Skip to main content

Application of Wavelets in Numerical Evaluation of Hankel Transform Arising in Seismology

  • Chapter
  • First Online:
Mathematical Models, Methods and Applications

Part of the book series: Industrial and Applied Mathematics ((INAMA))

Abstract

The computation of electromagnetic (EM) fields for 1-D layered earth model requires evaluation of Hankel transform. In this paper we propose a stable algorithm for the first time that is quite accurate and fast for numerical evaluation of the Hankel transform using wavelets arising in seismology. We have projected an approach depending on separating the integrand tf(t)J ν (pt) into two components; the slowly varying components tf(t) and the rapidly oscillating component J ν (pt). Then either tf(t) is expanded into wavelet series using wavelets orthonormal basis and truncating the series at an optimal level or approximating tf(t) by a quadratic over the subinterval using the Filon quadrature philosophy. The solutions obtained by proposed wavelet method applied on three test functions indicate that the approach is easy to implement and computationally very attractive. We have supported a new efficient and stable technique based on compactly supported orthonormal wavelet bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sneddon IN (1972) The use of Integral Transforms. McGraw-Hill

    Google Scholar 

  2. Key K (2012) Is the fast Hankel transform faster than quadrature. Geophysics 77(3). http://software.seg.org/2012/0003

  3. Anderson WL (1989) A hybrid fast Hankel transform algorithm for electromagnetic modeling. Geophysics 54(2):263–266

    Article  Google Scholar 

  4. Agnesi A, Reali GC, Patrini G, Tomaselli A (1993) Numerical evaluation of the Hankel transform: remarks. J Opt Soc Am A 10:1872–1874. doi:10.1364/JOSAA.10.001872

    Article  MathSciNet  Google Scholar 

  5. Secada D (1999) Numerical evaluation of the Hankel transform. Comput Phys Commun 116:278–294. doi:10.1016/S0010-4655(98)00108-8

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavanagh EC, Cook BD (1979) Numerical evaluation of Hankel Transform via Gaussian-Laguerre polynomial expressions. IEEE Trans Acoust Speech Signal Process. ASSP-27:361–366. doi:10.1109/TASSP.1979.1163253

  7. Cree MJ, Bones PJ (1993) Algorithms to numerically evaluate the Hankel transform. Comput Math Appl 26:59–72. doi:10.1016/0898-1221(93)90081-6

    Article  MathSciNet  MATH  Google Scholar 

  8. Murphy PK, Gallagher NC (2003) Fast algorithm for computation of zero-order Hankel transforms. J Opt Soc Am 73:1130–1137. doi:10.1364/JOSA.73.001130

    Article  MathSciNet  Google Scholar 

  9. Barakat R, Parshall E (1996) Numerical evaluation of the zero-order Hankel transforms using Filon quadrature philosophy. J Appl Math 5:21–26. doi:10.1016/0893-9659(96)00067-5

    MathSciNet  MATH  Google Scholar 

  10. Markham J, Conchello JA (2003) Numerical evaluation of Hankel transform for oscillating function. J Opt Soc Am A 20(4):621–630. doi:10.1364/JOSAA.20.000621

    Article  MathSciNet  Google Scholar 

  11. Knockaert L (2000) Fast Hankel transform by fast sine and cosine transform: the Mellin connection. IEEE Trans Signal Process 48:1695–1701. doi:10.1109/78.845927

    Article  MathSciNet  MATH  Google Scholar 

  12. Singh VK, Singh OP, Pandey RK (2008) Efficient algorithms to compute Hankel transforms using wavelets. Comput Phys Commun 179:812–818. doi:10.1016/j.cpc.2008.07.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Singh VK, Singh OP, Pandey RK (2008) Numerical evaluation of the Hankel transform by using linear Legendre multi-wavelets. Comput Phys Commun 179:424–429. doi:10.1016/j.cpc.2008.04.006

    Article  MathSciNet  MATH  Google Scholar 

  14. Eldabe NT, Shahed M, Shawkey M (2004) An extension of the finite Hankel transform. Appl Math Comput 151:713–717

    MathSciNet  MATH  Google Scholar 

  15. Barakat R, Sandler BH (1996) Evaluation of first-order Hankel transforms using Filon quadrature philosophy. Appl Math Lett 11:127–131. doi:10.1016/S0893-9659(97)00145-6

    Article  MathSciNet  MATH  Google Scholar 

  16. Haar A (1910) zru theorie der orthogonalen funktionensysteme. Math Ann 69:331–371

    Article  MathSciNet  MATH  Google Scholar 

  17. Daubechies I (1988) Orthonormal bases of compactly supported wavelets. Commun Pure Appl Math 41:909–996

    Article  MathSciNet  MATH  Google Scholar 

  18. Daubechies I (1992) ten lectures on wavelets, CBMS-NSF

    Google Scholar 

  19. Mallat S (1989) Multiresolution approximation and wavelet orthonormal bases of L 2 (R). Trans Am Math Soc 315:69–87

    Google Scholar 

  20. Mallat S (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Recogn Mach Intell 11:674

    Article  MATH  Google Scholar 

  21. Postnikov EB (2003) About calculation of the Hankel transform using preliminary wavelet transform. J Appl Math 6:319–325

    Article  MathSciNet  MATH  Google Scholar 

  22. Irfan N, Kapoor S (2011) Quick glance on different wavelets and their operational matrix properties. Int J Res Rev Appl Sci 8(1):65–78. doi:10.1515/nleng-2015-0026

    MathSciNet  Google Scholar 

  23. Siddiqi AH (2004) Applied functional analysis, numerical methods wavelets and image processing. Marcel Dekker, New York

    MATH  Google Scholar 

  24. Siddiqi AH (2004) Lead Technical Editor, Theme issues: wavelet and fractal methods in science and engineering. Arab J Sci Eng 29(2C), 28(1C), (Part I and Part II)

    Google Scholar 

  25. Irfan N, Siddiqi AH (2015) An application of wavelet technique in Numerical evaluation of Hankel transfroms. Int J Nonlinear Sci Numer Simul 16(6):293–299. doi:10.1515/ijnsns-2015-0031

    MATH  Google Scholar 

  26. Erdelyi A (ed) (1954) Tables of integral transforms. McGraw-Hill, New York

    MATH  Google Scholar 

  27. Guizar-Sicairos M, Gutierrez-vega JC (2004) Computation of quasi discrete Hankel transforms of integer order for propagating optical wave fields. J Opt Soc Am A, Col-21, (1):53. doi:10.1364/JOSAA.21.000053

  28. Irfan N, Siddiqi AH (2015) A wavelet algorithm for Fourier-Bessel transform arising in optics. Int J Eng Math Article ID 789675, 9p. doi:10.1155/2015/789675

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagma Irfan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Irfan, N., Siddiqi, A.H. (2015). Application of Wavelets in Numerical Evaluation of Hankel Transform Arising in Seismology. In: Siddiqi, A., Manchanda, P., Bhardwaj, R. (eds) Mathematical Models, Methods and Applications. Industrial and Applied Mathematics. Springer, Singapore. https://doi.org/10.1007/978-981-287-973-8_17

Download citation

Publish with us

Policies and ethics