Skip to main content

Toxicity Evaluation Using Animal and Cell Models

  • Chapter
  • First Online:
Food Safety & Mycotoxins
  • 695 Accesses

Abstract

Toxicology is a science that studies various physical and chemical and biological harmful factors, which especially on human beings. The main task is to evaluate the possible health hazards of exogenous chemicals to the contactors and ultimately to provide the basis for controlling the hazards of chemical substances and strengthening the management of chemical substances. Toxicology plays an important role in safeguarding human health, maintaining ecological balance, and improving the environment through hazard assessment of exogenous chemicals. In this chapter, we discussed the current and future plans for the toxicity evaluation using classic and new strategies in vivo and in vitro model for toxicological evaluation of specific mycotoxin contaminants arousing food safety issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abid-Essefi S et al (2003) DNA fragmentation, apoptosis and cell cycle arrest induced by zearalenone in cultured DOK, Vero and Caco-2 cells: prevention by vitamin E. Toxicology 192:237–248

    Article  CAS  PubMed  Google Scholar 

  • Akbari P et al (2017) The intestinal barrier as an emerging target in the toxicological assessment of mycotoxins. Arch Toxicol 91:1007–1029

    Article  CAS  PubMed  Google Scholar 

  • Alam A, Neish A (2018) Role of gut microbiota in intestinal wound healing and barrier function. Tissue Barriers 6:1539595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asphahani F, Zhang M (2007) Cellular impedance biosensors for drug screening and toxin detection. Analyst 132:835–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asphahani F et al (2008) Influence of cell adhesion and spreading on impedance characteristics of cell-based sensors. Biosens Bioelectron 23:1307–1313

    Article  CAS  PubMed  Google Scholar 

  • Assunção R et al (2016) Characterization of in vitro effects of patulin on intestinal epithelial and immune cells. Toxicol Lett 250–251:47–56

    Article  PubMed  CAS  Google Scholar 

  • Bakker RC, van Kooten C, van de Lagemaat-Paape ME, Daha MR, Paul LC (2002) Renal tubular epithelial cell death and cyclosporin A. Nephrol Dial Transplant 17(7):1181–1188

    Article  CAS  PubMed  Google Scholar 

  • Banerjee P, Bhunia AK (2009) Mammalian cell-based biosensors for pathogens and toxins. Trends Biotechnol 27:179–188

    Article  CAS  PubMed  Google Scholar 

  • Booth ED, Dofferhoff O, Boogaard PJ, Watson WP (2004) Comparison of the metabolism of ethylene glycol and glycolic acid in vitro by precision-cut tissue slices form female rat, rabbit and human liver. Xenobiotica 34(1):31–48

    Article  CAS  PubMed  Google Scholar 

  • Bourdeau P, Somers E, Richardson GM, Hickman JR (1990) Short-term toxicity tests for non-genotoxic effects. Bourdeau Philippe 9370(4):246–250

    Google Scholar 

  • Boussabbeh M et al (2015) Patulin induces apoptosis through ROS-mediated endoplasmic reticulum stress pathway. Toxicol Sci 144:328–337

    Article  CAS  PubMed  Google Scholar 

  • Brandon EF, Bosch TM, Deenen MJ, Levink R, van der Wal E, van Meerveld JB, Bijl M, Beijnen JH, Schellens JH, Meijerman I (2006) Validation of in vitro cell models used in drug metabolism and transport studies; genotyping of cytochrome P450, phase II enzymes and drug transporter polymorphisms in the human hepatoma (HepG2), ovarian carcinoma (IGROV-1) and colon carcinoma (CaCo-2, LS180) cell lines. Toxicol Appl Pharm 211(1):1–10

    Article  CAS  Google Scholar 

  • Brosamle C, Halpern ME (2002) Characterization of myelination in the developing zebrafish. Glia 39(1):47–57

    Article  PubMed  Google Scholar 

  • Burguera EF, Bitar M, Bruinink A (2010) Novel in vitro co-culture/methodology to investigate heterotypic cell-cell interactions. Eur Cell Mater 19:166–179

    Article  CAS  PubMed  Google Scholar 

  • Cheng MS et al (2015) Impedimetric cell-based biosensor for real-time monitoring of cytopathic effects induced by dengue viruses. Biosens Bioelectron 70:74–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corsi AK (2015) A transparent window into biology: a primer on Caenorhabditis elegans. WormBook 1–31

    Google Scholar 

  • Csöbönyeiová M, Polák Š, Danišovič L’u (2016) Toxicity testing and drug screening using iPSC-derived hepatocytes, cardiomyocytes, and neural cells. Can J Physiol Pharm 94(7):687–694

    Article  CAS  Google Scholar 

  • Curtis TM et al (2009) Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor. J Appl Toxicol 29:374–380

    Article  CAS  PubMed  Google Scholar 

  • De Walle JV et al (2010) Deoxynivalenol affects in vitro intestinal epithelial cell barrier integrity through inhibition of protein synthesis. Toxicol Appl Pharmacol 245:291–298

    Article  PubMed  CAS  Google Scholar 

  • Deters M, Siegers CP, Strubelt O (1998) Influence of glycine on the damage induced in isolated perfused rat liver by five hepatotoxic agents. Toxicology 128(1):63–72

    Article  CAS  PubMed  Google Scholar 

  • Dewar AJ, Moffett BJ (1979) Biochemical methods for detecting neurotoxicity – a short review. Pharmacol Ther 5(1):545–562

    Article  CAS  Google Scholar 

  • Dhawan A, Kwon S (2018) In vitro toxicology[M]. Academic, Cambridge, MA, pp 45–65

    Chapter  Google Scholar 

  • Dusinska M, Collins AR (2008) The comet assay in human biomonitoring: gene-environment interactions. Mutagenesis 23(3):191–205

    Article  CAS  PubMed  Google Scholar 

  • Early RJ, Yu H, Mu XP, Xu H, Guo L, Kong Q, Zhou J, He B, Yang X, Huang H, Hu E, Jiang Y (2013) Repeat oral dose toxicity studies of melamine in rats and monkeys. Arch Toxicol 87(3):517–527

    Article  CAS  PubMed  Google Scholar 

  • Fahrig R, Rupp M, Steinkamp-Zucht A, Bader A (1998) Use of primary rat and human hepatocyte sandwich culture for activation of indirect carcinogens: monitoring of DNA strand breaks and gene mutations in co-cultured cells. Toxicol In Vitro 12(4):431–444

    Article  CAS  PubMed  Google Scholar 

  • Fairbairn DW, Olive PL, O’Neill KL (1995) The comet assay: a comprehensive review. Mutat Res 339(1):37–59

    Article  CAS  PubMed  Google Scholar 

  • Fedoroff S, Richardson A (2001) Protocols for neural cell culture, 3rd edn. Humana Press, Totowa

    Book  Google Scholar 

  • Feng W-H et al (2016) Aflatoxin B1-induced developmental and DNA damage in Caenorhabditis elegans. Toxins 9:9

    Article  PubMed Central  CAS  Google Scholar 

  • Gad SC (2007) Carcinogenicity studies. Pharmaceutical sciences encyclopedia: drug discovery, development, and manufacturing

    Google Scholar 

  • Gerner I, Liebsch M, Spielmann H (2005) Assessment of the eye irritating properties of chemicals by applying alternatives to the Draize rabbit eye test: the use of QSARs and in vitro tests for the classification of eye irritation. Altern Lab Anim: Atla 33(3):215–237

    Article  CAS  PubMed  Google Scholar 

  • Gleichmann E, Vohr H, Stringer C (1989) Testing the sensitization of T cells to chemicals. From murine graftversus-host (GvH) reactions to chemical-induced GvH-like immunological diseases. Autoimmun Toxicol 363

    Google Scholar 

  • González-González M et al (2019) Investigating gut permeability in animal models of disease. Front Physiol 9:1962

    Article  PubMed  PubMed Central  Google Scholar 

  • Gossen JA, de Leeuw WJ, Tan CH, Zwarthoff EC, Berends F, Lohman PH, Knook DL, Vijg J (1989) Efficient rescue of integrated shuttle vectors from transgenic mice: a model for studying mutations in vivo. Proc Natl Acad Sci U S A 86(20):7971–7975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gowrinathan Y et al (2011) Toxicity assay for deoxynivalenol using Caenorhabditis elegans. Food Addit Contam A 28:1235–1241

    Article  CAS  Google Scholar 

  • Groschwitz KR, Hogan SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124:3–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu W et al (2015) A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN. Biosens Bioelectron 70:447–454

    Article  CAS  PubMed  Google Scholar 

  • Guguen-Guillouzo C, Guillouzo A (2010) General review on in vitro hepatocyte models and their applications. Methods Mol Biol 640:1–40

    Article  CAS  PubMed  Google Scholar 

  • Guguen-Guillouzo C, Corlu A, Guillouzo A (2010) Stem cell-derived hepatocytes and their use in toxicology. Toxicology 270(1):3–9

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ, Billingsley M, Bruinink A, Campbell IL, Classen W, Dorman DC, Galli C, Ray D, Smith RA, Tilson HA (1998) In vitro techniques for the assessment of neurotoxicity. Environ Health Perspect., 1998 106(Suppl. 1):131–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hernández-Ibáñez N et al (2016) Electrochemical lactate biosensor based upon chitosan/carbon nanotubes modified screen-printed graphite electrodes for the determination of lactate in embryonic cell cultures. Biosens Bioelectron 77:1168–1174

    Article  CAS  PubMed  Google Scholar 

  • Honnen S (2017) Caenorhabditis elegans as a powerful alternative model organism to promote research in genetic toxicology and biomedicine. Arch Toxicol 91:2029–2044

    Article  CAS  PubMed  Google Scholar 

  • Hui G-H et al (2013) Electrochemical impedance spectrum frequency optimization of bitter taste cell-based sensors. Biosens Bioelectron 47:164–170

    Article  CAS  PubMed  Google Scholar 

  • Hunt PR (2017) The C. elegans model in toxicity testing. J Appl Toxicol 37:50–59

    Article  CAS  PubMed  Google Scholar 

  • Jakubczak JL, Merlino G, French JE, Muller WJ, Paul B, Adhya S, Garges S (1996) Analysis of genetic instability during mammary tumor progression using a novel selection-based assay for in vivo mutations in a bacteriophage λ transgene target. Proc Natl Acad Sci U S A 93(17):9073–9078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kafi MA et al (2011) Electrochemical cell-based chip for the detection of toxic effects of bisphenol-A on neuroblastoma cells. Biosens Bioelectron 26:3371–3375

    Article  CAS  PubMed  Google Scholar 

  • Kamp HG et al (2005) Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats. Mol Nutr Food Res 49:1160–1167

    Article  CAS  PubMed  Google Scholar 

  • Kawauchiya T et al (2011) Correlation between the destruction of tight junction by patulin treatment and increase of phosphorylation of ZO-1 in Caco-2 human colon cancer cells. Toxicol Lett 205:196–202

    Article  CAS  PubMed  Google Scholar 

  • Kihara T, Matsuo T, Sakamoto M, Yasuda Y, Yamamoto Y, Tanimura T (2000) Effects of prenatal aflatoxin B1 exposure on behaviors of rat offspring. Acta Med Kinki Univ 53(2):392–399

    CAS  Google Scholar 

  • Kim JB, Stein R, O’Hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer – a review. Breast Cancer Res Treat 85(3):281–291

    Article  PubMed  Google Scholar 

  • Klass M et al (1982) Cell-specific transcriptional regulation of the major sperm protein in Caenorhabditis elegans. Dev Biol 93:152–164

    Article  CAS  PubMed  Google Scholar 

  • Knight A (2008) Non-animal methodologies within biomedical research and toxicity testing. ALTEX 25(3):213–231

    Article  PubMed  Google Scholar 

  • Kohler SW, Provost GS, Kretz PL, Fieck A, Sorge JA, Short JM (1990) The use of transgenic mice for short-term, in vivo mutagenicity testing. Gene Anal Tech 7(8):212–218

