Skip to main content

Directional Cell Migration Guide for Improved Tissue Regeneration

  • Chapter
  • First Online:
Bioinspired Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1249 ))

Abstract

The field of tissue regeneration has seen a paradigm shift after one wave of technological innovation after another, which has notably made significant contributions to basic cellular response control and overall tissue regeneration. One particular area that is seeing rekindled interest after technological innovation is managing cell migration toward defects because successful host cell migration from adjacent tissue can accelerate overall regeneration time in tissue defects that are either large in size or irregular in shape. This chapter surveys significant advances on directed cell migration upon topological cues. First, we introduce several examples of patterning and electrospinning technology for guiding directed cell migration, followed by a discussion on approaches to influencing radially aligned topography in pattern or electrospun sheet for overall tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17(4):467–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3(10):589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kim TG, Shin H, Lim DW (2012) Biomimetic scaffolds for tissue engineering. Adv Funct Mater 22(12):2446–2468

    Article  CAS  Google Scholar 

  4. Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121(3):255–264

    Article  CAS  PubMed  Google Scholar 

  5. Richert L, Boulmedais F, Lavalle P et al (2004) Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules 5(2):284–294

    Article  CAS  PubMed  Google Scholar 

  6. Matsuoka M, Akasaka T, Hashimoto T et al (2009) Improvement in cell proliferation on silicone rubber by carbon nanotube coating. Biomed Mater Eng 19(2–3):155–162

    CAS  PubMed  Google Scholar 

  7. Zhang Y, He Y, Bharadwaj S et al (2009) Tissue-specific extracellular matrix coatings for the promotion of cell proliferation and maintenance of cell phenotype. Biomaterials 30(23):4021–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ren YJ, Zhang S, Mi R et al (2013) Enhanced differentiation of human neural crest stem cells towards the Schwann cell lineage by aligned electrospun fiber matrix. Acta Biomater 9(8):7727–7736

    Article  CAS  PubMed  Google Scholar 

  9. Kheradmandfard M, Kashani-Bozorg SF, Jungsung L et al (2018) Significant improvement in cell adhesion and wear resistance of biomedical β-type titanium alloy through ultrasonic nanocrystal surface modification. J Alloys Compd 762:941–949

    Article  CAS  Google Scholar 

  10. Kim TG, Park TG (2006) Biomimicking Extracellular Matrix: Cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng 12(2):221–233

    Article  CAS  PubMed  Google Scholar 

  11. Shin YM, La WG, Lee MS et al (2015) Extracellular matrix-inspired BMP-2-delivering biodegradable fibrous particles for bone tissue engineering. J Mater Chem B 3(42):8375–8382

    Article  CAS  PubMed  Google Scholar 

  12. Moulisová V, Gonzalez-García C, Cantini M et al (2017) Engineered microenvironments for synergistic VEGF – integrin signalling during vascularization. Biomaterials 126:61–74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lee YB, Shin YM, Lee J et al (2012) Polydopamine-mediated immobilization of multiple bioactive molecules for the development of functional vascular graft materials. Biomaterials 33(33):8343–8352

    Article  CAS  PubMed  Google Scholar 

  14. Xie Z, Paras CB, Weng H et al (2013) Dual growth factor releasing multi-functional nanofibers for wound healing. Acta Biomater 9(12):9351–9359

    Article  CAS  PubMed  Google Scholar 

  15. Ku SH, Lee SH, Park CB (2012) Synergic effects of nanofiber alignment and electroactivity on myoblast differentiation. Biomaterials 33(26):6098–6104

    Article  CAS  PubMed  Google Scholar 

  16. Feng J, Zhang D, Zhu M, Gao C (2017) Poly(L-lactide) melt spun fiber-aligned scaffolds coated with collagen or chitosan for guiding the directional migration of osteoblasts in vitro. J Mater Chem B 5(26):5176–5188

    Article  CAS  PubMed  Google Scholar 

  17. Shin YM, Shin HJ, Heo Y et al (2017) Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation. J Mater Chem B 5:318–328

    Article  CAS  PubMed  Google Scholar 

  18. Slater JH, Boyce PJ, Jancaitis MP et al (2015) Modulation of endothelial cell migration via manipulation of adhesion site growth using nanopatterned surfaces. ACS Appl Mater Interfaces 7:4390–4400

    Article  CAS  PubMed  Google Scholar 

  19. Vicente-Manzanares M, Webb DJ, Horwitz AR (2005) Cell migration at a glance. J Cell Sci 118(21):4917–4919

    Article  CAS  PubMed  Google Scholar 

  20. Paul CD, Mistriotis P, Konstantopoulos K (2016) Cancer cell motility: lessons from migration in confined spaces. Nat Rev Cancer 17:131–140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rodriguez LL, Schneider IC (2013) Directed cell migration in multi-cue environments. Integr Biol 5:1306–1323

    Article  CAS  Google Scholar 

  22. Ermis M, Antmen E, Hasirci V (2018) Micro and nanofabrication methods to control cell-substrate interactions and cell behavior: a review from the tissue engineering perspective. Bioact Mater 3(3):355–369

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jeon H, Koo S, Reese WM et al (2015) Directing cell migration and organization via nanocrater-patterned cell-repellent interfaces. Nat Mater 14:918–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jun I, Han H-S, Edwards JR et al (2018) Electrospun fibrous scaffolds for tissue engineering: viewpoints on architecture and fabrication. Int J Mol Sci 19(3):745

    Article  PubMed Central  CAS  Google Scholar 

  25. Sajeesh KMP, Lee J, Ahmad T et al (2015) Effects of immobilized BMP-2 and nanofiber morphology on in vitro osteogenic differentiation of hMSCs and in vivo collagen assembly of regenerated bone. ACS Appl Mater Interfaces 7(16):8798–8808

    Article  CAS  Google Scholar 

  26. Barkefors I, Le Jan S, Jakobsson L et al (2008) Endothelial cell migration in stable gradients of vascular endothelial growth factor a and fibroblast growth factor 2: Effects on chemotaxis and chemokinesis. J Biol Chem 283:13905–13912

    Article  CAS  PubMed  Google Scholar 

  27. Hu B, Leow WR, Amini S et al (2017) Orientational coupling locally orchestrates a cell migration pattern for re-epithelialization. Adv Mater 29(29):1700145

    Article  CAS  Google Scholar 

  28. Nam K-H, Kim P, Wood DK et al (2016) Multiscale cues drive collective cell migration. Sci Rep 6:29749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raghavan S, Desai RA, Kwon Y et al (2010) Micropatterned dynamically adhesive substrates for cell migration. Langmuir 26:17733–17738

    Article  CAS  PubMed  Google Scholar 

  30. Lei Y, Zouani OF, Rémy M et al (2012) Geometrical microfeature cues for directing tubulogenesis of endothelial cells. PLoS One 7(7):e41163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim DH, Han KR, Gupta K et al (2009) Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients. Biomaterials 30(29):5433–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Joo SH, Kim JY, Lee ES et al (2015) Effects of ECM protein micropatterns on the migration and differentiation of adult neural stem cells. Sci Rep 5:13043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park JS, Kim DH, Kim HN et al (2016) Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat Mater 15:792–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jun I, Chung YW, Heo YH et al (2016) Creating hierarchical topographies on fibrous platforms using femtosecond laser ablation for directing myoblasts behavior. ACS Appl Mater Interfaces 8:3407–3417

    Article  CAS  PubMed  Google Scholar 

  35. Jun I, Kim KS, Chung YW (2018) Effect of spatial arrangement and structure of hierarchically patterned fibrous scaffolds generated by a femtosecond laser on cardiomyoblast behavior. J Biomed Mater Res A 106(6):1732–1742

    Article  CAS  PubMed  Google Scholar 

  36. Peng SW, Li CW, Chiu IM et al (2017) Nerve guidance conduit with a hybrid structure of a PLGA microfibrous bundle wrapped in a micro/nanostructured membrane. Int J Nanomed 12:421–432

    Article  CAS  Google Scholar 

  37. Xie J, Liu W, Macewan MR (2014) Neurite outgrowth on electrospun nanofibers with uniaxial alignment: the effects of fiber density, surface coating, and supporting substrate. ACS Nano 8(2):1878–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Patel S, Kurpinski K, Quigley R et al (2007) Bioactive nanofibers: synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett 7:2122–2128

    Article  CAS  PubMed  Google Scholar 

  39. Lee J, Lee YJ, Hj C et al (2014) Guidance of in vitro migration of human mesenchymal stem cells and in vivo guided bone regeneration using aligned electrospun fibers. Tissue Eng Part A 20(15–16):2031–2042

    Article  CAS  PubMed  Google Scholar 

  40. Liu C, Zhu C, Li J et al (2015) The effect of the fibre orientation of electrospun scaffolds on the matrix production of rabbit annulus fibrosus-derived stem cells. Bone Res 3:15012

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ahmed M, Ramos T, Wieringa P et al (2018) Geometric constraints of endothelial cell migration on electrospun fibres. Sci Rep 8:6386

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Kwon CG, Kim YJ, Jeon HJ (2017) Collective migration of lens epithelial cell induced by differential microscale groove patterns. J Funct Biomater 8(3):34

    Article  PubMed Central  CAS  Google Scholar 

  43. Luo B, Tian L, Chen N et al (2018) Electrospun nanofibers facilitate better alignment, differentiation, and long-term culture in an in vitro model of the neuromuscular junction (NMJ). Biomater Sci 6:3262–3272

    Article  CAS  PubMed  Google Scholar 

  44. Ottosson M, Jakobsson A, Johansson F (2017) Accelerated wound closure – differently organized nanofibers affect cell migration and hence the closure of artificial wounds in a cell based in vitro model. PLoS One 12:e0169419

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Xie J, MacEwan MR, Ray WZ et al (2010) Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4:5027–5036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li X, Li M, Sun J et al (2016) Radially aligned electrospun fibers with continuous gradient of SDF1 for the guidance of neural stem cells. Small 12(36):5009–5018

    Article  CAS  PubMed  Google Scholar 

  47. Shin YM, Shin HJ, Yang DH et al (2017) Advanced capability of radially aligned fibrous scaffolds coated with polydopamine for guiding directional migration of human mesenchymal stem cells. J Mater Chem B 5:8725–8737

    Article  CAS  PubMed  Google Scholar 

  48. Kim JI, Kim JY, Park CH (2018) Fabrication of transparent hemispherical 3D nanofibrous scaffolds with radially aligned patterns via a novel electrospinning method. Sci Rep 8:1–13

    Google Scholar 

  49. Yoon JK, Kim HN, Bhang SH et al (2016) Enhanced bone repair by guided osteoblast recruitment using topographically defined implant. Tissue Eng Part A 22(7–8):654–664

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Research Foundation (NRF) of Korea, which is supported by the Korean government (MEST) (NRF-2017R1D1A1B03031656 to Y.M.S.), and a grant from the Ministry of Trade, Industry and Energy (MOTIE) (Grant No. 10047811 to H.J.C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heung Jae Chun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shin, Y.M., Yang, H.S., Chun, H.J. (2020). Directional Cell Migration Guide for Improved Tissue Regeneration. In: Chun, H.J., Reis, R.L., Motta, A., Khang, G. (eds) Bioinspired Biomaterials. Advances in Experimental Medicine and Biology, vol 1249 . Springer, Singapore. https://doi.org/10.1007/978-981-15-3258-0_9

Download citation

Publish with us

Policies and ethics