Skip to main content

Darcy–Bénard Convection with Internal Heating and a Thermal Nonequilibrium—A Numerical Study

  • Conference paper
  • First Online:
Advances in Fluid Dynamics

Abstract

The impact of local thermal nonequilibrium (LTNE) in the presence of a uniform internal heating in both the fluid and solid phases of the porous medium on the onset of Darcy–Bénard convection is investigated. Emphasis is laid on LTNE effect on the steady-state heat conduction in analyzing the onset criterion. The Galerkin method is used to carry out the parametric study on the instability characteristics of the system by numerically computing the critical stability parameters. The presence of LTNE effect on the steady-state heat conduction is found to advance the onset in comparison with its absence and also to increase the dimension of convection cells. The exiting results are obtained as a particular case from the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

\(a\) :

Wavenumber in the \(x\)-direction

\(c\) :

Specific heat

\(d\) :

Width of the layer

\(D = {\text{d}}/{\text{d}}z\) :

Differential operator

\(\vec{g}\) :

Acceleration due to gravity

\(h\) :

Interphase heat transfer coefficient

\(H\) :

Dimensionless interphase heat transfer coefficient

\(k\) :

Thermal conductivity

K :

Permeability

\(l\,\,\& \,\,m\) :

Horizontal wave number

p :

Pressure

\(\vec{q}\) :

Velocity vector \((u,v,w)\)

\(q^{{{\prime \prime \prime }}}\) :

Uniform heat source per unit volume

\(Q\) :

Dimensionless heat source strength

\(R_{D}\) :

Darcy-Rayleigh number

\(\Pr_{D}\) :

Darcy-Prandtl number

t :

Time

T :

Temperature

\(W\) :

Amplitude of perturbed vertical velocity

\((x,y,z)\) :

Cartesian coordinates

\(\alpha\) :

Ratio of thermal diffusivity

\(\gamma\) :

Porosity modified conductivity ratio

\(\beta\) :

Coefficient of thermal expansion of the fluid

\(\varepsilon\) :

Porosity

\(\mu_{f}\) :

Dynamic viscosity of the fluid

\(\nabla^{2}\) :

Laplacian operator

\(\rho_{f}\) :

Fluid density

\(\rho_{0\,}\) :

Fluid density at \(T = T_{0}\)

\(\phi\) :

Solid temperature

\(\varPhi\) :

Amplitude of solid temperature

\(\theta\) :

Fluid temperature

\(\varTheta\) :

Amplitude of fluid temperature

\(\omega\) :

Growth factor \(( = \omega_{r} + i\omega_{i} )\)

\(b\) :

Basic state

f :

fluid

s :

solid

\({\prime }\) :

Perturbed variable

\(*\) :

Dimensionless variable

References

  1. Amiri A, Vafai K (1994) Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media. Int J Heat Mass Transf 37(6):939–954

    Google Scholar 

  2. Nield DA (1998) Modelling the effects of surface tension on the onset of natural convection in a saturated porous medium. Trans Porous Med 31:365–368

    Article  MathSciNet  Google Scholar 

  3. Kiwan SM, Al-Nimr MA (2002) Analytical solutions for conjugated heat transfer in pipes and ducts. Int J Heat Mass Transf 38:513–516

    Article  Google Scholar 

  4. Banu N, Rees DAS (2002) Onset of Darcy-Benard convection using a thermal non-equilibrium model. Int J Heat Mass Transf 45:2221–2228

    Article  Google Scholar 

  5. Nield DA, Bejan A (1999) Convection in porous media2. Springer, New York

    Book  Google Scholar 

  6. Malashetty MS, Shivakumara IS, Kulkarni S (2005) The onset of Lapwood-Brinkman convection using a thermal non-equilibrium model. Int J Heat Mass Transf 48:1155–1163

    Google Scholar 

  7. Shivakumara IS, Mamatha AL, Ravisha M (2010) Boundary and thermal non-equilibrium effects on the onset of Darcy-Brinkman convection in porous layer. Int J Eng Math 67:317–328

    Article  MathSciNet  Google Scholar 

  8. Malashetty MS, Shivakumara IS, Kulkarni S (2005) The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model. Trans Porous Med 60:199–215

    Google Scholar 

  9. Shivakumara IS, Dhananjaya M, Ng CO (2015) Thermal convective instability in an Oldroyd-B nanofluid saturated porous layer. Int J Heat Mass Transf 84:167–177

    Google Scholar 

  10. Straughan B (2006) Global nonlinear stability in porous convection with a thermal non-equilibrium model. Proc R Soc Lond A 462:409–418

    Google Scholar 

  11. Straughan B (2013) Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid. Proc R Soc A 469:20130187

    Article  MathSciNet  Google Scholar 

  12. Shivakumara IS, Mamatha AL, Ravisha M (2015) Local thermal non-equilibrium model effects on thermal convection in a rotating anisotropic porous layer. J Appl Math Comp 259:838–857