    Article  CAS  Google Scholar 

  • Krzystyniak K, Brouland JP, Panaye G, Patriarca C, Verdier F, Descotes J, Revillard JP (1992) Activation of CD4+ and CD8+ lymphocyte subsets by streptozotocin in murine popliteal lymph node (PLN) test. J Autoimmun 5(2):183–197

    Article  CAS  PubMed  Google Scholar 

  • Krzystyniak K, Tryphonas H, Fournier M (1995) Approaches to the evaluation of chemical-induced immunotoxicity. Environ Health Perspect 103(Suppl. 9):17–22

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumaravel TS, Jha AN (2006) Reliable Comet assay measurements for detecting DNA damage induced by ionising radiation and chemicals. Mutat Res 605(1–2):7–16

    Article  CAS  PubMed  Google Scholar 

  • Leung MCK et al (2010) Caenorhabditis elegans generates biologically relevant levels of genotoxic metabolites from aflatoxin B1 but not benzo[a]pyrene in vivo. Toxicol Sci 118:444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipman J, Flint O, Bradlaw J (1992) Cell culture systems and in vitro toxicity testing. Cytotechnology 8(2):129–176

    Article  Google Scholar 

  • Liu ZW (2006) Practical patch clamp technique. Military Medical Science Publishing House, Beijing, pp 148–181

    Google Scholar 

  • Liu Q et al (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114:6423–6461

    Article  CAS  PubMed  Google Scholar 

  • Lu HH, Wang I-NE (2007) Multiscale coculture models for orthopedic interface tissue engineering. Biomed Nanostruct 357–373

    Google Scholar 

  • Luster MI, Portier C, Pait DG, Rosenthal GJ, Germolec DR, Corsini E (1993) Risk assessment in immunotoxicology: ii. relationships between immune and host resistance tests. Fundam. Appl. Toxicology 21(1):71–82

    Article  CAS  Google Scholar 

  • Maresca M et al (2001) The mycotoxin ochratoxin a alters intestinal barrier and absorption functions but has no effect on chloride secretion. Toxicol Appl Pharmacol 176:54–63

    Article  CAS  PubMed  Google Scholar 

  • Marin DE et al (2015) Food contaminant zearalenone and its metabolites affect cytokine synthesis and intestinal epithelial integrity of porcine cells. Toxins 7:1979–1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLaughlin J et al (2004) Ochratoxin A increases permeability through tight junctions by removal of specific claudin isoforms. Am J Phys Cell Phys 287:C1412–C1417

    Article  CAS  Google Scholar 

  • McLaughlin J et al (2009) The mycotoxin patulin, modulates tight junctions in caco-2 cells. Toxicol In Vitro 23:83–89

    Article  CAS  PubMed  Google Scholar 

  • Monosson E (2013) Toxicity testing methods. Encyclopedia of earth topics. Available from: http://www.eoearth.org/view/article/1566.73/

  • Monostory K, Kohalmy K, Ludanyi K, Czira G, Holly S, Vereczkey L, Urmos I, Klebovich I, Kobori L (2005) Biotransformation of deramciclane in primary hepatocytes of rat, mouse, rabbit, dog, and human. Drug Metab Dispos 33(11):1708–1716

    Article  CAS  PubMed  Google Scholar 

  • Muhammed M et al (2012) The role of mycelium production and a MAPK-mediated immune response in the C. elegans-Fusarium model system. Med Mycol 50:488–496

    Article  CAS  PubMed  Google Scholar 

  • Nohmi T, Katoh M, Suzuki H, Matsui M, Yamada M, Watanabe M, Suzuki M, Horiya N, Ueda O, Shibuya T, Ikeda H, Sofuni T (1996) A new transgenic mouse mutagenesis test system using Spi- and 6-thioguanine selections. Environmen Mol Mutagen 28(4):465–470

    Article  CAS  Google Scholar 

  • OECD (1981a) Test no. 410: repeated dose dermal toxicity: 21/28-day study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070745-en

    Book  Google Scholar 

  • OECD (1981b) Test no. 411: subchronic dermal toxicity: 90-day study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070769-en

    Book  Google Scholar 

  • OECD (2002a) Test no. 420: acute oral toxicity – fixed dose procedure, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070943-en

    Book  Google Scholar 

  • OECD (2002b) Test no. 423: acute oral toxicity – acute toxic class method, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264071001-en

    Book  Google Scholar 

  • OECD (2008a) Test no. 425: acute oral toxicity: up-and-down procedure, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264071049-en

    Book  Google Scholar 

  • OECD (2008b) Test no. 407: repeated dose 28-day oral toxicity study in rodents, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070684-en

    Book  Google Scholar 

  • OECD (2009) Test no. 403: acute inhalation toxicity, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070608-en

    Book  Google Scholar 

  • OECD (2017) Test no. 402: acute dermal toxicity, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070585-en

    Book  Google Scholar 

  • OECD (2018a) Test no. 412: subacute inhalation toxicity: 28-day study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070783-en

    Book  Google Scholar 

  • OECD (2018b) Test no. 408: repeated dose 90-day oral toxicity study in rodents, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070707-en

    Book  Google Scholar 

  • OECD (2018c) Test no. 413: subchronic inhalation toxicity: 90-day study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070806-en

    Book  Google Scholar 

  • OECD (2018d) Test no. 453: combined chronic toxicity/carcinogenicity studies, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264071223-en

    Book  Google Scholar 

  • OECD (2018e) Test no. 451: carcinogenicity studies, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264071186-en

    Book  Google Scholar 

  • OECD (2018f) Test no. 443: extended one-generation reproductive toxicity study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264185371-en

    Book  Google Scholar 

  • OECD (2018g) Test no. 414: prenatal developmental toxicity study, OECD guidelines for the testing of chemicals, section 4. OECD Publishing, Paris. https://doi.org/10.1787/9789264070820-en

    Book  Google Scholar 

  • Park MS, De Leon M, Devarajan P (2002) Cisplatin induces apoptosis in LLC-PK1 cells via activation of mitochondrial pathways. J Am Soc Nephrol 13(4):858–865

    CAS  PubMed  Google Scholar 

  • Peng S, He W, Wu Y (2008) Toxicology Alternatives [M]. Military Medical Science Publishing House, Beijing, pp 225–226

    Google Scholar 

  • Pestka JJ et al (2005) Induction of apoptosis and cytokine production in the Jurkat human T cells by deoxynivalenol: role of mitogen-activated protein kinases and comparison to other 8-ketotrichothecenes. Toxicology 206:207–219

    Article  CAS  PubMed  Google Scholar 

  • Robertus J et al (2009) Dynamic control over cell adhesive properties using molecular-based surface engineering strategies. Chem Soc Rev 39:354–378

    Article  PubMed  Google Scholar 

  • Romero A et al (2016) Mycotoxins modify the barrier function of Caco-2 cells through differential gene expression of specific claudin isoforms: protective effect of illite mineral clay. Toxicology 353–354:21–33

    Article  PubMed  CAS  Google Scholar 

  • Scheers EM, Ekwall B, Dierickx PJ (2001) In vitro long-term cytotoxicity testing of 27 MEIC chemicals on Hep G2 cells and comparison with acute human toxicity data. Toxicol In Vitro 15(2):153–161

    Article  CAS  PubMed  Google Scholar 

  • Sergent T et al (2005) Differential modulation of ochratoxin A absorption across Caco-2 cells by dietary polyphenols, used at realistic intestinal concentrations. Toxicol Lett 159:60–70

    Article  CAS  PubMed  Google Scholar 

  • Sergent T et al (2006) Deoxynivalenol transport across human intestinal Caco-2 cells and its effects on cellular metabolism at realistic intestinal concentrations. Toxicol Lett 164:167–176

    Article  CAS  PubMed  Google Scholar 

  • Springler A et al (2016) Early activation of MAPK p44/42 is partially involved in DON-induced disruption of the intestinal barrier function and tight junction network. Toxins 8:264

    Article  PubMed Central  CAS  Google Scholar 

  • Srinivasan B et al (2015) TEER measurement techniques for in vitro barrier model systems. J Lab Autom 20:107–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoff-Khalili MA, Rivera AA, Le LP, Stoff A, Everts M, Contreras JL, Chen D, Teng L, Rots MG, Haisma HJ, Rocconi RP, Bauerschmitz GJ, Rein DT, Yamamoto M, Siegal GP, Dall P, Michael Mathis J, Curiel DT (2006) Employment of liver tissue slice analysis to assay hepatotoxicity linked to replicative and nonreplicative adenoviral agents. Cancer Gene Ther 13(6):606–618

    Article  CAS  PubMed  Google Scholar 

  • Sung JH, Shuler ML (2010) In vitro microscale systems for systematic drug toxicity study. Bioprocess Biosyst Eng 33(1):5–19

    Article  CAS  PubMed  Google Scholar 

  • Taranu I et al (2015) Exposure to zearalenone mycotoxin alters in vitro porcine intestinal epithelial cells by differential gene expression. Toxicol Lett 232:310–325

    Article  CAS  PubMed  Google Scholar 

  • Tiemann U et al (2006) Influence of diets with cereal grains contaminated by graded levels of two Fusarium toxins on selected enzymatic and histological parameters of liver in gilts. Food Chem Toxicol 44:1228–1235

    Article  CAS  PubMed  Google Scholar 

  • Truong L, Harper SL, Tanguay RL (2011) Evaluation of embryotoxicity using the zebrafish model. Methods Mol Biol 691:271–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walum E, Clemedson C, Ekwall B (1994) Principles for the validation of in vitro toxicology test methods. Toxicol In Vitro 8(4):807–812

    Article  CAS  PubMed  Google Scholar 

  • Wang L et al (2017) In vivo toxicity assessment of deoxynivalenol-contaminated wheat after ozone degradation. Food Addit Contam A 34:103–112

    Article  CAS  Google Scholar 

  • Wentzel JF et al (2017) Evaluation of the cytotoxic properties, gene expression profiles and secondary signalling responses of cultured cells exposed to fumonisin B1, deoxynivalenol and zearalenone mycotoxins. Arch Toxicol 91:2265–2282

    Article  CAS  PubMed  Google Scholar 

  • Xia S et al (2017) Development of a simple and convenient cell-based electrochemical biosensor for evaluating the individual and combined toxicity of DON, ZEN, and AFB1. Biosens Bioelectron 97:345–351

    Article  CAS  PubMed  Google Scholar 

  • Xing JZ et al (2005) Dynamic monitoring of cytotoxicity on microelectronic sensors. Chem Res Toxicol 18:154–161

    Article  CAS  PubMed  Google Scholar 

  • Yang Z et al (2015) Multi-toxic endpoints of the foodborne mycotoxins in nematode Caenorhabditis elegans. Toxins 7:5224–5235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui K (2007) Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol 74(3):477–487

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama H, Horie T, Awazu S (2006) Naproxen-induced oxidative stress in the isolated perfused rat liver. Chem Biol Interact 160(2):150–158

    Article  CAS  PubMed  Google Scholar 

  • Yuan G, Wang Y, Yuan X, Zhang T, Zhao J, Huang L, Peng S (2014) T-2 toxin induces developmental toxicity and apoptosis in zebrafish embryos. J Environ Sci (China) 26(4):917–925

    Article  CAS  Google Scholar 

  • Zhang J et al (2015) Aflatoxin B1 and aflatoxin M1 induced cytotoxicity and DNA damage in differentiated and undifferentiated Caco-2 cells. Food Chem Toxicol 83:54–60

    Article  CAS  PubMed  Google Scholar 

  • Zheng N et al (2018) Lactoferrin inhibits aflatoxin B1- and aflatoxin M1-induced cytotoxicity and DNA damage in Caco-2, HEK, Hep-G2, and SK-N-SH cells. Toxicon 150:77–85

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenda Wu or Aibo Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Wu, W., Wu, A. (2019). Toxicity Evaluation Using Animal and Cell Models. In: Wu, A. (eds) Food Safety & Mycotoxins. Springer, Singapore. https://doi.org/10.1007/978-981-32-9038-9_3

Download citation

Publish with us

Policies and ethics