Skip to main content

Induction, Metabolite Analysis, and Transgenesis of Hairy Roots from Coleus forskohlii

  • Chapter
  • First Online:
Hairy Root Cultures Based Applications

Part of the book series: Rhizosphere Biology ((RHBIO))

  • 301 Accesses

Abstract

Coleus forskohlii (Willd.) Briq. (Lamiaceae) is a medicinal herb cultivated in the subtropical and temperate areas of India, Myanmar, and Thailand. It is known for its antihypertensive and anti-obesity properties which are primarily attributed to its major bioactive metabolite: forskolin. Other bioactive metabolites produced by C. forskohlii include 1,9-dideoxyforskolin (anticancer) and genkwanin (anti-inflammatory). All major bioactive labdane diterpenes produced by C. forskohlii are accumulated in its roots, harvesting of which requires uprooting the plant. Further, its production is severely impacted by changes in weather, soil condition, rainfall pattern, availability of water, as well as biotic factors such as nematode infections of root, which significantly reduces the biomass and quantity of metabolites. The biosynthetic pathway of forskolin is now largely understood, and metabolic engineering may be employed to increase the production of forskolin and related labdane diterpenes or even for production of novel metabolites. Agrobacterium rhizogenes induced hairy roots are a unique system that can be exploited for sustainable and continuous production of metabolites as well as for genetic analysis and engineering secondary metabolite pathways through introduction of transgenes or targeted deletions. Hairy roots are characterized by high growth rate, genetic stability, and culture in hormone-free media. In this chapter, we provide protocol optimized in our lab, for induction, transgenesis, and maintenance of hairy root culture of C. forskohlii, along with the optimized protocols for extraction and quantification of key metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad S, Rizwan M, Parveen R, Mujeeb M, Aquil M (2008) A validated stability-indicating TLC method for determination of forskolin in crude drug and pharmaceutical dosage form. Chromatographia 675-6:441–447

    Article  Google Scholar 

  • Alasbahi RH, Melzig MF (2010a) Plectranthus barbatus: a review of phytochemistry, ethnobotanical uses and pharmacology–part 1. Planta Med 7607:653–661

    Article  Google Scholar 

  • Alasbahi RH, Melzig MF (2010b) Plectranthus barbatus: a review of phytochemistry, ethnobotanical uses and pharmacology–part 2. Planta Med 7608:753–765

    Article  Google Scholar 

  • Biswas B, Scott PT, Gresshoff PM (2011) Tree legumes as feedstock for sustainable biofuel production: opportunities and challenges. J Plant Physiol 16816:1877–1884

    Article  Google Scholar 

  • Bolton GW, Nester EW, Gordon MP (1986) Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 232(4753):983–985

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 1615:839–851

    Article  Google Scholar 

  • Chen SC, Liu HW, Lee KT, Yamakawa T (2007) High-efficiency Agrobacterium rhizogenes-mediated transformation of heat inducible sHSP18. 2-GUS in Nicotiana tabacum. Plant Cell Rep 26(1):29–37

    Article  PubMed  Google Scholar 

  • De Souza NJ, Dohadwalla AN, Reden Ü (1983) Forskolin: a labdane diterpenoid with antihypertensive, positive inotropic, platelet aggregation inhibitory, and adenylate cyclase activating properties. Med Res Rev 32:201–219

    Article  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattahi M, Nazeri V, Torras-Claveria L, Sefidkon F, Cusido RM, Zamani Z, Palazon J (2013) A new biotechnological source of rosmarinic acid and surface flavonoids: hairy root cultures of Dracocephalum kotschyi Boiss. Ind Crop Prod 50:256–263

    Article  CAS  Google Scholar 

  • Godard MP, Johnson BA, Richmond SR (2005) Body composition and hormonal adaptations associated with forskolin consumption in overweight and obese men. Obes Res 138:1335–1343

    Article  Google Scholar 

  • Grąbkowska R, Królicka A, Mielicki W, Wielanek M, Wysokińska H (2010) Genetic transformation of Harpagophytum procumbens by Agrobacterium rhizogenes: iridoid and phenylethanoid glycoside accumulation in hairy root cultures. Acta Physiol Plant 32(4):665–673

    Article  Google Scholar 

  • Guillon S, Trémouillaux-Guiller J, Pati PK, Rideau M, Gantet P (2006) Hairy root research: recent scenario and exciting prospects. Curr Opin Plant Biol 9(3):341–346

    Article  CAS  PubMed  Google Scholar 

  • Habibi P, Soccol CR, Grossi-de-Sa MF (2018) Hairy root-mediated biotransformation: recent advances and exciting prospects. In: Hairy roots. Springer, Singapore, pp 185–211

    Chapter  Google Scholar 

  • Han L-K, Morimoto C, Yu R-H, Okuda H (2005) Effects of Coleus forskohlii on fat storage in ovariectomized rats. Yakugaku Zasshi 1255:449–453

    Article  Google Scholar 

  • Hess KM, Dudley MW, Lynn DG, Joerger RD, Binns AN (1991) Mechanism of phenolic activation of Agrobacterium virulence genes: development of a specific inhibitor of bacterial sensor/response systems. Proc Natl Acad Sci 88(17):7854–7858

    Article  CAS  PubMed  Google Scholar 

  • Holsters M, De Waele D, Depicker A, Messens E, Van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genomics 1632:181–187

    Article  Google Scholar 

  • Hou P, Li Y, Zhang X, Liu C, Guan J, Li H, Zhao T, Ye J, Yang W, Liu K (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 3416146:651–654

    Article  Google Scholar 

  • Hu ZB, Du M (2006) Hairy root and its application in plant genetic engineering. J Integr Plant Biol 482:121–127

    Article  Google Scholar 

  • Kiselev KV, Turlenko AV, Tchernoded GK, Zhuravlev YN (2009) Nucleotide substitutions in rolC and nptII gene sequences during long-term cultivation of Panax ginseng cell cultures. Plant Cell Rep 28(8):1273

    Article  CAS  PubMed  Google Scholar 

  • Królicka A, Staniszewska I, Bielawski K, Maliński E, Szafranek J, Łojkowska E (2001) Establishment of hairy root cultures of Ammi majus. Plant Sci 160(2):259–264

    Article  Google Scholar 

  • Narayanan P, Laddha K, Akamanchi K (2002) Histochemical localization of forskolin and other terpenoids in Coleus forskohlii. Curr Sci 838:945–946

    Google Scholar 

  • Nishimura A, Aichi I, Matsuoka M (2006) A protocol for Agrobacterium-mediated transformation in rice. Nat Protoc 1(6):2796

    Article  CAS  PubMed  Google Scholar 

  • Pateraki I, Andersen-Ranberg J, Hamberger B, Heskes AM, Martens HJ, Zerbe P, Bach SS, Møller BL, Bohlmann J, Hamberger B (2014) Manoyl oxide (13R), the biosynthetic precursor of forskolin, is synthesized in specialized root cork cells in Coleus forskohlii. Plant Physiol 1643:1222–1236

    Article  Google Scholar 

  • Rao SR, Ravishankar G (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 202:101–153

    Google Scholar 

  • Rather IA, Awasthi P, Mahajan V, Bedi YS, Vishwakarma RA, Gandhi SG (2015) Molecular cloning and functional characterization of an antifungal PR-5 protein from Ocimum basilicum. Gene 5581:143–151

    Article  Google Scholar 

  • Sasaki K, Udagawa A, Ishimaru H, Hayashi T, Alfermann A, Nakanishi F, Shimomura K (1998) High forskolin production in hairy roots of Coleus forskohlii. Plant Cell Rep 17(6–7):457–459

    Article  CAS  PubMed  Google Scholar 

  • Shan Y, Xu L, Lu Y, Wang X, Zheng Q, Kong L, Niwa M (2008) Diterpenes from Coleus forskohlii (W ILLD.) B RIQ.(Labiatae). Chem Pharm Bull 561:52–56

    Article  Google Scholar 

  • Srivastava S, Srivastava AK (2007) Hairy root culture for mass-production of high-value secondary metabolites. Crit Rev Biotechnol 27(1):29–43

    Article  CAS  Google Scholar 

  • Stachel SE, Messens E, Van Montagu M, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318(6047):624

    Article  Google Scholar 

  • Stiles AR, Liu CZ (2013) Hairy root culture: bioreactor design and process intensification. In: Biotechnology of hairy root systems. Springer, Berlin/Heidelberg, pp 91–114

    Chapter  Google Scholar 

  • Suneetha DRS, Arundhati A, Rao GS, Joshua PV (2009) Differential methylation pattern of RolA, B and C genes of Agrobacterium rhizogenes in Nicotiana glauca and its hybrid. Asian J Plant Sci 8(5):361–367

    Article  CAS  Google Scholar 

  • Tepfer D (1990) Genetic transformation using Agrobacterium rhizogenes. Physiol Plant 791:140–146

    Article  Google Scholar 

  • Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet 208:375–383

    Article  Google Scholar 

  • Xi J, Patel M, Dong S, Que Q, Qu R (2018) Acetosyringone treatment duration affects large T-DNA molecule transfer to rice callus. BMC Biotechnol 18(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziegler FE, Jaynes BE, Saindane MT (1985) A C6, C7 oxygen functionalized intermediate for the synthesis of forskolin: stereochemical control in an intramolecular Diels-Alder reaction. Tetrahedron Lett 2628:3307–3310

    Article  Google Scholar 

  • Ziegler FE, Jaynes BH, Saindane MT (1987) A synthetic route to forskolin. J Am Chem Soc 10926:8115–8116

    Article  Google Scholar 

Download references

Author Contributions

VLJ carried out the work related to establishment and maintenance of hairy root cultures, PCR-based confirmation, microscopic localization, and TLC. She also prepared the figures and wrote the manuscript. IAR carried out the work related to subcloning of Osmotin gene, preparation of transgenic hairy roots, and confirmation and expression analysis of Osmotin. NK prepared the extracts from roots and hairy roots of C. forskohlii and also assisted VLJ in writing the manuscript and preparation of figures. SGG designed the study, supervised the work, and corrected the final manuscript and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit G. Gandhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jamwal, V.L., Rather, I.A., Kapoor, N., Gandhi, S.G. (2020). Induction, Metabolite Analysis, and Transgenesis of Hairy Roots from Coleus forskohlii. In: Srivastava, V., Mehrotra, S., Mishra, S. (eds) Hairy Root Cultures Based Applications. Rhizosphere Biology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4055-4_3

Download citation

Publish with us

Policies and ethics