Skip to main content

Description of the Zn/Br RFB System

  • Chapter
  • First Online:
The Zinc/Bromine Flow Battery

Part of the book series: SpringerBriefs in Energy ((BRIEFSENERGY))

Abstract

In order to make beneficial changes to the Zn/Br flow battery system, it is necessary first to understand its present structure and functional status, including the level of performance for typical systems, the operating mechanisms as well as the conventional materials and methods of construction. The previous chapter introduced and discussed the need for reliable large-scale electrical energy storage and the role of redox flow batteries for such purposes. This chapter describes the physical architecture of the Zn/Br system (i.e. electrode stack, membrane separator, electrolyte flow schematic), as well as the conventional electrolyte solution employed and the dominant chemical redox reactions occurring during charge and discharge processes at each electrode. Design considerations are detailed, such as the safe storage and treatment of bromine evolved, together with important operating practices such as tracking state-of-charge. Finally, electrochemical and overall operational performance characteristics are discussed with regard to maximizing the specific energy of the Zn/Br flow battery and scaling-up next-generation systems from benchtop testing to commercial use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cathro KJ (1986) Zinc-bromine batteries for energy storage applications: volume 541 of end of grant report. Department of Resources and Energy, Canberra, Australia

    Google Scholar 

  2. Putt RA (1979) Assessment of technical and economic feasibility of zinc/bromine batteries for utility load leveling. Palo Alto, California

    Google Scholar 

  3. Cedzynska K (1995) Properties of modified electrolyte for zinc-bromine cells. Electrochim Acta 40:971–976. doi:10.1016/0013-4686(94)00372-8

    Article  Google Scholar 

  4. Cathro KJ, Cedzynska K, Constable DC, Hoobin PM (1986) Selection of quaternary ammonium bromides for use in zinc/bromine cells. J Power Sources 18:349–370. doi:10.1016/0378-7753(86)80091-X

    Article  Google Scholar 

  5. Cathro KJ (1988) Performance of zinc/bromine cells having a propionitrile electrolyte. J Power Sources 23:365–383. doi:10.1016/0378-7753(88)80081-8

    Article  Google Scholar 

  6. Singh P (1984) Application of non-aqueous solvents to batteries. J Power Sources 11:135–142. doi:10.1016/0378-7753(84)80079-8

    Article  Google Scholar 

  7. Singh P, White K, Parker AJ (1983) Application of non-aqueous solvents to batteries part I. Physicochemical properties of propionitrile/water two-phase solvent relevant to zinc—bromine. J Power Sources 10:309–318. doi:10.1016/0378-7753(83)80013-5

    Article  Google Scholar 

  8. Ponce de Leon C, Walsh FC (2009) Secondary batteries - zinc systems| zinc-bromine. In: Dyer C, Garche J, Moseley P et al (eds) Encyclopedia of electrochemical power sources. Elsevier, Amsterdam, pp 487–496

    Chapter  Google Scholar 

  9. Lancry E, Magnes B-Z, Ben-David I, Freiberg M (2013) New bromine complexing agents for bromide based batteries. ECS Trans 53:107–115. doi:10.1149/05307.0107ecst

    Article  Google Scholar 

  10. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979. doi:10.1103/PhysRevB.50.17953

    Article  Google Scholar 

  11. Kresse G (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775. doi:10.1103/PhysRevB.59.1758

    Article  Google Scholar 

  12. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter 54:11169–11186

    Article  Google Scholar 

  13. Clark N, Eidler P, Lex P (1999) Development of zinc/bromine batteries for load-leveling applications: phase 2 final report (Sandia Report SAND99-2691). Albuquerque, New Mexico and Livermore, California

    Google Scholar 

  14. Linden D, Reddy TB (2001) Handbook of batteries, 3rd edn. McGraw-Hill Professional, New York

    Google Scholar 

  15. Baik DS, Fray DJ (2001) Electrodeposition of zinc from high acid zinc chloride solutions. J Appl Electrochem 31:1141–1147. doi:10.1023/A:1012290132379

    Article  Google Scholar 

  16. Haller H, Riedel S (2014) Recent discoveries of polyhalogen anions - from bromine to fluorine. Zeitschrift für anorganische und allgemeine Chemie 640:1281–1291. doi:10.1002/zaac.201400085

    Article  Google Scholar 

  17. Mader MJ (1986) A mathematical model of a Zn∕Br 2 cell on charge. J Electrochem Soc 133:1297. doi:10.1149/1.2108857

    Article  Google Scholar 

  18. Sigma-Aldrich (2014) Material safety data sheet - bromine. Castle Hill, Sydney

    Google Scholar 

  19. Yang S-C (1994) An approximate model for estimating the faradaic efficiency loss in zinc/bromine batteries caused by cell self-discharge. J Power Sources 50:343–360. doi:10.1016/0378-7753(94)01910-X

    Article  Google Scholar 

  20. Chiu SL, Selman JR (1992) Determination of electrode kinetics by corrosion potential measurements: zinc corrosion by bromine. J Appl Electrochem 22:28–37. doi:10.1007/BF01093008

    Article  Google Scholar 

  21. Lim HS (1977) Zinc-bromine secondary battery. J Electrochem Soc 124:1154–1157. doi:10.1149/1.2133517

    Article  Google Scholar 

  22. Heintz A, Illenberger C (1996) Diffusion coefficients of Br 2 in cation exchange membranes. J Membr Sci 113:175–181. doi:10.1016/0376-7388(95)00026-7

    Article  Google Scholar 

  23. Cathro KJ, Constable DC, Hoobin PM (1988) Performance of porous plastic separators in zinc/bromine cells. J Power Sources 22:29–57. doi:10.1016/0378-7753(88)80004-1

    Article  Google Scholar 

  24. Bellows RJ, Grimes P, Einstein H et al (1983) Zinc-bromine battery design for electric vehicles. IEEE Trans Veh Technol 32:26–32. doi:10.1109/T-VT.1983.23941

    Article  Google Scholar 

  25. Eidler P (1999) Development of zinc/bromine batteries for load-leveling applications: phase 1 final report (Sandia Report SAND99-1853). Albuquerque, New Mexico and Livermore. California

    Google Scholar 

  26. Will FG (1979) Recent advances in zinc-bromine batteries. In: Proceedings of the eleventh international symposium, 25–28 September 1978. Academic Press, Inc. (London), Ltd., Brighton, Sussex, England, pp 313–326

    Google Scholar 

  27. Maurya S, Shin S-H, Kim Y, Moon S-H (2015) A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv 5:37206–37230. doi:10.1039/C5RA04741B

    Article  Google Scholar 

  28. Gu S, Gong K, Yan EZ, Yan Y (2014) A multiple ion-exchange membrane design for redox flow batteries. Energy Environ Sci 7:2986. doi:10.1039/C4EE00165F

    Article  Google Scholar 

  29. Arnold C, Assink RA (1988) Development of sulfonated polysulfone membranes for redox flow batteries. J Membr Sci 38:71–83. doi:10.1016/S0376-7388(00)83276-7

    Article  Google Scholar 

  30. Hinkle KR, Jameson CJ, Murad S (2014) Transport of Vanadium and Oxovanadium Ions Across Zeolite Membranes: A Molecular. J Phys Chem C 118:23803–23810. doi:10.1021/jp507155s

    Article  Google Scholar 

  31. Xiangguo T, Jicui D, Jing S (2014) Effects of different kinds of surfactants on Nafion membranes for all vanadium redox flow battery. J Solid State Electrochem. doi:10.1007/s10008-014-2713-7

    Google Scholar 

  32. Winardi S, Poon G, Ulaganathan M et al (2015) Effect of bromine complexing agents on the performance of cation exchange membranes in second-generation vanadium bromide battery. ChemPlusChem 80:376–381. doi:10.1002/cplu.201402260

    Article  Google Scholar 

  33. Pop V, Bergveld HJ, Danilov D, et al. (2008) Battery management systems: accurate state-of-charge indication for battery-powered applications. Philips research book series, vol 9. Springer Science + Business Media B.V, London

    Google Scholar 

  34. Piller S, Perrin M, Jossen A (2001) Methods for state-of-charge determination and their applications. J Power Sources 96:113–120. doi:10.1016/S0378-7753(01)00560-2

    Article  Google Scholar 

  35. Pang S, Farrell J, Du J, Barth M (2001) Battery state-of-charge estimation. In: Proceedings of the 2001 American control conference. (Cat. No.01CH37148), pp 1644–1649. IEEE, Arlington

    Google Scholar 

  36. Ng KS, Moo C-S, Chen Y-P, Hsieh Y-C (2009) Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl Energy 86:1506–1511. doi:10.1016/j.apenergy.2008.11.021

    Article  Google Scholar 

  37. Lukic SM, Bansal RC, Rodriguez F, Emadi A (2008) Energy Storage Syst Automot Appl. IEEE Trans Industr Electron 55:2258–2267. doi:10.1109/TIE.2008.918390

    Article  Google Scholar 

  38. Bhangu BS, Bentley P, Stone DA, Bingham CM (2005) Nonlinear observers for predicting state-of-charge and state-of-health of lead-acid batteries for hybrid-electric vehicles. IEEE Trans Veh Technol 54:783–794. doi:10.1109/TVT.2004.842461

    Article  Google Scholar 

  39. Vasebi A, Partovibakhsh M, Bathaee SMT (2007) A novel combined battery model for state-of-charge estimation in lead-acid batteries based on extended Kalman filter for hybrid electric vehicle applications. J Power Sources 174:30–40. doi:10.1016/j.jpowsour.2007.04.011

    Article  Google Scholar 

  40. Vasebi A, Bathaee SMT, Partovibakhsh M (2008) Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter. Energy Convers Manag 49:75–82. doi:10.1016/j.enconman.2007.05.017

    Article  Google Scholar 

  41. Santhanagopalan S, White RE (2006) Online estimation of the state of charge of a lithium ion cell. J Power Sources 161:1346–1355. doi:10.1016/j.jpowsour.2006.04.146

    Article  Google Scholar 

  42. Plett GL (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs. J Power Sources 134:277–292. doi:10.1016/j.jpowsour.2004.02.033

    Article  Google Scholar 

  43. Lee S, Kim J, Lee J, Cho BH (2008) State-of-charge and capacity estimation of lithium-ion battery using a new open-circuit voltage versus state-of-charge. J Power Sources 185:1367–1373. doi:10.1016/j.jpowsour.2008.08.103

    Article  Google Scholar 

  44. Skyllas-Kazacos M, Kazacos M (2011) State of charge monitoring methods for vanadium redox flow battery control. J Power Sources 196:8822–8827. doi:10.1016/j.jpowsour.2011.06.080

    Article  Google Scholar 

  45. Rodrigues S, Munichandraiah N, Shukla AK (2000) A review of state-of-charge indication of batteries by means of a.c. impedance measurements. J Power Sources 87:12–20. doi:10.1016/S0378-7753(99)00351-1

    Article  Google Scholar 

  46. Huet F (1998) A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries. J Power Sources 70:59–69. doi:10.1016/S0378-7753(97)02665-7

    Article  Google Scholar 

  47. Thele M, Bohlen O, Sauer DU, Karden E (2008) Development of a voltage-behavior model for NiMH batteries using an impedance-based modeling concept. J Power Sources 175:635–643. doi:10.1016/j.jpowsour.2007.08.039

    Article  Google Scholar 

  48. Sabatier J, Aoun M, Oustaloup A et al (2006) Fractional system identification for lead acid battery state of charge estimation. Sig Process 86:2645–2657. doi:10.1016/j.sigpro.2006.02.030

    Article  MATH  Google Scholar 

  49. Takano K, Nozaki K, Saito Y et al (2000) Impedance spectroscopy by voltage-step chronoamperometry using the Laplace transform method in a lithium-ion battery. J Electrochem Soc 147:922–929. doi:10.1149/1.1393293

    Article  Google Scholar 

  50. Delaille A, Perrin M, Huet F, Hernout L (2006) Study of the “coup de fouet” of lead-acid cells as a function of their state-of-charge and state-of-health. J Power Sources 158:1019–1028. doi:10.1016/j.jpowsour.2005.11.015

    Article  Google Scholar 

  51. Verbrugge M, Tate E (2004) Adaptive state of charge algorithm for nickel metal hydride batteries including hysteresis phenomena. J Power Sources 126:236–249. doi:10.1016/j.jpowsour.2003.08.042

    Article  Google Scholar 

  52. Rong P, Pedram M (2006) An analytical model for predicting the remaining battery capacity of lithium-ion batteries. IEEE Trans Very Large Scale Integr VLSI Syst 14:441–451. doi:10.1109/TVLSI.2006.876094

    Article  Google Scholar 

  53. Shen Y (2010) Adaptive online state-of-charge determination based on neuro-controller and neural network. Energy Convers Manag 51:1093–1098. doi:10.1016/j.enconman.2009.12.015

    Article  Google Scholar 

  54. Cai C, Du D, Liu Z, Ge J (2002) State-of-charge (SOC) estimation of high power Ni-MH rechargeable battery with artificial neural network. In: Proceedings of the 9th international conference on neural information processing, ICONIP ’02, pp 824–828. Nanyang Technol. Univ

    Google Scholar 

  55. Grewal S, Grant DA (2001) A novel technique for modelling the state of charge of lithium ion batteries using artificial neural networks. Twenty-Third International Telecommunications Energy Conference. INTELEC 2001. IEE, pp 174–179

    Google Scholar 

  56. Singh P, Vinjamuri R, Wang X, Reisner D (2006) Design and implementation of a fuzzy logic-based state-of-charge meter for Li-ion batteries used in portable defibrillators. J Power Sources 162:829–836. doi:10.1016/j.jpowsour.2005.04.039

    Article  Google Scholar 

  57. Salkind AJ, Fennie C, Singh P et al (1999) Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology. J Power Sources 80:293–300. doi:10.1016/S0378-7753(99)00079-8

    Article  Google Scholar 

  58. Lee D-T, Shiah S-J, Lee C-M, Wang Y-C (2007) State-of-charge estimation for electric scooters by using learning mechanisms. IEEE Trans Veh Technol 56:544–556. doi:10.1109/TVT.2007.891433

    Article  Google Scholar 

  59. Cai CH, Du D, Liu ZY (2003) Battery state-of-charge (SOC) estimation using adaptive neuro-fuzzy inference system (ANFIS). In: Proceedings of the 12th IEEE international conference on fuzzy systems, FUZZ’03, pp 1068–1073. IEEE

    Google Scholar 

  60. Lee Y, Wang W, Kuo T (2008) Soft Computing for Battery State-of-Charge (BSOC) Estimation in Battery String Systems. IEEE Trans Industr Electron 55:229–239. doi:10.1109/TIE.2007.896496

    Article  Google Scholar 

  61. Kim I (2008) Nonlinear state of charge estimator for hybrid electric vehicle battery. IEEE Trans Power Electron 23:2027–2034. doi:10.1109/TPEL.2008.924629

    Article  Google Scholar 

  62. Viswanathan VV, Salkind AJ, Kelley JJ, Ockerman JB (1995) Effect of state of charge on impedance spectrum of sealed cells Part II: Lead acid batteries. Journal of Applied Electrochemistry 25:729–739. doi:10.1007/BF00648628

    Article  Google Scholar 

  63. Gopikanth ML, Sathyanarayana S (1979) Impedance parameters and the state-of-charge. II. lead-acid battery. J Appl Electrochem 9:369–379. doi:10.1007/BF01112492

    Article  Google Scholar 

  64. Hammouche A, Karden E, De Doncker RW (2004) Monitoring state-of-charge of Ni–MH and Ni–Cd batteries using impedance spectroscopy. J Power Sources 127:105–111. doi:10.1016/j.jpowsour.2003.09.012

    Article  Google Scholar 

  65. Blanke H, Bohlen O, Buller S et al (2005) Impedance measurements on lead–acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles. J Power Sources 144:418–425. doi:10.1016/j.jpowsour.2004.10.028

    Article  Google Scholar 

  66. Singh P, Fennie C, Reisner DE, Salkind A (2000) Fuzzy logic enhanced electrochemical impedance spectroscopy (FLEEIS) to determine battery state-of-charge. In: Proceedings of the 15th annual battery conference on applications and advances, pp 199–204. Long Beach,11–14 January 2000

    Google Scholar 

  67. Arenas LF, Walsh FC, de Leon CP (2015) 3D-printing of redox flow batteries for energy storage: a rapid prototype laboratory cell. ECS J Solid State Sci Technol 4:P3080–P3085. doi:10.1149/2.0141504jss

    Article  Google Scholar 

  68. Peng M, Yan K, Hu H et al (2015) Efficient fiber shaped zinc bromide batteries and dye sensitized solar cells for flexible power sources. J Mater Chem C 3:2157–2165. doi:10.1039/C4TC02997F

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gobinath Pillai Rajarathnam .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Rajarathnam, G.P., Vassallo, A.M. (2016). Description of the Zn/Br RFB System. In: The Zinc/Bromine Flow Battery. SpringerBriefs in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-287-646-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-287-646-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-287-645-4

  • Online ISBN: 978-981-287-646-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics