alba C, Valderrama MJ, Peinado JM (2002) Feasibility of copper uptake by the yeast Pichia guilliermondii isolated from sewage sludge. Res Microbiol 153:173–180

    Article  CAS  Google Scholar 

  • Doran MD, Boyle WC (1979) Phosphorus removal by activated algae. Water Res 13:805–812

    Article  CAS  Google Scholar 

  • Dubey SK, Dubey JS, Mehra S, Tiwar P (2011) Potential use of cyanobacterial sp. in bioremediation of industrial effluents. Afr J Biotechnol 10(7):1125–1132. Incomplete

    Google Scholar 

  • El-kassas HY, Mohamed LA (2014) Bioremediation of the textile waste effluent by Chlorella vulgaris. Egypt J Aqua Res 40(3):301–308

    Article  Google Scholar 

  • EPA (2002) Onsite wastewater treatment systems manual. EPA/625/R-00/008/2002. http://www.epa.gov/owmitnet/mtbfact.htm

  • Fawcett D, Verduin JJ, Shah M, Sharma SB, Poinern GEJ (2017) A review of current research into the biogenic synthesis of metal and metal oxide nanoparticles via marine algae and seagrasses. J Nanosci 8013850:1–16

    Article  Google Scholar 

  • Fergusson JF, Jenkins D, Eastman J (1973) Calcium phosphate precipitation at slightly alkaline pH values. Water Pollut Cont 45(4):620–631

    Google Scholar 

  • Fergusson JF, McCarty PL (1971) Effects of carbonate and magnesium on calcium phosphate precipitation. Environ Sci Technol 5(6):534–540

    Article  Google Scholar 

  • Fernández FGA, Sevilla JMF, Grima EM (2013) Photobioreactors for the production of microalgae. Rev Environ Sci Bio Technol 12(2):131–151

    Article  CAS  Google Scholar 

  • Figueira MMF, Volesky B, Azarian K, Ciminelli VST (1999) Multimetal biosorption in a column using Sargassum biomass. In: Amils R, Ballester A (eds) Biohydrometallurgy and the environment toward the mining of the 21st century (part B): international biohydrometallurgy symposium-proceedings. Elsevier Science, Amsterdam/The Netherlands, pp 503–512

    Chapter  Google Scholar 

  • Fogg GE (1975) Algal cultures and phytoplankton ecology, 2nd edn. The university of Wisconsin press, Wisconsin

    Google Scholar 

  • Foladori P, Petrini S, Nesseuzia M, Anderottola G (2018) Enhanced nitrogen removal and energy saving in a microalgal-bacterial consortium treating real municipal wastewater. Water Sci Technol 78:174–182

    CAS  PubMed  Google Scholar 

  • Fontes AG, Vargas MA, Moreno J, Guerrero MG, Losada M (1987) Factors affecting the production of biomass by a nitrogen-fixing blue-green alga in outdoor culture. Biomass 13:33–43

    Article  CAS  Google Scholar 

  • Garbisu C, Gil JM, Bazin MJ, Hall DO, Serra JL (1991) Removal of nitrate from water by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. J Appl Phycol 3:1–14

    Article  Google Scholar 

  • Garnham GW, Codd GA, Gadd GM (1992) Kinetics of uptake and intracellular location of cobalt, manganese and zinc in the estuarine green alga Chlorella salina. Appl Microbiol Biotechnol 37:270–276

    CAS  Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Glazer AN (1994) Phycobiliproteins-a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    Article  CAS  Google Scholar 

  • Gomez MA, Gonzalez-Lopez J, Hontoria-Garcia E (2006) Influence of carbon source on nitrate removal of contaminated groundwater in a denitrifying submerged filter. J Hazard Mater B80(1):69–80

    Google Scholar 

  • Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Neto PC, Ferreira AF, Silva CM (2016) Microalgae biomass production using wastewater: treatment and costs scale-up considerations. Algal Res 16:167–176

    Article  Google Scholar 

  • Gray FN (2002) Water technology: an introduction for environmental scientists and engineers. Butterworth-Heinemann, Oxford, pp 35–80

    Google Scholar 

  • Gray NF (1989) Biology of wastewater treatment. Oxford Univ Press, Oxford, pp 1057–1179

    Google Scholar 

  • Gross M, Zhao X, Mascarenhas V, Wen Z (2016) Effects of the surface physic-chemical properties and the surface textures on the initial colonization and the attached growth in algal biofilm. Biotechnol Biofuels 9:38–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gude VG, Kokabian B, Gadhamshetty V (2013) Beneficial bioelectrochemical systems for energy, water, and biomass production. J Microb Biochem Technol S6:005

    Google Scholar 

  • Guihéneuf F, Khan A, Tran LSP (2016) Genetic engineering: a promising tool to engender physiological, biochemical, and molecular stress resilience in green microalgae. Front Plant Sci 7:400

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PL, Lee SM, Choi HJ (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31:1409–1417

    Article  CAS  PubMed  Google Scholar 

  • Hall DO, Rao KK (1989) Immobilized photosynthetic membranes and cells for the production of fuel and chemicals. Chem Today 3:40–47

    Google Scholar 

  • Han T, Haifeng L, Shanshan M, Zhang Y, Zhidan L, Na D (2017) Progress in microalgae cultivation photobioreactors and applications in wastewater treatment: a review. Int J Agric Biol Eng 10(1):1–25

    Google Scholar 

  • NCBI (1995) Handbook N. Simple ncbi directory

    Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Hashimoto S, Furukawa K (1989) Nutrient removal from secondary effluent by filamentous algae. J Ferment Bioeng 67:62–69

    Article  CAS  Google Scholar 

  • Hempel F, Lau J, Klingl A, Maier UG (2011) Algae as protein factories: expression of a human antibody and the respective antigen in the diatom. Phaeodactylum tricornutum. PLoS One 6:e28424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hlavova M, Turoczy Z, Bisova K (2015) Improving microalgae for biotechnology- from genetics to synthetic biology. Biotechnol Adv 33:1194–1203

    Article  CAS  PubMed  Google Scholar 

  • Hoffman JP (2002) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34(5):757–763

    Article  Google Scholar 

  • Horan NJ (1990) Biological wastewater treatment systems. Theory and operation. John Wiley and Sons Ltd, West Sussex

    Google Scholar 

  • Hurse JT, Connor AM (1999) Nitrogen removal from wastewater treatment lagoons. Water Sci Technol 39(6):191–198

    Article  CAS  Google Scholar 

  • Ibañez E, Herrero M, Mendiola JA, Castro-Puyana M (2012) Extraction and characterization of bioactive compounds with health benefits from marine resources: macro and micro algae, cyanobacteria, and invertebrates. In: Marine bioactive compounds. Springer, Boston, pp 55–98

    Chapter  Google Scholar 

  • Ioannou E, Roussis V (2009) Natural products from seaweeds. In: Osbourn AE, Lanzotti V (eds) Plant-derived natural products. Springer, New York, pp 51–81

    Chapter  Google Scholar 

  • Ismail H, Azza AM, El-All ABD, Hassanein HAM (2013) Biological influence of some microorganisms on olive oil mill waste water. Egypt J Agric Res 91(1):1–9

    Google Scholar 

  • Jarvie HP, Neal C, Warwick A, White J, Neal M, Wickham HD, Hill LK, Andrews MC (2002) Phosphorus uptake into algal biofilms in a lowland chalk river. Sci Total Environ 282–283:353–373

    Article  Google Scholar 

  • Jenkins D, Richard M, Daigger G (2003) Manual on the causes and control of activated sludge bulking foaming and other solids separation problems, 3rd edn. Lewis publishers CRC press, Boca Raton, pp 236–305

    Google Scholar 

  • Jenkins D, Ferguson JF, Menar AB (1971) Chemical processes for phosphate removal. Water Res 5:369–389

    Article  CAS  Google Scholar 

  • Jinqi L, Houtian L (1992) Degradation of azo dyes by algae. Environ Pollut 75:273–278

    Article  CAS  PubMed  Google Scholar 

  • Jjemba PK (2004) Interaction of metals and metalloids with microorganisms in the environment (chapter 12). In: Jjemba PK (ed) Environ microbiol—principles and applications. Science Publishers, New Hampshire, pp 257–270

    Google Scholar 

  • Kim HW, Park S, Rittmann BE (2015) Multicomponent kinetic for the growth of the cyanobacterium Synechocystis sp. PCC6803. Environ Eng Res 20(4):347–355

    Article  Google Scholar 

  • Kocberber N, Donmez G (2007) Chromium (VI) bioaccumulation capacities of adapted mixed cultures isolated from industrial saline wastewaters. BioresourTechnol 98:2178–2183

    Article  CAS  Google Scholar 

  • Kris M (2007) Wastewater pollution in China. http://www.dbc.uci/wsustain/suscoasts/krismin.html

  • Kujan P, Votruba J, Kamenik V (1995) Substrate-dependent bioaccumulation of cadmium by growing yeast Candida utilis. Folia Microbiol 40(3):288–292

    Article  CAS  Google Scholar 

  • Kumar SK, Dahms HU, Won EJ, Lee JS, Shin KH (2015) Microalgae-a promising tool for heavy metal remediation. Ecotoxicol Environ Saf 113:329–352

    Article  CAS  Google Scholar 

  • Laliberte G, Olguin EJ, Noue JD (1997) Mass cultivation and wastewater treatment using Spirulina. In: Vonshak A (ed) Spirulina platensis. Physiology, cell biology and biotechnology. Taylor and Francis, London (UK), pp 59–73

    Google Scholar 

  • Laliberte G, Proulx D, De Pauw N, La Noue J (1994) Algal technology in waste water treatment. Adv Limnol 42:283–302

    Google Scholar 

  • Larsdotter K (2006) Microalgae for phosphorus removal from wastewater in a Nordic climate. A doctoral thesis from the school of biotechnology royal institute of technology, Stockholm Sweden ISBN: 91-7178-288-5

    Google Scholar 

  • Laurens LM, Chen-Glasser M, McMillan JD (2017) A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Res 24:261–264

    Article  Google Scholar 

  • Lavoie A, De la Noüe J (1983) Harvesting microalgae with chitosan. J World Maricult Assoc 14:685–694

    Article  CAS  Google Scholar 

  • Leadbeater BSC, Callow ME (1992) Formation, composition and physiology of algal biofilms. In: Melo et al (eds) Biofilms science and technology. Kluwer Academic Publishers, Amsterdam Netherlands, pp 149–162

    Chapter  Google Scholar 

  • Li YX, Kim SK (2011) Utilization of seaweed derived ingredients as potential antioxidants and functional ingredients in the food industry: an overview. Food Sci Biotechnol 20:1461–1466

    Article  CAS  Google Scholar 

  • Lim S, Chu W, Phang S (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. BioresourTechnol 101:7314–7322

    Article  CAS  Google Scholar 

  • Lloyd JR (2002) Bioremediation of metals: the application of microorganisms that make and break minerals. Microbiol Today 29:67–69

    Google Scholar 

  • Loukidou MX, Zouboulis AI (2005) Biosorption of toxic metals. Water Encyclopedia 2:68–74

    Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30(2):261–278

    Article  CAS  PubMed  Google Scholar 

  • Marbelia L, Bilad HR, Passaris I, Discart V, Vandamme D, Benckels A, Mylaert K, Vankelecom IF (2014) Membrane photobioreactors for integrated microalgae cultivation and nutrient remediation of membrane bioreactors effluent. Bioresour Technol 163:228–235

    Article  CAS  PubMed  Google Scholar 

  • Markov SA, Bazin MJ, Hall DO (1995) Hydrogen, photoproduction and carbon dioxide uptake by immobilized Anabaena variabilis in a hollow-fiber photobioreactor. Enzym Microb Technol 17:306–310

    Article  CAS  Google Scholar 

  • Martin-Gonzalez A, Diaz S, Borniquel S, Gallego A, Gutierrez JC (2006) Cytotoxicity and bioaccumulation of heavy metals by ciliated protozoa isolated from urban wastewater treatment plants. Res Microbiol 157:108–118

    Article  CAS  PubMed  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications. Renew Sust Energ Rev 14:217–232

    Article  CAS  Google Scholar 

  • Maynard HE, Ouki SK, Williams SC (1999) Tertiary lagoons: a review of removal mechanisms and performance. Water Res 33:1–13

    Article  CAS  Google Scholar 

  • Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  PubMed  Google Scholar 

  • Mendis E, Kim SK (2011) Present and future prospects of seaweeds in developing functional foods. Adv Food Nutr Res 64:1–15

    Article  CAS  PubMed  Google Scholar 

  • Menicucci JA (2010) Algal biofilms, microbial fuel cells, and implementation of state of-the art research into chemical and biological engineering laboratories. (PhD dissertation) Montana State University Bozeman Montana

    Google Scholar 

  • Mesple FC, Casellas M, Troussellier, Bontoux J (1996) Modelling orthophosphate evolution in a high rate algal pond. Ecol Model 89(1-3):13–21

    Article  CAS  Google Scholar 

  • Miranda AF, Ramkumar N, Andriotis C, Höltkemeier T, Yasmin A, Rochfort S, Wlodkowic D, Morrison P, Roddick F, Spangenberg G, Lal B, Subudhi S, Mouradov A (2017) Applications of microalgal biofilms for bioenergy production and wastewater treatment. Biotechnol Biofuels 10:120–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front Bioeng Biotechnol 7:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Moheimani NR (2005) The culture of Coccolithophorid algae for carbon dioxide remediation. (PhD dissertation) Murdoch University Murdoch (Australia)

    Google Scholar 

  • Monteiro CM, Castro PML, Malcata FX (2011) Biosorption of zinc ions from aqueous solutions by the microalga Scenedesmus obliquus. Environ Chem Lett 9:169–176

    Article  CAS  Google Scholar 

  • Morales J, De la Noüe J, Picard G (1985) Harvesting marine microalgae species by chitosan flocculation. Aquac Eng 4:257–270

    Article  Google Scholar 

  • Mostert ES, Grobbelaar JU (1987) The influence of nitrogen and phosphorus on algal growth and quality in outdoor mass algal cultures. Biomass 13:219–233

    Article  CAS  Google Scholar 

  • Mouchet P (1986) Algal reactions to mineral and organic micropollutants, ecological consequences and possibilities for industrial scale application; a review. Water Res 20:399–412

    Article  CAS  Google Scholar 

  • Moutin T, Gal JY, Halouani HE, Picot B, Bontoux (1992) Decrease of phosphate concentration inahighrate pond by precipitation of calcium phosphate:theoretical and experimental results. Water Res 26(11):1445–1450

    Article  CAS  Google Scholar 

  • Ogbonna JC, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    Article  CAS  Google Scholar 

  • Okoh AT, Odjadjare EE, Igbinosa EO, Osode AN (2007) Wastewater treatment plants as a source of microbial pathogens in receiving water sheds. Afr J Biotechnol 6(25):2932–2944

    Article  CAS  Google Scholar 

  • Oliver RL, Ganf GG (2000) In: Whitton BA, Potts M (eds) Freshwater blooms, in the ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 149–194

    Google Scholar 

  • Oswald WJ (1988) Microalgae and wastewater treatment. In: Borowitzka MA, Borowitzka LJ (eds) Microalgal biotechnology. Cambridge University Press, New York, pp 357–394

    Google Scholar 

  • Otadi M, Poormohamadian S, Zabihi F, Goharrokhi M (2011) Microbial fuel cell production with alga. World Appl Sci 14:91–95

    CAS  Google Scholar 

  • Palmer CM (1974) Algae in American sewage stabilization’s ponds. Rev Microbiol (S-Paulo) 5:75–80

    Google Scholar 

  • Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25(19):1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Proulx D, LessardP DLNJ (1994) Tertiary treatment of secondarily treated urban wastewater by intensive culture of Phormidium bohneri. Environ Technol 15(5):449–458

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  PubMed  Google Scholar 

  • Quijano G, Arcila JS, Buitorn G (2017) Microalgal-bacterial aggregates: applications and perspectives for wastewater treatment. Biotechnol Adv 35:772–781

    Article  CAS  PubMed  Google Scholar 

  • Rai LC, Mallich N (1992) Removal and assessment of toxicity of cu & Fe to Anabaena doliolum & Chlorella vulgaris using free and immobilized cells. World J Microbial Technol 8:110–114

    Article  CAS  Google Scholar 

  • Rajamani S, Siripornadulsil S, Falcao V, Torres MA, Colepicolo P, Sayre R (2007) Phycoremediation of heavy metals using transgenic microalgae. In: León, R., Galván, Cejudo, a., Fernández, E. (Eds.). Transgenic microalgae as green cell factories. Adv Exp Med Biol 616:99–107

    Article  PubMed  Google Scholar 

  • Rajasulochana AP, Dhamotharan R, Krishnamoorthy P, Subbiah M (2009) Antibacterial activity of the extracts of marine red and brown. J Am Sci 5(9):17–22

    Google Scholar 

  • Ras M, Steyer JP, Bernard O (2013) Temperature effect on microalgae: a crucial factor for outdoor production. Rev Environ Sci Biotechnol 12(2):153–164

    Article  CAS  Google Scholar 

  • Rawat I, Kumar R, Bux F (2013) Phycoremediation by high-rate algal ponds (HRAPs). In: Bux F (ed) Biotechnological applications of microalgae: biodiesel and value-added products. CRC Press, Boca Raton, pp 179–199

    Chapter  Google Scholar 

  • Rehnstam Holm AS, Godhe A (2003) Genetic engineering of algal species. Eolss Publishers, Oxford, UK, pp 1–27

    Google Scholar 

  • Romay C, González R, Ledón N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216

    Article  CAS  PubMed  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blázquez ML, Muñoz JA (2006) Biosorption with algae: a statistical review. Crit Rev Biotechnol 26:223–235

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotechnol 19:430–436

    Article  CAS  PubMed  Google Scholar 

  • Rybicki S (1997) Advanced wastewater treatment: phosphorus removal from wastewater. Report no. 1. Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Saba B, Christy AD, Yu Z, Co AC (2017) Sustainable power generation from bacterio-algal microbial fuel cells (MFCs): an overview. Renew Sust Energ Rev 73:75–84

    Article  CAS  Google Scholar 

  • Sabalowsky AR (1999) An investigation of the feasibility of nitrification and denitrification of a complex industrial wastewater with high seasonal temperatures. Masters thesis from Virginia polytechnic institute and state university Blacksburg

    Google Scholar 

  • Salama Y, Chennaoui M, Sylla A, Mountadar M, Riha M, Assobhei O (2014) Review of wastewater treatment and reuse in the Morocco: aspects and perspectives. Europ Cent Res Train Develop UK 2(1):9–25

    Google Scholar 

  • Sawayama S, Minowa T, Dote Y, Yokoyama S (1992) Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 38:135–138

    Article  CAS  Google Scholar 

  • Sawayama S, Rao KK, Hall DO (1998) Nitrate and phosphate ions removal from water by Phormidium laminosum immobilized on hollow fibres in a photobioreactor. Appl Microbiol Biotechnol 49:463–468

    Article  CAS  Google Scholar 

  • Sebastian S, Nair KVK (1984) Total removal of coliforms and E. coli from domestic sewage by high-rate pond mass culture of Scenedesmus obliquus. Environ Pollut 34(A):197–206

    Article  CAS  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Article  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Energ Rev 14(9):2596–2610

    Article  CAS  Google Scholar 

  • Singh RN, Sharma S (2012) Development of suitable photobioreactor for algae production - a review. Renew Sust Energ Rev 16(4):2347–2353

    Article  CAS  Google Scholar 

  • Song Y, Hahn HH, Hoffmann E (2002) Effects of solution conditions on the precipitation of phosphate for recovery: a thermodynamic evaluation. Chemosphere 48(10):1029–1034

    Article  CAS  PubMed  Google Scholar 

  • Soni RA, Sudhakar K, Rana R (2016) Biophotovoltaics and biohydrogen through artificial photosynthesis: an overview. Int J Environ Sust Dev 15:313–325

    Article  Google Scholar 

  • Su HN, Xie BB, Chen XL, Wang JX, Zhang XY, Cheng Z, Zhang YZ (2010) Efficient separation and purification of allophycocyanin from Spirulina (Arthrospira) platensis. J Appl Phycol 22:65–70

    Article  CAS  Google Scholar 

  • Sud D, Mahajan G, Kaur MP (2008) Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions-a review. Bioresour Technol 99:6017–6027

    Article  CAS  PubMed  Google Scholar 

  • Tam NFY, Wong YS (2000) Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollut 107(1):145–151

    Article  CAS  PubMed  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment disposal reuse, 4th edn. Metcalf and Eddy, Inc., McGrwa-Hill Books Company, New York. isbn:0-07-041878-0

    Google Scholar 

  • Tebbutt THY (1983) Principles of water quality control. Pergammon Press, Oxford USA, p 235

    Google Scholar 

  • Travieso L, Benitez F, Dupeiron R (1992) Sewage treatment using immobilized microalgae. BioresourTechnol 40:183–187

    Article  CAS  Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  CAS  PubMed  Google Scholar 

  • Van der Steen P, Brenner A, Shabtai Y, Oron G (2000) The effect of environmental conditions on FC decay in post-treatment of UASB reactor effluent. Water Sci Technol 42:111–118

    Article  Google Scholar 

  • VanLarsdrecht MC (2005) Role of biological processes in phosphate recovery. Natural History Museum, London

    Google Scholar 

  • Vasumathi KK, Premalatha M, Subramanian P (2012) Parameters influencing the design of photobioreactor for the growth of microalgae. Renew Sust Energ Rev 16(7):5443–5550

    Article  CAS  Google Scholar 

  • Vela JC, Selles S, Pedreno JN, Bustamante MA, Mataic J, Gomez I (2006) Evaluation of composted sewage sludge as nutritional source for horticultural soils. Waste Manag 26(9):946–952

    Article  Google Scholar 

  • VenkataMohan S, Rohit MV, Chiranjeevi P, Chandra R, Navneeth B (2015) Heterotrophic microalgae cultivation to synergise biodiesel production with waste remediation: progress and perspectives. Bioresour Technol 184:169–178

    Article  CAS  Google Scholar 

  • Verma ML, Kumar S, Jeslin J, Dubey NK (2019) Microbial production of biopolymers with potential biotechnological applications. Biopolymer-based formulations: biomedical and food applications. Elsevier Publisher, Amsterdam, pp 1–43

    Google Scholar 

  • Walker JD, Colwell RR, Petrakis L (1975) Degradation of petroleum by an alga, Prototheca zopfii. Appl Microbiol 30:79–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SK, Stiles AR, Guo C, Liu CZ (2014) Microalgae cultivation in photobioreactors: an overview of light characteristics. Eng Life Sci 14(6):550–559

    Article  CAS  Google Scholar 

  • WHO (2004) Guidelines for drinking water quality, vol 1. World health organization press, Geneva Switzerland, pp 1–631

    Google Scholar 

  • Wijesekara I, Pangestuti R, Kim SK (2011) Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr Polym 84:14–21

    Article  CAS  Google Scholar 

  • Witvrouw M, De Clercq E (1997) Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol Vasc S 29:497–511

    Article  CAS  Google Scholar 

  • Wu YC, Wanga Z, Zheng Y, Xiao Y, Yang Z, Zhao F (2014) Light intensity affects the performance of photo microbial fuel cells with Desmodesmus sp. A8 as cathodic microorganism. Appl Energy 116:86–90

    Article  CAS  Google Scholar 

  • Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507

    Article  CAS  PubMed  Google Scholar 

  • Yanna WHH, Hyde KD (2002) Fungal succession on fronds of Phoenix hanceana in Hong Kong. Fungal Divers 10:185–211

    Google Scholar 

  • Yilmazer P, Saracoglu N (2009) Bioaccumulation and biosorption of copper(II) and chromium(III) from aqueous solutions by Pichia stipitis yeast. J ChemTechnol Biotechnol 84:604–610

    Article  CAS  Google Scholar 

  • Yoshida N, Ishii K, Okuno T, Tanaka K (2006) Isolation and characterization of a cyanophage infecting the toxic Cyanobacterium microcystis aeruginosa. Curr Microbiol 52(6):460–463

    Article  CAS  PubMed  Google Scholar 

  • Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, Salleh MAM (2017) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li X, Kim SK (2012) Application of marine biomaterials for nutraceuticals and functional foods. Food Sci Biotechnol 21:625–631

    Article  CAS  Google Scholar 

  • Zhu W, Ooi VE, Chan PK, Ang POJ (2003) Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity. Biochem Cell Biol 81:25–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Authors would like to thank the Director, Indian Institute of Information Technology Una, for providing the necessary facility to carry out the present work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thakur, M., Bajaal, S., Rana, N., Verma, M.L. (2020). Microalgal Technology: A Promising Tool for Wastewater Remediation. In: Arora, P. (eds) Microbial Technology for Health and Environment. Microorganisms for Sustainability, vol 22. Springer, Singapore. https://doi.org/10.1007/978-981-15-2679-4_2

Download citation

Publish with us

Policies and ethics