Skip to main content

A Global Clock Model for the Consortium Blockchains

  • Conference paper
  • First Online:
Blockchain and Trustworthy Systems (BlockSys 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1156))

Included in the following conference series:

  • 3333 Accesses

Abstract

We propose a global clock model to achieve time synchronization for consortium blockchains. Based on the existing consortium blockchain framework, a global clock service node is added. We use the Byzantine fault-tolerant algorithm to ensure the stability of the global clock node services. In addition, Cristian and Berkeley time synchronization algorithms are used to improve the confirmation of timestamp information, so as to achieve strong consistency of consensus time. This method can strike a balance between the transaction performance and the timestamp consistency requirements. This method meets the time accuracy requirements of practical business applications, and effectively benefits the promotion of blockchain technology in time-sensitive business scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The CA node is used for customer authentication and don’t participate in the consensus process. So we don’t give a particular emphasis here.

  2. 2.

    https://github.com/hyperledger/sawtooth-core.

  3. 3.

    https://github.com/hyperledger/iroha.

  4. 4.

    https://github.com/hyperledger/cello.

  5. 5.

    https://github.com/hyperledger/indy-sdk.

  6. 6.

    https://github.com/hyperledger/composer.

  7. 7.

    https://github.com/hyperledger/burrow.

  8. 8.

    https://github.com/libra/libra.

References

  1. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., Enyeart, D., Ferris, C., Laventman, G., Manevich, Y.: Hyperledger fabric: a distributed operating system for permissioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, p. 30. ACM (2018)

    Google Scholar 

  2. Buterin, V.: Slasher ghost, and other developments in proof of stake (2014). https://blog.ethereum.org/2014/10/03/slasherghost-developments-proof-stake/

  3. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI, vol. 99, pp. 173–186 (1999)

    Google Scholar 

  4. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the Internet of Things. IEEE Access 4, 2292–2303 (2016)

    Article  Google Scholar 

  5. Conoscenti, M., Vetro, A., De Martin, J.: Blockchain for the Internet of Things: a systematic literature review. In: 2016 IEEE/ACS 13th International Conference of Computer Systems and Applications (AICCSA), pp. 1–6. IEEE (2016)

    Google Scholar 

  6. Cristian, F.: Probabilistic clock synchronization. Distrib. Comput. 3(3), 146–158 (1989)

    Article  Google Scholar 

  7. Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. arXiv preprint arXiv:1505.06895 (2015)

  8. Dong, W., Liu, X.: Robust and secure time-synchronization against sybil attacks for sensor networks. IEEE Trans. Ind. Inform. 11(6), 1482–1491 (2015)

    Article  Google Scholar 

  9. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed consensus with one faulty process. Technical report, Massachusetts Inst of Tech Cambridge lab for Computer Science (1982)

    Google Scholar 

  10. Freris, N., Graham, S., Kumar, P.: Fundamental limits on synchronizing clocks over networks. IEEE Trans. Autom. Control. 56(6), 1352–1364 (2010)

    Article  MathSciNet  Google Scholar 

  11. Ganeriwal, S., Kumar, R., Srivastava, M.: Timing-sync protocol for sensor networks. In: Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, pp. 138–149. ACM (2003)

    Google Scholar 

  12. Google: Protocol buffers - google code (2012). http://code.google.com/apis/protocolbuffers/

  13. Gusella, R., Zatti, S.: An election algorithm for a distributed clock synchronization program. Technical report, University of California Berkeley, Department of Electrical Engineering and Computer Sciences (1985)

    Google Scholar 

  14. He, J., Chen, J., Cheng, P., Cao, X.: Secure time synchronization in wirelesssensor networks: a maximum consensus-based approach. IEEE Trans. Parallel Distrib. Syst. 25(4), 1055–1065 (2013)

    Article  Google Scholar 

  15. IBM: Hyperledger/fabric: Blockchain fabric incubator code (2016). https://github.com/hyperledger/fabric

  16. Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

    Article  Google Scholar 

  17. Li, G., Niu, M., Chai, Y., Chen, X., Ren, Y.: A novel method of clock synchronization in distributed systems. Chin. Astron. Astrophys. 41(2), 263–281 (2017)

    Article  Google Scholar 

  18. Mills, D.: Internet time synchronization: the network time protocol. IEEE Trans. Commun. 39(10), 1482–1493 (1991)

    Article  Google Scholar 

  19. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008). https://bitcoin.org/bitcoin.pdf

  20. Yang, B., Chen, C.: Principle, Design and Applications of Blockchains. China Mechine Press, Beijing (2018). (in Chinese)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (U1811462 and 71971081) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Chuan Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zan, C., Xu, HC. (2020). A Global Clock Model for the Consortium Blockchains. In: Zheng, Z., Dai, HN., Tang, M., Chen, X. (eds) Blockchain and Trustworthy Systems. BlockSys 2019. Communications in Computer and Information Science, vol 1156. Springer, Singapore. https://doi.org/10.1007/978-981-15-2777-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2777-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2776-0

  • Online ISBN: 978-981-15-2777-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics