Skip to main content

Surface-Modifying Polymers for Blood-Contacting Polymeric Biomaterials

  • Chapter
  • First Online:
Biomimicked Biomaterials

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1250))

Abstract

Bulk blending is considered as one of the most effective and straightforward ways to improve the hemo-compatibility of blood-contacting polymeric biomaterials among many surface modification methods. Zwitterionic structure-, glycocalyx-like structure-, and heparin-like structure-based oligomers have been synthesized as additives and blended with base polymers to improve the blood compatibility of base polymers. Fluorinated end- and side-functionalized oligomers could promote the migration of functionalized groups to the surface of biomedical polymers without changing their bulk properties, and it highly depends on the number and concentration of functional groups. Moreover, oligomers having both zwitterion and fluorine are receiving considerable attention due to their desirable phase separation, which can avoid undesired protein adsorption and platelet adhesion. The surface analysis of the surface-modified materials is usually investigated by analytical tools such as contact angle measurement, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Blood compatibility is mainly evaluated via platelet adhesion and protein adsorption test, and the result showed a significant decrease in the amount of undesirable adsorption. These analyses indicated that surface modification using bulk blending technique effectively improves blood compatibility of polymeric biomaterials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li S, Henry JJ (2011) Nonthrombogenic approaches to cardiovascular bioengineering. Annu Rev Biomed Eng 13:451–475

    CAS  PubMed  Google Scholar 

  2. Moellering RC Jr (2011) MRSA: the first half century. J Antimicrob Chemother 67(1):4–11

    PubMed  Google Scholar 

  3. Tu Q, Shen X, Liu Y et al (2019) A facile metal–phenolic–amine strategy for dual-functionalization of blood-contacting devices with antibacterial and anticoagulant properties. Mater Chem Front 3(2):265–275

    CAS  Google Scholar 

  4. Vogler EA, Siedlecki CA (2009) Contact activation of blood-plasma coagulation. Biomaterials 30(10):1857–1869

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Frost MC, Reynolds MM, Meyerhoff ME (2005) Polymers incorporating nitric oxide releasing/generating substances for improved biocompatibility of blood-contacting medical devices. Biomaterials 26(14):1685–1693

    CAS  PubMed  Google Scholar 

  6. Surman F, Riedel T, Bruns M et al (2015) Polymer brushes interfacing blood as a route toward high performance blood contacting devices. Macromol Biosci 15(5):636–646

    CAS  PubMed  Google Scholar 

  7. Hucknall A, Rangarajan S, Chilkoti A (2009) In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv Mater 21(23):2441–2446

    CAS  Google Scholar 

  8. Rodriguez-Emmenegger C, Brynda E, Riedel T, Houska M et al (2011) Polymer brushes showing non fouling in blood plasma challenge the currently accepted design of protein resistant surfaces. ISO: Macromol Rapid Commun 32(13):952–957

    CAS  Google Scholar 

  9. Mosher DF (1993) Adhesive proteins and their cellular receptors. Cardiovasc Pathol 2(3):149–155

    Google Scholar 

  10. Lopez-Donaire ML, Santerre JP (2014) Surface modifying oligomers used to functionalize polymeric surfaces: consideration of blood contact applications. J Appl Polym Sci 131(14)

    Google Scholar 

  11. Alves NM, Pashkuleva I, Reis RL et al (2010) Controlling cell behavior through the design of polymer surfaces. Small 6(20):2208–2220

    CAS  PubMed  Google Scholar 

  12. Kingshott P, Andersson G, McArthur SL et al (2011) Surface modification and chemical surface analysis of biomaterials. Curr Opin Chem Biol 15(5):667–676

    CAS  PubMed  Google Scholar 

  13. Chen H, Yuan L, Song W et al (2008) Biocompatible polymer materials: role of protein–surface interactions. Prog Polym Sci 33(11):1059–1087

    CAS  Google Scholar 

  14. Amiji M, Park K (1992) Prevention of protein adsorption and platelet adhesion on surfaces by PEO/PPO/PEO triblock copolymers. Biomaterials 13(10):682–692

    CAS  PubMed  Google Scholar 

  15. Chang Y, Chen WY, Yandi W et al (2009) Dual-thermoresponsive phase behavior of blood compatible zwitterionic copolymers containing nonionic poly (N-isopropyl acrylamide). Biomacromolecules 10(8):2092–2100

    CAS  PubMed  Google Scholar 

  16. Yang Z, Tu Q, Maitz MF et al (2012) Direct thrombin inhibitor-bivalirudin functionalized plasma polymerized allylamine coating for improved biocompatibility of vascular devices. Biomaterials 33(32):7959–7971

    CAS  PubMed  Google Scholar 

  17. Wang L-F, Wei Y-H, Chen K-Y et al (2004) Properties of phospholipid monolayer deposited on a fluorinated polyurethane. J Biomater Sci Polym Ed 15(8):957–969

    CAS  PubMed  Google Scholar 

  18. Hossfeld S, Nolte A, Hartmann H et al (2013) Bioactive coronary stent coating based on layer-by-layer technology for siRNA release. Acta Biomater 9(5):6741–6752

    CAS  PubMed  Google Scholar 

  19. Lim C-M, Hur J, Jang H et al (2019) Developing a thermal grafting process for zwitterionic polymers on cross-linked polyethylene with geometry-independent grafting thickness. Acta Biomater 85:180–191

    CAS  PubMed  Google Scholar 

  20. Lim C-M, Seo J, Jang H et al (2018) Optimizing grafting thickness of zwitterionic sulfobetaine polymer on cross-linked polyethylene surface to reduce friction coefficient. Appl Surf Sci 452:102–112

    CAS  Google Scholar 

  21. Jiang H, Wang X, Li C et al (2011) Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir 27(18):11575–11581

    CAS  PubMed  Google Scholar 

  22. Flores JD, Xu X, Treat NJ et al (2009) Reversible “self-locked” micelles from a zwitterion-containing triblock copolymer. Macromolecules 42(14):4941–4945

    CAS  Google Scholar 

  23. Seo J-H, Matsuno R, Lee Y et al (2009) Conformational recovery and preservation of protein nature from heat-induced denaturation by water-soluble phospholipid polymer conjugation. Biomaterials 30(28):4859–4867

    CAS  PubMed  Google Scholar 

  24. Hedayati M, Neufeld MJ, Reynolds MM et al (2019) The quest for blood-compatible materials: recent advances and future technologies. Mater Sci Eng R Rep 138:118–152

    Google Scholar 

  25. Ishihara K (2019) Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res Part A 107(5):933–943

    CAS  Google Scholar 

  26. Shimizu T, Goda T, Minoura N et al (2010) Super-hydrophilic silicone hydrogels with interpenetrating poly (2-methacryloyloxyethyl phosphorylcholine) networks. Biomaterials 31(12):3274–3280

    CAS  PubMed  Google Scholar 

  27. Liu P-S, Chen Q, Liu X et al (2009) Grafting of zwitterion from cellulose membranes via ATRP for improving blood compatibility. Biomacromolecules 10(10):2809–2816

    CAS  PubMed  Google Scholar 

  28. Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22(9):920–932

    CAS  PubMed  Google Scholar 

  29. Seo J-H, Matsuno R, Takai M et al (2009) Cell adhesion on phase-separated surface of block copolymer composed of poly (2-methacryloyloxyethyl phosphorylcholine) and poly (dimethylsiloxane). Biomaterials 30(29):5330–5340

    CAS  PubMed  Google Scholar 

  30. Hasegawa T, Iwasaki Y, Ishihara K (2001) Preparation and performance of protein-adsorption-resistant asymmetric porous membrane composed of polysulfone/phospholipid polymer blend. Biomaterials 22(3):243–251

    CAS  PubMed  Google Scholar 

  31. Anderson JM, Shive MS (1997) Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 28(1):5–24

    CAS  PubMed  Google Scholar 

  32. Iwasaki Y, Sawada S-i, Ishihara K et al (2002) Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend. Biomaterials 23(18):3897–3903

    CAS  PubMed  Google Scholar 

  33. Ye SH, Watanabe J, Iwasaki Y et al (2002) Novel cellulose acetate membrane blended with phospholipid polymer for hemocompatible filtration system. J Membr Sci 210(2):411–421

    CAS  Google Scholar 

  34. Zhao Y-F, Zhu L-P, Yi Z et al (2013) Improving the hydrophilicity and fouling-resistance of polysulfone ultrafiltration membranes via surface zwitterionicalization mediated by polysulfone-based triblock copolymer additive. J Membr Sci 440:40–47

    CAS  Google Scholar 

  35. Meng S, Guo Z, Wang Q et al (2011) Studies on a novel multi-sensitive hydrogel: influence of the biomimetic phosphorylcholine end-groups on the PEO–PPO–PEO tri-block co-polymers. J Biomater Sci Polym Ed 22(4–6):651–664

    CAS  PubMed  Google Scholar 

  36. Huang J, Gu S, Zhang R et al (2013) Synthesis, spectroscopic, and thermal properties of polyurethanes containing zwitterionic sulfobetaine groups. J Therm Anal 12(3):1289–1295

    Google Scholar 

  37. Cao J, Yang M, Lu A et al (2013) Polyurethanes containing zwitterionic sulfobetaines and their molecular chain rearrangement in water. J Biomed Mater Res Part A 101(3):909–918

    Google Scholar 

  38. Sechriest VF, Miao YJ, Niyibizi C et al (2000) GAG-augmented polysaccharide hydrogel: a novel biocompatible and biodegradable material to support chondrogenesis. J Biomed Mater Res 49(4):534–541

    CAS  PubMed  Google Scholar 

  39. Jeon S, Lee J, Andrade J et al (1991) Protein—surface interactions in the presence of polyethylene oxide: I. Simplified theory. J Colloid Interface Sci 142(1):149–158

    CAS  Google Scholar 

  40. Jeon S, Andrade J (1991) Protein—surface interactions in the presence of polyethylene oxide: II. Effect of protein size. J Colloid Interface Sci 142(1):159–166

    CAS  Google Scholar 

  41. Ji J, Zhu H, Shen J (2004) Surface tailoring of poly (DL-lactic acid) by ligand-tethered amphiphilic polymer for promoting chondrocyte attachment and growth. Biomaterials 25(10):1859–1867

    CAS  PubMed  Google Scholar 

  42. Tamada Y, Murata M, Makino K et al (1998) Anticoagulant effects of sulphonated polyisoprenes. Biomaterials 19(7–9):745–750

    CAS  PubMed  Google Scholar 

  43. Silver JH, Hart AP, Williams EC et al (1992) Anticoagulant effects of sulphonated polyurethanes. Biomaterials 3(6):339–344

    Google Scholar 

  44. Tamada Y, Murata M, Hayashi T et al (2002) Anticoagulant mechanism of sulfonated polyisoprenes. Biomaterials 23(5):1375–1382

    CAS  PubMed  Google Scholar 

  45. Nie S, Xue J, Lu Y (2012) Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. Colloid Surf B Biointerfaces 100:116–125

    CAS  PubMed  Google Scholar 

  46. Chen HF, Ren YJ (2015) Design, synthesis, and anti-thrombotic evaluation of some novel fluorinated thrombin inhibitor derivatives. Arch Pharm 348(6):408–420

    CAS  Google Scholar 

  47. Nowatzki PJ, Koepsel RR, Stoodley P et al (2012) Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings. Acta Biomater 8(5):1869–1880

    CAS  PubMed  Google Scholar 

  48. Nouman M, Jubeli E, Saunier J et al (2016) Exudation of additives to the surface of medical devices: impact on biocompatibility in the case of polyurethane used in implantable catheters. J Biomed Mater Res Part A 104(12):2954–2967

    CAS  Google Scholar 

  49. Suk DE, Chowdhury G, Matsuura T et al (2002) Study on the kinetics of surface migration of surface modifying macromolecules in membrane preparation. Macromolecules 35(8):3017–3021

    CAS  Google Scholar 

  50. Rana D, Matsuura T, Narbaitz RM (2006) Novel hydrophilic surface modifying macromolecules for polymeric membranes: polyurethane ends capped by hydroxy group. J Membr Sci 282(1–2):205–216

    CAS  Google Scholar 

  51. Theron JP, Knoetze JH, Sanderson RD et al (2010) Modification, crosslinking and reactive electrospinning of a thermoplastic medical polyurethane for vascular graft applications. Acta Biomater 6(7):2434–2447

    CAS  PubMed  Google Scholar 

  52. Joung YK, Hwang IK, Park KD et al (2010) CD34 monoclonal antibody-immobilized electrospun polyurethane for the endothelialization of vascular grafts. Macromol Res 18(9):904–912

    CAS  Google Scholar 

  53. Sundaram HS, Cho YJ, Dimitriou MD et al (2011) Fluorinated amphiphilic polymers and their blends for fouling-release applications: the benefits of a triblock copolymer surface. ACS Appl Mater Interfaces 3(9):3366–3374

    CAS  PubMed  Google Scholar 

  54. Pinchuk L (1994) A review of the biostability and carcinogenicity of polyurethanes in medicine and the new-generation of biostable polyurethanes. J Biomater Sci Polym Ed 6(3):225–267

    CAS  PubMed  Google Scholar 

  55. Xie XY, Tan H, Li JH et al (2008) Synthesis and characterization of fluorocarbon chain end-capped poly(carbonate urethane)s as biomaterials: a novel bilavered surface structure. J Biomed Mater Res Part A 84A(1):30–43

    CAS  Google Scholar 

  56. Massa TM, Yang ML, Ho JYC et al (2005) Fibrinogen surface distribution correlates to platelet adhesion pattern on fluorinated surface-modified polyetherurethane. Biomaterials 26(35):7367–7376

    CAS  PubMed  Google Scholar 

  57. Krafft MP, Riess JG (2007) Perfluorocarbons: life sciences and biomedical uses – dedicated to the memory of professor Guy Ourisson, a true RENAISSANCE man. J Polym Sci A Polym Chem 45(7):1185–1198

    CAS  Google Scholar 

  58. Tan H, Li JH, Guo M et al (2005) Phase behavior and hydrogen bonding in biomembrane mimicing polyurethanes with long side chain fluorinated alkyl phosphatidylcholine polar head groups attached to hard block. Polymer 46(18):7230–7239

    CAS  Google Scholar 

  59. Khulbe KC, Feng C, Matsuura T (2010) The art of surface modification of synthetic polymeric membranes. J Appl Polym Sci 115(2):855–895

    CAS  Google Scholar 

  60. Tang YW, Santerre JP, Labow RS et al (1996) Synthesis of surface-modifying macromolecules for use in segmented polyurethanes. J Appl Polym Sci 62(8):1133–1145

    CAS  Google Scholar 

  61. Hutchings LR, Narrianen AP, Thompson RL et al (2008) Modifying and managing the surface properties of polymers. Polym Int 57(2):163–170

    CAS  Google Scholar 

  62. Tang YW, Santerre JP, Labow RS et al (1997) Use of surface-modifying macromolecules to enhance the biostability of segmented polyurethanes. J Biomed Mater Res 35(3):371–381

    CAS  PubMed  Google Scholar 

  63. Tonelli C, Ajroldi G, Turturro A et al (2001) Synthesis methods of fluorinated polyurethanes. 1. Effects on thermal and dynamic-mechanical behaviours. Polymer 42(13):5589–5598

    CAS  Google Scholar 

  64. Li JH, Zhang Y, Yang J et al (2013) Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid. J Biomed Mater Res Part A 101(5):1362–1372

    Google Scholar 

  65. El-Shehawy AA, Yokoyama H, Sugiyama K et al (2005) Precise synthesis of novel chain-end-functionalized polystyrenes with a definite number of perfluorooctyl groups and their surface characterization. Macromolecules 38(20):8285–8299

    CAS  Google Scholar 

  66. Hutchings LR, Narrainen AP, Eggleston SM et al (2006) Surface-active fluorocarbon end-functionalized polylactides. Polymer 47(24):8116–8122

    CAS  Google Scholar 

  67. Bergius WNA, Hutchings LR, Sarih NM et al (2013) Synthesis and characterisation of end-functionalised poly(N-vinylpyrrolidone) additives by reversible addition-fragmentation transfer polymerisation. Polym Chem 4(9):2815–2827

    CAS  Google Scholar 

  68. Hutchings LR, Sarih NM, Thompson RL (2011) Multi-end functionalised polymer additives synthesised by living anionic polymerisation-the impact of additive molecular structure upon surface properties. Polym Chem 2(4):851–861

    CAS  Google Scholar 

  69. Ge Z, Zhang XY, Dai JB et al (2009) Synthesis, characterization and properties of a novel fluorinated polyurethane. Eur Polym J 45(2):530–536

    CAS  Google Scholar 

  70. Tan H, Liu J, Li JH et al (2006) Synthesis and hemocompatibility of biomembrane mimicing poly (carbonate urethane)s containing fluorinated alkyl phosphatidylcholine side groups. Biomacromolecules 7(9):2591–2599

    CAS  PubMed  Google Scholar 

  71. Tan H, Xie XY, Li JH et al (2004) Synthesis and surface mobility of segmented polyurethanes with fluorinated side chains attached to hard blocks. Polymer 45(5):1495–1502

    CAS  Google Scholar 

  72. Lin YH, Chou NK, Chang CH et al (2007) Blood compatibility of fluorodiol-containing polyurethanes. J Polym Sci A Polym Chem 45(15):3231–3242

    CAS  Google Scholar 

  73. Zhang XQ, Jiang X, Li JH et al (2008) Largely improved blood compatibility of polyurethane by blending with fluorinated phosphatidylcholine polyurethane. Chin J Polym Sci 26(2):203–211

    CAS  Google Scholar 

  74. Krishnan S, Ayothi R, Hexemer A et al (2006) Anti-biofouling properties of comblike block copolymers with amphiphilic side chains. Langmuir 22(11):5075–5086

    CAS  PubMed  Google Scholar 

  75. Zhao XT, Su YL, Li YF et al (2014) Engineering amphiphilic membrane surfaces based on PEO and PDMS segments for improved antifouling performances. J Membr Sci 450:111–123

    Google Scholar 

  76. Lin C, Pan RM, Xing P et al (2018) Synthesis and surface activity study of novel branched zwitterionic heterogemini fluorosurfactants with CF3CF2CF2C(CF3)(2) group. J Fluor Chem 214:35–41

    CAS  Google Scholar 

  77. Zhang GF, Gao F, Zhang QH et al (2016) Enhanced oil-fouling resistance of poly(ether sulfone) membranes by incorporation of novel amphiphilic zwitterionic copolymers. RSC Adv 6(9):7532–7543

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon Ki Joung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lim, CM., Li, MX., Joung, Y.K. (2020). Surface-Modifying Polymers for Blood-Contacting Polymeric Biomaterials. In: Chun, H., Reis, R., Motta, A., Khang, G. (eds) Biomimicked Biomaterials. Advances in Experimental Medicine and Biology, vol 1250. Springer, Singapore. https://doi.org/10.1007/978-981-15-3262-7_13

Download citation

Publish with us

Policies and ethics