    Article  Google Scholar 

  13. Barletta A, Celli M, Lagziri H (2015) Instability of horizontal porous layer with local thermal non-equilibrium: effects of free surface and convective boundary conditions. Int J Heat Mass Transf 89:75–89

    Article  Google Scholar 

  14. Celli M, Barletta A, Storesletten L (2013) Local thermal non-equilibrium effects in the Darcy-Bénard instability of a porous layer heated from below by a uniform flux. Int J Heat Mass Transf 67:902–912

    Article  Google Scholar 

  15. Kuznetsov AV, Nield DA (2015) Local thermal non-equilibrium effects on the onset of convection in an internally heated layered porous medium with vertical throughflow. Int J Therm Sci 92:97–105

    Article  Google Scholar 

  16. Nield DA, Kuznetsov AV (2015) The effect of vertical throughflow on thermal instability in a porous medium layer saturated by a nanofluid: a revised model. Int J Heat Mass Transf 137(5):14–1521

    Google Scholar 

  17. Barletta A, Celli M (2011) Local thermal non-equilibrium flow with viscous dissipation in a plane horizontal porous layer. Int J Therm Sci 50:53–60

    Article  Google Scholar 

  18. Makinde OD (2009) On Chebyshev collocation approach to stability of fluid flows in a porous medium. Int J Numer Meth Fluids 59:791–799

    Article  MathSciNet  Google Scholar 

  19. Harfash AJ (2016) Resonant penetrative convection in a porous media with an internal heat source/sink effect. App Math Comp 281:323–342

    Article  MathSciNet  Google Scholar 

  20. Nield DA, Kuznetsov AV (2016) The onset of convective in a horizontal porous layer with spatially non-uniform internal heating. Transp Porous Med 111:541–553

    Article  Google Scholar 

  21. Nouri-Borujerdi A, Noghrehabadi AR, Rees DAS (2008) Influence of Darcy number on the onset of convection in a porous layer with a uniform heat source. Int J Therm Sci 47:1020–1025

    Article  Google Scholar 

  22. Nouri-Borujerdi A, Noghrehabadi AR, Rees DAS (2007) Onset of convection in a horizontal porous channel with uniform heat generation using a thermal non-equilibrium-model. Trans Porous Med 69:343–357

    Article  Google Scholar 

  23. Nouri-Borujerdi A, Noghrehabadi AR, Rees DAS (2007) The effect of local thermal non-equilibrium on impulsive conduction in porous media. Int J Heat Mass Transf 50:3244–3249

    Article  Google Scholar 

  24. Saravanan S (2009) Thermal non-equilibrium porous convection with heat generation and maximum density. Trans Porous Med 76:35–43

    Article  Google Scholar 

  25. Storesletten L, Rees DAS (2019) Onset of convection in n inclined anisotropic porous layer with internal heat generation. Fluids 4:75

    Article  Google Scholar 

  26. Nield DA, Bejan A (2017) Convection in porous media, 4th edn. Springer Science and Business Media, New York

    Book  Google Scholar 

  27. Nield DA, Simmons CT (2018) A brief introduction to convection in porous media. Trans Porous Med

    Google Scholar 

  28. Straughan B (2011) Stability, and wave motion in porous media. In: Applied mathematical sciences, vol. 177. Springer, New York

    Google Scholar 

  29. Shivakumara IS, Ravisha M, Ng CO, Varun VL (2015) A thermal non-equilibrium model with cattaneo effect for convection in a Brinkman porous layer. Int J Non-Linear Mech 71:39–47

    Google Scholar 

  30. Makinde OD (2003) Magneto-hydromagnetic Stability of plane-Poiseuille flow using multi-deck asymptotic technique. Math Comput Model 37(3–4):251–259

    Article  MathSciNet  Google Scholar 

  31. Makinde OD (2009) Thermal stability of a reactive viscous flow through a porous-saturated channel with convective boundary conditions. App Therm Eng 29:1773–1777

    Article  Google Scholar 

  32. Makinde OD, Motsa SS (2002) Hydromagnetic stability of generalized plane Couette flow. Far East J Appl Math 6(1):77–88

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

One of the authors CH is grateful to the SC/ST cell of Bangalore University, Bengaluru, for granting him a scholarship to carry out his research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Shivakumara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hemanthkumar, C., Shivakumara, I.S., Rushikumar, B. (2021). Darcy–Bénard Convection with Internal Heating and a Thermal Nonequilibrium—A Numerical Study. In: Rushi Kumar, B., Sivaraj, R., Prakash, J. (eds) Advances in Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-4308-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4308-1_49

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4307-4

  • Online ISBN: 978-981-15-4308-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics