Skip to main content

Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide

  • Chapter
  • First Online:
Biomimicked Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1250))

Abstract

Diabetes mellitus type 2 (type-2 diabetes) is a metabolic disorder characterized by the increased blood glucose concentration and insulin resistance in peripheral tissues (e.g., muscles and adipose tissue). The initiation of the pathological cascade of events that lead to type-2 diabetes has been subject of debate; however, it has been commonly accepted that the oversecretion of human islet amyloid polypeptide (hIAPP, a hormone co-secreted with insulin) by the pancreatic 𝛽-cells is the main trigger of type-2 diabetes. In fact, 90% of the type-2 diabetes patients present hIAPP deposits in the extracellular space of the 𝛽-cells. These hIAPP supramolecular arrangements (both fibrillar and oligomeric) have been reported to be the origin of cytotoxicity, which leads to 𝛽-cell dysfunction through a series of different mechanisms, including the interaction of hIAPP oligomers with the cell membrane that leads to the influx of Ca2+ and increase in the cellular oxidative stress, among others. This overview shows the importance of developing type-2 diabetes treatment strategies able to (1) remodel of the secondary structure of cytotoxic hIAPP oligomers entrapping them into off-pathway nontoxic species and (2) reestablish physiological levels of oxidative stress. Natural polyphenols are a class of antioxidant compounds that are able to perform both functions. Herein we review the published literature of the most studied polyphenols, in particular for their ability to remodel the hIAPP aggregation pathway, to rescue the in vitro pancreatic 𝛽-cell viability and function, as well as to perform under a complex biological environment, i.e., in vivo animal models and clinical trials. Overall, natural polyphenols are able to control the cytotoxic hIAPP aggregation and minimize hIAPP-mediated cellular dysfunction and can be considered as important lead compounds for the treatment of type-2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Westermark P, Wilander E, Westermark GT, Johnson KH (1987) Islet amyloid polypeptide-like immunoreactivity in the islet B-cells of Type-2 (non-insulin-dependent) diabetic and nondiabetic individuals. Diabetologia 30:887–892

    Article  CAS  PubMed  Google Scholar 

  2. WHO Regional office for Europe (2019) Data and statistics. http://www.euro.who.int/en/health-topics/noncommunicable-diseases/diabetes/data-and-statistics. Accessed 12 Dec 2019

  3. Valensi P, Schwarz EH, Hall M et al (2005) Pre-diabetes essential action: a European perspective. Diabetes Metab 31:606–620

    Article  CAS  PubMed  Google Scholar 

  4. Pillay K, Govender P (2013) Amylin uncovered: a review on the polypeptide responsible for type II diabetes. Biomed Res Int 2013:826706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Schwarz PEH, Lindström J, Kissimova-Scarbeck K et al (2008) The European perspective of type 2 diabetes prevention: diabetes in Europe – prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project. Exp Clin Endocrinol Diabetes 116:167–172

    Article  CAS  PubMed  Google Scholar 

  6. Grizzanti J, Corrigan R, Servizi S et al (2019) Amylin signaling in diabetes and Alzheimer’s disease: therapy or pathology? J Neurol Neuromed 4:12–19

    Article  Google Scholar 

  7. Abedini A, Plesner A, Cao P et al (2016) Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. elife 5:e12977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Kruger DF, Gatcomb PM, Owen SK (1999) Clinical implications of amylin and amylin deficiency. Diabetes Educ 25:389–397

    Article  CAS  PubMed  Google Scholar 

  9. Morris MJ, Nguyen T (2001) Does neuropeptide Y contribute to the anorectic action of amylin? Peptides 22:541–546

    Article  CAS  PubMed  Google Scholar 

  10. Pithadia A, Brender JR, Fierke CA (2016) Inhibition of IAPP aggregation and toxicity by natural products and derivatives. J Diabetes Res 2016:2046327

    Article  PubMed  CAS  Google Scholar 

  11. Hoppener JWM, Ahren B, Lips CJM (2000) Islet amyloid and type 2 diabetes mellitus. New Engl J Med 343:411–419

    Article  CAS  PubMed  Google Scholar 

  12. Milardi D, Sciacca MFM, Randazzo L et al (2014) The role of calcium, lipid membranes and islet amyloid polypeptide in the onset of type 2 diabetes: innocent bystanders or partners in a crime? Front Endocrinol 5:216

    Article  Google Scholar 

  13. Opie EL (1901) On the relation of chronic interstitial pancreatitis to the islands of Langerhans and to diabetes mellitus. J Exp Med 5:397–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Verchere CB, D’Alessio DA, Palmiter RD et al (1996) Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Natl Acad Sci 93:3492–3496

    Article  CAS  Google Scholar 

  15. Lorenzo A, Razzaboni B, Weir GC et al (1994) Pancreatic-islet cell toxicity of amylin associated with Type-2 diabetes-mellitus. Nature 368:756–760

    Article  CAS  PubMed  Google Scholar 

  16. Gurlo T, Ryazantsev S, Huang CJ et al (2010) Evidence for proteotoxicity in beta cells in Type 2 diabetes toxic islet amyloid polypeptide oligomers form intracellularly in the secretory pathway. Am J Pathol 176:861–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Despa F, DeCarli C (2013) Amylin: what might be its role in Alzheimer’s disease and how could this affect therapy? Expert Rev Proteomics 10:403–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Miller C, Zerze GH, Mittal J (2013) Molecular simulations indicate marked differences in the structure of amylin mutants, correlated with known aggregation propensity. J Phys Chem B 117:16066–16075

    Article  CAS  PubMed  Google Scholar 

  19. Anguiano M, Nowak RJ, Lansbury PT (2002) Protofibrillar islet amyloid polypeptide permeabilizes synthetic vesicles by a pore-like mechanism that may be relevant to type II diabetes. Biochemistry 41:11338–11343

    Article  CAS  PubMed  Google Scholar 

  20. Scalisi S, Sciacca MF, Zhavnerko G et al (2010) Self-assembling pathway of HiApp fibrils within lipid bilayers. Chembiochem 11:1856–1859

    Article  CAS  PubMed  Google Scholar 

  21. Brender JR, Hartman K, Reid KR et al (2008) A single mutation in the nonamyloidogenic region of islet amyloid polypeptide greatly reduces toxicity. Biochemistry 47:12680–12688

    Article  CAS  PubMed  Google Scholar 

  22. Masters SL, Dunne A, Subramanian SL et al (2010) Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1 beta in type 2 diabetes. Nat Immunol 11:897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91:795–826

    Article  CAS  PubMed  Google Scholar 

  24. de la Monte SM, Wade JD (2008) Alzheimer’s disease is type 3 diabetes – evidence reviewed. J Diabetes Sci Technol 2:1101–1113

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jackson K, Barisone GA, Diaz E et al (2013) Amylin deposition in the brain: a second amyloid in Alzheimer disease? Ann Neurol 74:517–526

    Article  CAS  PubMed  Google Scholar 

  26. Alzheimer A (1907) Uber eine eigenartige Erkrankung der Hirnrinde. Zentralbl Nervenh Psych 64:146–148

    Google Scholar 

  27. Gupta V, Gupta VB, Chitranshi N et al (2016) One protein, multiple pathologies: multifaceted involvement of amyloid beta in neurodegenerative disorders of the brain and retina. Cell Mol Life Sci 73:4279–4297

    Article  CAS  PubMed  Google Scholar 

  28. Aguzzi A, O’Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–248

    Article  CAS  PubMed  Google Scholar 

  29. Jaikaran ETAS, Higham CE, Serpell LC et al (2001) Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis. J Mol Biol 308:515–525

    Article  CAS  PubMed  Google Scholar 

  30. Hirakura Y, Kagan BL (2001) Pore formation by beta-2-microglobulin: a mechanism for the pathogenesis of dialysis associated amyloidosis. Amyloid 8:94–100

    Article  CAS  PubMed  Google Scholar 

  31. Eisele YS, Monteiro C, Fearns C et al (2015) Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov 14:759–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quist A, Doudevski I, Lin H et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. PNAS 102:10427–10432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Powers ET, Balch WE (2013) Diversity in the origins of proteostasis networks – a driver for protein function in evolution. Nat Rev Mol Cell Biol 14:237–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. DeToma AS, Salamekh S, Ramamoorthy A et al (2012) Misfolded proteins in Alzheimer’s disease and type II diabetes. Chem Soc Rev 41:608–621

    Article  CAS  PubMed  Google Scholar 

  35. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890

    Article  CAS  PubMed  Google Scholar 

  36. Soong R, Brender JR, Macdonald PM et al (2009) Association of highly compact type II diabetes related islet amyloid polypeptide intermediate species at physiological temperature revealed by diffusion NMR spectroscopy. ACS 131:7079–7085

    Article  CAS  Google Scholar 

  37. Yonemoto IT, Kroon GJA, Dyson HJ et al (2008) Amylin proprotein processing generates progressively more amyloidogenic peptides that initially sample the helical state. Biochemistry 47:9900–9910

    Article  CAS  PubMed  Google Scholar 

  38. Chaffotte AF, Guijarro JI, Guillou Y et al (1997) The “pre-molten globule,” a new intermediate in protein folding. J Protein Chem 16:433–439

    Article  CAS  PubMed  Google Scholar 

  39. Zhang S, Andreasen M, Nielsen JT et al (2013) Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy. PNAS 110:2798–2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bieschke J, Russ J, Friedrich RP et al (2010) EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. PNAS 107:7710–7715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Giorgetti S, Greco C, Tortora P et al (2018) Targeting amyloid aggregation: an overview of strategies and mechanisms. Int J Mol Sci 19:2677

    Article  PubMed Central  CAS  Google Scholar 

  42. Porat Y, Abramowitz A, Gazit E (2005) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37

    Article  CAS  Google Scholar 

  43. Sgarbossa A (2012) Natural biomolecules and protein aggregation: emerging strategies against amyloidogenesis. Int J Mol Sci 13:17121–17137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stefani M, Dobson CM (2003) Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. J Mol Med 81:678–699

    Article  CAS  PubMed  Google Scholar 

  45. Moreira PI, Santos MS, Moreno A et al (2002) Effect of amyloid beta-peptide on permeability transition pore: a comparative study. J Neurosci Res 69:257–267

    Article  CAS  PubMed  Google Scholar 

  46. Sequeira IR, Poppitt SD (2017) Unfolding novel mechanisms of polyphenol flavonoids for better glycaemic control: targeting pancreatic islet amyloid polypeptide (IAPP). Nutrients 9(7):788

    Article  PubMed Central  CAS  Google Scholar 

  47. Molino S, Dossena M, Buonocore D et al (2016) Polyphenols in dementia: from molecular basis to clinical trials. Life Sci 161:69–77

    Article  CAS  PubMed  Google Scholar 

  48. Cheng B, Gong H, Xiao H et al (2013) Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta 1830:4860–4871

    Article  CAS  PubMed  Google Scholar 

  49. Quideau S, Deffieux D, Douat-Casassus C et al (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chem Int Ed Eng 50:586–621

    Article  CAS  Google Scholar 

  50. Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043

    Article  CAS  PubMed  Google Scholar 

  51. Cooper AJ, Sharp SJ, Lentjes MA et al (2012) A prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care 35:1293–1300

    Article  PubMed  PubMed Central  Google Scholar 

  52. Nedumpully-Govindan P, Kakinen A, Pilkington EH et al (2016) Stabilizing off-pathway oligomers by polyphenol nanoassemblies for IAPP aggregation inhibition. Sci Rep 6:19463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stefani M, Rigacci S (2014) Beneficial properties of natural phenols: highlight on protection against pathological conditions associated with amyloid aggregation. Biofactors 40:482–493

    Article  CAS  PubMed  Google Scholar 

  54. Ngoungoure VL, Schluesener J, Moundipa PF et al (2015) Natural polyphenols binding to amyloid: a broad class of compounds to treat different human amyloid diseases. Mol Nutr Food Res 59:8–20

    Article  CAS  PubMed  Google Scholar 

  55. Rigacci S, Guidotti V, Bucciantini M et al (2010) Oleuropein aglycon prevents cytotoxic amyloid aggregation of human amylin. J Nutr Biochem 21:726–735

    Article  CAS  PubMed  Google Scholar 

  56. Velander P, Wu L, Henderson F et al (2017) Natural product-based amyloid inhibitors. Biochem Pharmacol 139:40–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang H, Tsao R (2016) Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr Opin Food Sci 8:33–42

    Article  Google Scholar 

  58. Cao P, Raleigh DP (2012) Analysis of the inhibition and remodeling of islet amyloid polypeptide amyloid fibers by flavanols. Biochemistry 51:2670–2683

    Article  CAS  PubMed  Google Scholar 

  59. Meng F, Abedini A, Plesner A et al (2010) The flavanol (-)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 49:8127–8133

    Article  CAS  PubMed  Google Scholar 

  60. Pithadia A, Brender JR, Fierke CA et al (2016) Inhibition of IAPP aggregation and toxicity by natural products and derivatives. J Diabetes Res 2016:2046327

    Article  PubMed  CAS  Google Scholar 

  61. Young LM, Cao P, Raleigh DP et al (2013) Ion mobility spectrometry-mass spectrometry defines the oligomeric intermediates in amylin amyloid formation and the mode of action of inhibitors. J Am Chem Soc 136:660–670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Coskun O, Kanter M, Korkmaz A et al (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and beta-cell damage in rat pancreas. Pharmacol Res 51:117–123

    Article  CAS  PubMed  Google Scholar 

  63. Jiang P, Li W, Shea JE et al (2011) Resveratrol inhibits the formation of multiple-layered beta-sheet oligomers of the human islet amyloid polypeptide segment 22-27. Biophys J 100:550–1558

    Google Scholar 

  64. López L, Varea O, Navarro S et al (2016) Benzbromarone, quercetin, and folic acid inhibit amylin aggregation. Int J Mol Sci 17:964

    Article  PubMed Central  CAS  Google Scholar 

  65. Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16:77–83

    Article  CAS  PubMed  Google Scholar 

  66. Khurana R, Coleman C, Lonescu-Zanetti C et al (2005) Mechanism of thioflavin T binding to amyloid fibrils. J Struct Biol 151:229–238

    Article  CAS  PubMed  Google Scholar 

  67. Vassar PS, Culling CF (1959) Fluorescent stains, with special reference to amyloid and connective tissues. Arch Pathol 68:487–498

    CAS  PubMed  Google Scholar 

  68. Khurana R, Uversky VN, Nielsen L et al (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276:22715–22721

    Article  CAS  PubMed  Google Scholar 

  69. Abeyawardhane DL, Fernández RD, Murgas CJ et al (2018) Iron redox chemistry promotes antiparallel oligomerization of alpha-synuclein. J Am Chem Soc 140:5028–5032

    Article  CAS  PubMed  Google Scholar 

  70. Porat Y, Abramowitz A, Gazit E (2006) Inhibition of amyloid fibril formation by polyphenols: structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67:27–37

    Article  CAS  PubMed  Google Scholar 

  71. Bagli E, Goussia A, Moschos MM et al (2016) Natural compounds and neuroprotection: mechanisms of action and novel delivery systems. In Vivo 30:535–547

    CAS  PubMed  Google Scholar 

  72. Franko A, Camargo DCR, Böddrich A et al (2018) Epigallocatechin gallate (EGCG) reduces the intensity of pancreatic amyloid fibrils in human islet amyloid polypeptide (hIAPP) transgenic mice. Sci Rep 8:1116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Sato M, Murakami K, Uno M et al (2013) Site-specific inhibitory mechanism for amyloid beta42 aggregation by catechol-type flavonoids targeting the Lys residues. J Biol Chem 288:23212–23224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tanaka T, Matsuo Y, Kouno I (2010) Chemistry of secondary polyphenols produced during processing of tea and selected foods. Int J Mol Sci 11:14–40

    Article  CAS  Google Scholar 

  75. Rao PP, Mohamed T, Teckwani K et al (2015) Curcumin binding to beta amyloid: a computational study. Chem Biol Drug Des 86:813–820

    Article  CAS  PubMed  Google Scholar 

  76. Daval M, Bedrood S, Gurlo T et al (2010) The effect of curcumin on human islet amyloid polypeptide misfolding and toxicity. Amyloid 17:118–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mo Y, Lei J, Sun Y et al (2016) Conformational ensemble of hIAPP dimer: insight into the molecular mechanism by which a green tea extract inhibits hIAPP aggregation. Sci Rep 6:33076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Aitken JF, Loomes KM, Riba-garcia I et al (2017) Rutin suppresses human-amylin/hIAPP misfolding and oligomer formation in-vitro, and ameliorates diabetes and its impacts in human-amylin/hIAPP transgenic mice. Biochem Biophys Res Commun 482:625–631

    Article  CAS  PubMed  Google Scholar 

  79. Wang Q, Ning L, Niu Y et al (2014) Molecular mechanism of the inhibition and remodeling of human islet amyloid polypeptide (hIAPP1–37) oligomer by resveratrol from molecular dynamics simulation. J Phys Chem B 119:15–24

    Article  PubMed  CAS  Google Scholar 

  80. Gersch M, Kreuzer J, Sieber SA (2012) Electrophilic natural products and their biological targets. Nat Prod Rep 29:659–682

    Article  CAS  PubMed  Google Scholar 

  81. Velander P, Wu L, Ray WK et al (2016) Amylin amyloid inhibition by flavonoid baicalein: key roles of its vicinal dihydroxyl groups of the catechol moiety. Biochemistry 55:4255–4258

    Article  CAS  PubMed  Google Scholar 

  82. Herbert TP, Laybutt DR (2016) A reevaluation of the role of the unfolded protein response in islet dysfunction: maladaptation or a failure to adapt? Diabetes 65:1472–1480

    Article  CAS  PubMed  Google Scholar 

  83. Hernandez MG, Aguilar AG, Burillo J et al (2018) Pancreatic beta cells overexpressing hIAPP impaired mitophagy and unbalanced mitochondrial dynamics. Cell Death Dis 9:481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Borchi E, Bargelli V, Guidotti V et al (2014) Mild exposure of RIN-5F beta-cells to human islet amyloid polypeptide aggregates upregulates antioxidant enzymes via NADPH oxidase-RAGE: an hormetic stimulus. Redox Biol 2:114–122

    Article  CAS  Google Scholar 

  85. Volpe CMO, Villar-Delfino PH, dos Anjos PMF et al (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9:119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Gao M, Winter R (2015) The effects of lipid membranes, crowding and osmolytes on the aggregation, and fibrillation propensity of human IAPP. J Diabetes Res 2015:849017

    PubMed  PubMed Central  Google Scholar 

  87. Sciacca MFM, Monaco I, La Rosa C et al (2018) The active role of Ca(2+) ions in Abeta-mediated membrane damage. Chem Commun 54:3629–3631

    Article  CAS  Google Scholar 

  88. Wu L, Velander P, Liu D et al (2017) Olive component oleuropein promotes beta-cell insulin secretion and protects beta-cells from amylin amyloid-induced cytotoxicity. Biochemist 56:5035–5039

    Article  CAS  Google Scholar 

  89. Lolicato F, Raudino A, Milardi D et al (2015) Resveratrol interferes with the aggregation of membrane-bound human-IAPP: a molecular dynamics study. Eur J Med Chem 92:876–881

    Article  CAS  PubMed  Google Scholar 

  90. Wobst HJ, Sharma A, Diamond MI et al (2015) The green tea polyphenol (-)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios. FEBS Lett 589:77–83

    Article  CAS  PubMed  Google Scholar 

  91. Chakraborty S, Chatterjee B, Basu S (2012) A mechanistic insight into the amyloidogenic structure of hIAPP peptide revealed from sequence analysis and molecular dynamics simulation. Biophys Chem 168–169:1–9

    Article  PubMed  CAS  Google Scholar 

  92. Janson J, Soeller WC, Roche PC et al (1996) Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. PNAS 93:7283–7288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ortsater H, Grankvist N, Wolfram S et al (2012) Diet supplementation with green tea extract epigallocatechin gallate prevents progression to glucose intolerance in db/db mice. Nutr Metab 9:11

    Article  CAS  Google Scholar 

  94. Zhang Z, Ding Y, Dai X et al (2011) Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur J Pharmacol 670:311–316

    Article  CAS  PubMed  Google Scholar 

  95. Szkudelski T, Szkudelska K (2011) Anti-diabetic effects of resveratrol. Ann N Y Acad Sci 1215:34–39

    Article  CAS  PubMed  Google Scholar 

  96. Lee YE, Kim JW, Lee EM et al (2012) Chronic resveratrol treatment protects pancreatic islets against oxidative stress in db/db mice. PLoS One 7:e50412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Schultz N, Janelidze S, Byman E et al (2019) Levels of islet amyloid polypeptide in cerebrospinal fluid and plasma from patients with Alzheimer’s disease. PLoS One 14:e0218561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the European Commission’s H2020 program, under grant agreements H2020-WIDESPREAD-2014-668983-FORECAST and H2020-WIDESPREAD-01-2016-2017-739572-THE DISCOVERIES CTR. ARA acknowledges Norte2020, NORTE-08-5369-FSE-000037, for her PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Araújo, A.R., Reis, R.L., Pires, R.A. (2020). Natural Polyphenols as Modulators of the Fibrillization of Islet Amyloid Polypeptide. In: Chun, H., Reis, R., Motta, A., Khang, G. (eds) Biomimicked Biomaterials. Advances in Experimental Medicine and Biology, vol 1250. Springer, Singapore. https://doi.org/10.1007/978-981-15-3262-7_11

Download citation

Publish with us

Policies and ethics