Skip to main content

Nanoparticles’ Synthesis and Their Application in the Management of Phytonematodes: An Overview

  • Chapter
  • First Online:
Management of Phytonematodes: Recent Advances and Future Challenges

Abstract

One of the most effective novel areas of research is nanotechnology. It is a field that is improving daily, especially in the subject of agriculture. Crop production is hindered by several pests of economic importance, which are responsible for huge crop losses and invariably contributing to global food insecurity with attendant consequences such as malnutrition, starvation, social isolation, and other overlapping issues that cannot be overemphasized. Crops are predisposed to losses from agricultural pests and diseases because the peasant farmer lacks efficient soil, virile seeds, and environmental management techniques. The citizens are subjected to poverty and hunger owing to the devastating effect of huge crop losses in the field and storage. The synthetic-based approach, though highly indispensable in agricultural crop pest management, is laden with severe environmental pollution and has brought various diseases to the human race. This necessitated the development of safer alternative pesticidal substances with the aim of improving crop production. Prodigious attention has been paid by the researcher toward application of nanoparticles (NPs) and their application in sustainable agriculture. NPs are new methods that could be used to redeem the environment from its polluted state. Materials act differently in their nano form, which improves their activity as pesticidal agents. In agriculture, nanomaterials have been used in livestock and crop protection; they exhibit properties like biodegradability, solubility, permeability, and thermal stability. They also possess surface areas that increase their affinity to the target organism. Nanomaterials are available in different forms such as nano-containers, nano-encapsulates, nano-cages, and nano-emulsions for pest management use, and their potency has been established in crop disease control. NPs are good sources of controlled release mechanisms, which is a way of reducing the amount of pesticides or fertilizers injected into the environment while crops are on the field. NP biomarkers can be used in detecting bacteria, viruses, fungi, and nematodes of economic importance in agriculture; as diagnostic tools, nano sensors can indicate certain compounds in plants that are elicited by the plants only in disease conditions. The use of nano sensors as pesticide residue detectors comes up with accurate and reliable information. Nanotechnology consists of two major aspects, that is, the synthesis of nano-sized materials and the application or use of the synthesized nanomaterials for the intended purpose. Phytonematodes cause a wide range of losses to agricultural crops; they are a major threat to world food production as they cause yield losses in all areas of the world. Considerable yield losses are caused annually by several nematode species on crops. In order to increase yield, NPs have been employed in the control of nematodes. This overview highlights synthesis, characterization of NPs, and successes in the area of phytonematode management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Rahman AF, Mohammad TGM (2014) Green synthesis of silver nanoparticle using Eucalyptus globulus leaf extract and its antibacterial activity. J Appl Sci Res 9(10):6437–6440

    Google Scholar 

  • Abd FG, Al-Kawaz AJAH, Al-Dahmoshi HOM (2013) Phenotypic and genotypic investigation on silver nanoparticles of Morganella morganii recovered from (cauti), Iraq. Int J Med Pharm Sci 3:29–38

    Google Scholar 

  • Abdel-Tawab HM, Sahar IA, Samia MMM, Badawi AA (2019) Rosemary essential oil nanoemulsion, formulation, characterization and acaricidal activity against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). J Plant Protect Res 59(1):102–112

    Google Scholar 

  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12,108–12,109

    CAS  Google Scholar 

  • Al Banna L, Salem N, Ghrair AM, Habash SS (2018) Impact of silicon carbide nanoparticles on hatching and survival of soil nematodes Caenorhabditis elegans and Meloidogyne incognita. Appl Ecol Environ Res 16(3):2661–2662

    Google Scholar 

  • Al-Bahrani R, Raman J, Lakshmanan H, Hassan AA, Sabaratnam V (2017) Green synthesis of silver nanoparticles using tree oyster mushroom Pleurotus ostreatus and its inhibitory activity against pathogenic bacteria. Mater Lett 186:21–25

    CAS  Google Scholar 

  • Atef MK, Nassar B (2016) Effectiveness of silver nano-particles of extracts of Urtica urens (Urticaceae) against root-knot nematode Meloidogyne incognita. Asian J Nematol 5:14–19

    Google Scholar 

  • Azizi S, Ahmad M, Mahdavi M, Abdolmohammadi S (2013) Preparation, characterization, and antimicrobial activities of ZnO nanoparticles/cellulose nanocrystal nanocomposites. Bioresources 8:1841–1851

    Google Scholar 

  • Baco-Carles V, Datas L, Tailhades P (2011) Copper nanoparticles prepared from oxalic precursors. Nanotechnology 2011:1–7; ISRN

    Google Scholar 

  • Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68:88–92

    CAS  PubMed  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP (2009) Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339:134–139

    CAS  Google Scholar 

  • Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47:160–164

    CAS  PubMed  Google Scholar 

  • Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 43:173–179

    Google Scholar 

  • Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287. https://doi.org/10.1103/PhysRevA.13.2287

    Article  CAS  Google Scholar 

  • Buhroo AA, Nisa G, Asrafuzzaman S, Prasad R, Rasheed R, Bhattacharyya A (2017) Biogenic silver nanoparticles from Trichodesma indicum aqueous leaf extract against Mythimna separata and evaluation of its larvicidal efficacy. J Plant Protect Res 57(2):194–200

    CAS  Google Scholar 

  • Chowdhury S, Basu A, Kundu S (2014) Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus Macrophomina phaseolina (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. Nano Res Lett 9:365

    Google Scholar 

  • Cromwell WA, Yang J, Starr JL, Young-Ki J (2014) Nematicidal effects of silver nano particles on root-knot nematode in Bermudagrass. J Nematol 46(3):261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156:2630–2640

    CAS  PubMed  Google Scholar 

  • Dhandapani P, Maruthamuthu S, Rajagopal G (2012) Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J Photochem Photobiol B Biol 110:43–49

    CAS  Google Scholar 

  • Dhuper S, Panda D, Nayak PL (2012) Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Mangifera indica. Nano Trends J Nanotechnol Appl 13:16–22

    Google Scholar 

  • Di Gregorio S, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    PubMed  Google Scholar 

  • Dubchak S, Ogar A, Mietelski JW, Turnau K (2010) Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Span J Agric Res 8:103–108

    Google Scholar 

  • Durán N, Priscyla D, Marcato PD, Alves O, De Souza G, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–7

    Google Scholar 

  • Egorova EM, Revina AA (2000) Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf A 168:87–96

    CAS  Google Scholar 

  • El-Batal AI, Attia MS, Mohamed M, Nofel MM, El-Sayyad GS (2019) Potential nematicidal properties of silver boron nanoparticles: synthesis, characterization, in vitro and in vivo root-knot nematode (Meloidogyne incognita) treatments. J Clust Sci 30:687–705

    CAS  Google Scholar 

  • Eppler AS, Rupprechter G, Anderson EA, Somorjai GA (2000) Thermal and chemical stability and adhesion strength of Pt nanoparticle arrays supported on silica studied by transmission electron microscopy and atomic force microscopy. J Phys Chem B 104:7286–7292

    CAS  Google Scholar 

  • Fabiyi OA, Olatunji GA (2018) Application of green synthesis in nano particles preparation: Ficus mucoso extracts in the management of Meloidogyne incognita parasitizing groundnut Arachis hypogea. Indian J Nematol 48(1):13–17

    Google Scholar 

  • Fabiyi OA, Olatunji GA, Saadu AO (2018) Suppression of Heterodera sacchari in rice with agricultural waste-silver nano particles. J Solid Waste Tech Manag 44(2):87–91

    CAS  Google Scholar 

  • Feldheim DL, Foss CA (2002) Metal nanoparticles: synthesis, characterization, and applications. CRC, Boca Raton

    Google Scholar 

  • Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2:243–247

    Google Scholar 

  • Galvez AM, Ramos KM, Alexis JT, Baculi R (2019) Bacterial exopolysaccharide-mediated synthesis of silver nanoparticles and their application on bacterial biofilms. J Microbiol Biotechnol Food Sci 8(4):970

    CAS  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Res Int 2014:1–8

    Google Scholar 

  • Govindaraju K, Tamilselvan S, Kiruthiga V, Singaravelu G (2010) Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. J Biopest 3:349–399

    Google Scholar 

  • Gunalan S, Sivaraj R, Venckatesh R (2011) Green synthesis of zinc oxide nanoparticles by Aloe barbadensis miller leaf extract: structure and optical properties. Mater Res Bull 46:2560–2566

    Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B Biointerfaces 74:328–335

    CAS  PubMed  Google Scholar 

  • He SY, Guo ZR, Zhang Y, Zhang S, Wang J, Gu N (2007) Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61:3984–3987

    CAS  Google Scholar 

  • Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle size. Ann Chem 78:8313–8318

    CAS  Google Scholar 

  • Jiang J, Oberdörster G, Biswas P (2009) Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. J Nanopart Res 11:77–89

    CAS  Google Scholar 

  • Johnston CW, Wyatt MA, Li X, Ibrahim A, Shuster J (2013) Gold biomineralization by a metallophore from a gold-associated microbe. Nat Chem Biol 9:241–243

    CAS  PubMed  Google Scholar 

  • Kalaiselvi D, Mohankumar A, Shanmugam G, Nivitha S, Sundararaj P (2019) Green synthesis of silver nanoparticles using latex extract of Euphorbiatirucalli: a novelapproach for the management of root knot nematode, Meloidogyne incognita. Crop Prot 117:108–114

    CAS  Google Scholar 

  • Kalimuthu K, Suresh BR, Venkataraman D, Bilal M, Gurunathan S (2008) Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65:150–153

    CAS  PubMed  Google Scholar 

  • Kasthuri J, Kathiravan K, Rajendiran N (2008) Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach. J Nanopart Res 11:1075–1085

    Google Scholar 

  • Kathiresan K, Manivannan S, Nabeal MA, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Pencillium fellutanum isolated from coastal mangrove sediment. Colloids Surface B Biointerfaces 71:133–137

    CAS  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nano technology scope and application in plant disease management. Plant Pathol J 13:214–231

    CAS  Google Scholar 

  • Khan MR, Altaf S, Mohidin FA, Khan U, Anwer A (2009) Biological control of plant nematodes with phosphate solubilizing microorganisms. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publisher Inc., New York, pp 395–342

    Google Scholar 

  • Khan AK, Rashid R, Martaza G, Zahra A (2014) Gold nanoparticles: synthesis and applications in drug delivery. Trop J Pharm Res 13(7):1169–1177. https://doi.org/10.4314/tjpr.1317.23

    Article  CAS  Google Scholar 

  • Khandel P, Yadaw RK, Soni DK (2018) Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects. J Nanostruct Chem 8:217. https://doi.org/10.1007/s40097-018-0267-4

    Article  CAS  Google Scholar 

  • Kumari M, Pandey S, Giri VP, Bhattacharya A, Shukla R, Mishra A, Nautiyal CS (2017) Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria. Microb Pathol 105:346–355

    CAS  Google Scholar 

  • Ladner DC, Tchounwou PB, Lawrence GW (2008) Evaluation of the effect of ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculenum. Int J Environ Res Public Health 5:104–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Law N, Ansari S, Livens FR, Renshaw JC, Lloyd JR (2008) Formation of nanoscale elemental silver particles via enzymatic reduction by Geobacter sulfurreducens. Appl Environ Microbiol 74:7090–7093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012) Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476

    CAS  PubMed  Google Scholar 

  • Maggie EMH, Hanaa S, Zawam SE, El-Nahas M, Abeer FD (2016) Comparison study between silver nanoparticles and two Nematicides against Meloidogyne incognita on tomato seedlings. Plant Pathol J 15:144–151

    Google Scholar 

  • Maliszewska I, Juraszek A, Bielska K (2014) Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci 25:989–1004

    CAS  Google Scholar 

  • Manonmani V and Juliet V (2011) Biosynthesis of Ag nanoparticles for the detection of pathogenic bacteria. In: Proceedings of the 2nd international conference on innovation, management and service, 16–18 Sep, Singapore, pp 307–311

    Google Scholar 

  • Mohamed EA, Elsharabasy SF, Abdulsamad D (2019) Evaluation of in vitro nematicidal efficiency of copper nanoparticles against root-knot nematode Meloidogyne incognita. South Asian J Parasitol 2(1):1–6

    Google Scholar 

  • Mohammad R, Mohammad AS, Mehdi Z, Khalil B, Mohammad G, Mohammad RA (2019) Synthesis and entomotoxicity assay of zinc and silica nanoparticles against Sitophilus granarius (Coleoptera: Curculionidae). J Plant Protect Res 59(1):26–31

    Google Scholar 

  • Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:546074. https://doi.org/10.1155/2011/546074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix—a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    CAS  Google Scholar 

  • Mukunthan KS, Balaji S (2012) Cashew apple juice (Anacardium occidentale L.) speeds up the synthesis of silver nanoparticles. Int J Nanotechnol 4:71–79

    CAS  Google Scholar 

  • Niraimathi KL, Sudha V, Lavanya R, Brindha P (2013) Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids Surf B Biointerfaces 102:288–291

    CAS  PubMed  Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712–1720

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park Y, Hong YN, Weyers A, Kim YS, Linhardt RJ (2011) Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol 5:69–78

    CAS  PubMed  Google Scholar 

  • Parker HL, Rylott EL, Hunt AJ, Dodson JR, Taylor AF (2014) Supported palladium nanoparticles synthesized by living plants as a catalyst for Suzuki-Miyaura reactions. PLoS One 9:e87192

    PubMed  PubMed Central  Google Scholar 

  • Patel P, Agarwal P, Kanawaria S, Kachhwaha S, Kothari SL (2015) Plant-based synthesis of silver nanoparticles and their characterization. In: Siddiqui M, Al-Whaibi M, Mohammad F (eds) Nanotechnology and plant sciences. Springer, Cham

    Google Scholar 

  • Patil RS, Kokate MR, Kolekar SS (2012) Bioinspired synthesis of highly stabilized silver nanoparticles using Ocimum tenuiflorum leaf extract and their antibacterial activity. Spectrochim Acta A Mol Biomol Spectros 91:234–238

    CAS  Google Scholar 

  • Prasad K, Jha AK, Kulkarni AR (2007) Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2:248–250

    CAS  PubMed Central  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Udaya Prakash NK, Crawford S (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815

    CAS  Google Scholar 

  • Ramanathan R, Field MR, O’Mullane AP, Smooker PM, Bhargava SK (2013) Aqueous phase synthesis of copper nanoparticles: a link between heavy metal resistance and nanoparticle synthesis ability in bacterial systems. Nanoscale 5:2300–2306

    CAS  PubMed  Google Scholar 

  • Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504

    CAS  PubMed  Google Scholar 

  • Sankar R, Rizwana K, Shivashangari KS, Ravikumar V (2014) Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl Nanosci 5:731–736

    Google Scholar 

  • Shahverdi AR, Minaeia S, Shahverdi HR, Jamalifar H, Nohi AA (2007) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42:919–923

    CAS  Google Scholar 

  • Shaligram NS, Bule A, Bhambure R, Singhal RS, Singh SK, Szakacs G, Pandey A (2009) Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem 44:939–943

    CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of au, Ag, and bimetallic au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    CAS  PubMed  Google Scholar 

  • Siddiqui ZA, Parveen A, Lukman Ahmad L, Hashem A (2019) Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci Hortic 249:374–382

    CAS  Google Scholar 

  • Sintubin L, De Windt W, Dick J, Mast J, van der Ha D (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84:741–749

    CAS  PubMed  Google Scholar 

  • Sofi W, Gowri M, Shruthilaya M, Rayala S, Venkatraman G (2012) Silver nanoparticles as an antibacterial agent for endodontic infections. BMC Infect Dis 12:P60. https://doi.org/10.1186/1471-2334-12-S1-P60

    Article  PubMed Central  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  • Song JY, Kim BS (2009) Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32:79–84

    PubMed  Google Scholar 

  • Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu C (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460

    CAS  PubMed  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal super lattices. Science 287:1989–1992

    CAS  PubMed  Google Scholar 

  • Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim Acta A Mol Biomol Spectros 114:144–147

    CAS  Google Scholar 

  • Thakore SI, Nagar PS, Jadeja RN, Thounaojam M, Devkar RV, Rathore PS (2015) Sapota fruit latex mediated synthesis of Ag, Cu mono and bimetallic nanoparticles and their in vitro toxicity studies. Arab J Chem 12:694–700. https://doi.org/10.1016/j.arabjc12.042

    Article  Google Scholar 

  • Thakur RK, Shirkot P (2017) Potential of biogold nanoparticles to control plant pathogenic nematodes. J Bioanal Biomed 9:220–222. https://doi.org/10.4172/1948-593X.1000182

    Article  CAS  Google Scholar 

  • Thakur RK, Shirkot P, Dhirta B (2018) Studies on effect of gold nanoparticles on Meloidogyne incognita and tomato plants growth and development. BioRxiv:428144. https://doi.org/10.1101/428144

  • Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A (2016) Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. Peer J 4:e2589

    PubMed  Google Scholar 

  • Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (a route for large-scale production of AgNPs). Inter Sci J 1:65–79

    CAS  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Interfaces 53:55–59

    CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    CAS  Google Scholar 

  • Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240

    CAS  Google Scholar 

  • Wang S, Lawson R, Ray PC, Yu H (2011) Toxic effects of gold nanoparticles on Salmonella typhimurium bacteria. Toxicol Ind Health 27:547–554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav V, Sharma N, Prakash R, Raina KK, Bharadwaj LM, Tejo N (2008) Generation of selenium containing nano-structures by soil bacterium Psudomonas aeruginosa. Biotechnology 7:299–304. https://doi.org/10.3923/biotech.2008.299.304

    Article  CAS  Google Scholar 

  • Yong P, Rowson AN, Farr JPG, Harris IR, Mcaskie LE (2002) Bioaccumulation of palladium by Desulfovibriode sulfuricans. J Chem Technol Biotechnol 55:593–601

    Google Scholar 

  • Young-Ki J, Starr JL, Deng Y (2013) Use of silver nano particles for nematode control on the Bermuda grass putting green turf grass. Environ Res 12(2):22–24

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fabiyi, O.A., Alabi, R.O., Ansari, R.A. (2020). Nanoparticles’ Synthesis and Their Application in the Management of Phytonematodes: An Overview. In: Ansari, R., Rizvi, R., Mahmood, I. (eds) Management of Phytonematodes: Recent Advances and Future Challenges. Springer, Singapore. https://doi.org/10.1007/978-981-15-4087-5_6

Download citation

Publish with us

Policies and ethics