Skip to main content

Functionalized Graphene for Drug Delivery Applications

  • Chapter
  • First Online:
Graphene Functionalization Strategies

Part of the book series: Carbon Nanostructures ((CARBON))

Abstract

The unique characteristics of functionalized graphene make it a multifaceted molecule having crucial therapeutic as well as medical significance. Different aspects of functionalized graphene are being discussed here. Functionalization of graphene could even scale up its importance. Functionalization can be done by different methods namely covalent functionalization, covalent functionalization with reaction intermediates, functionalization with nanoparticles, multi-functionalization, substitutional doping. These functionalization strategies mainly aim at reducing the in vivo and in vitro toxicity and agglomeration, moreover the main goal of functionalization is to disperse or solubilize it in different solvents. An Improvised drug and gene targeting nanocarrier system with unique properties have become possible with this graphene functionalization. The anticancer and antibacterial effect and several other applications of functionalized graphene are also being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borandeh, S., Abdolmaleki, A., Abolmaali, S.S., Tamaddon, A.M.: Synthesis, structural and in-vitro characterization of β-cyclodextrin grafted L-phenylalanine functionalized graphene oxide nanocomposite: a versatile nanocarrier for pH-sensitive doxorubicin delivery. Carbohydr. Polym. 201, 151–161 (2018). https://doi.org/10.1016/j.carbpol.2018.08.064

    Article  CAS  Google Scholar 

  2. Zhang, B., Wang, Y., Zhai, G.: Biomedical applications of the graphene-based materials. Mater. Sci. Eng.C 61, 953–964 (2016). https://doi.org/10.1016/j.msec.2015.12.073

    Article  CAS  Google Scholar 

  3. Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008). https://doi.org/10.1038/nnano.2007.451

    Article  CAS  Google Scholar 

  4. Kuila, T., Bose, S., Kumar, A., Khanra, P.: Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 57, 1061–1105 (2012). https://doi.org/10.1016/j.pmatsci.2012.03.002

    Article  CAS  Google Scholar 

  5. Ji, X., Xu, Y., Zhang, W., Cui, L., Liu, J.: Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. Part A Appl. Sci. Manuf. 87, 29–45 (2016). https://doi.org/10.1016/j.compositesa.2016.04.011

    Article  CAS  Google Scholar 

  6. Zhang, Q., Wu, Z., Li, N., Pu, Y., Wang, B., Zhang, T., Tao, J.: Advanced review of graphene-based nanomaterials in drug delivery systems: synthesis, modification, toxicity and application. Mater. Sci. Eng. C 77, 1363–1375 (2017). https://doi.org/10.1016/j.msec.2017.03.196

    Article  CAS  Google Scholar 

  7. Goenka, S., Sant, V., Sant, S.: Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release. 173, 75–88 (2014). https://doi.org/10.1016/j.jconrel.2013.10.017

    Article  CAS  Google Scholar 

  8. Mccallion, C., Burthem, J., Rees-unwin, K., Golovanov, A., Pluen, A.: Graphene in therapeutics delivery: problems, solutions and future opportunities. Eur. J. Pharm. Biopharm. 104, 235–250 (2016). https://doi.org/10.1016/j.ejpb.2016.04.015

    Article  CAS  Google Scholar 

  9. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  CAS  Google Scholar 

  10. Brodie, B.C.: On the atomic weight of graphite. Philos. Trans. R. Soc. Lond. 149, 249–259 (1859). https://doi.org/10.1098/rstl.1859.0013

    Article  Google Scholar 

  11. Staudenmaier, L.: Darstellung der Graphitslure. Ger. Chem. Soc. 31, 1481–1487 (1898). https://doi.org/10.1002/cber.18980310237

    Article  CAS  Google Scholar 

  12. Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  13. Zaaba, N.I., Foo, K.L., Hashim, U., Tan, S.J., Liu, W.W., Voon, C.H.: Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  14. Guermoune, A., Chari, T., Popescu, F., Sabri, S.S.: Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49, 4204–4210 (2011). https://doi.org/10.1016/j.carbon.2011.05.054

    Article  CAS  Google Scholar 

  15. Lee, H.C., Liu, W.-W., Chai, S.-P., Mohamed, A.R., Lai, C.W., Khe, C.-S., Voon, C.H., Hashim, U., Hidayah, N.M.S.: Synthesis of single-layer graphene: a review of recent development. Procedia Chem. 19, 916–921 (2016). https://doi.org/10.1016/j.proche.2016.03.135

    Article  CAS  Google Scholar 

  16. Whitener, K.E., Sheehan, P.E.: Graphene synthesis. Diam. Relat. Mater. 46, 25–34 (2014). https://doi.org/10.1016/j.diamond.2014.04.006

    Article  CAS  Google Scholar 

  17. Chen, D., Feng, H., Li, J.: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012). https://doi.org/10.1021/cr300115g

    Article  CAS  Google Scholar 

  18. Ejigu, A., Kinloch, I.A., Dryfe, R.A.W.: Single stage simultaneous electrochemical exfoliation and functionalization of graphene. ACS Appl. Mater. Interfaces. 9, 710–721 (2017). https://doi.org/10.1021/acsami.6b12868

    Article  CAS  Google Scholar 

  19. Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R., Kim, K.S.: Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156–6214 (2012). https://doi.org/10.1021/cr3000412

    Article  CAS  Google Scholar 

  20. de Sousa, M., Augusto, L., Luna, V. De, Fonseca, L., Giorgio, S., Alves, O.L.: Folic acid-functionalized graphene oxide nanocarrier: synthetic approaches, characterization, drug delivery study and anti-tumor screening folic acid-functionalized graphene oxide nanocarrier : synthetic approaches, characterization, drug delivery St. Appl. Nano Mater. 1–43 (2018). https://doi.org/10.1021/acsanm.7b00324

    Article  CAS  Google Scholar 

  21. Bourlinos, A.B., Gournis, D., Petridis, D., Szabó, T., Szeri, A., Dékány, I.: Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003). https://doi.org/10.1021/la026525h

    Article  CAS  Google Scholar 

  22. Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006). https://doi.org/10.1039/b512799h

    Article  CAS  Google Scholar 

  23. Thakare, S.R., Fendarkar, D.A., Bidkar, C., Yadav, J., Gedam, S.D.: Chemical functionalization of graphene and graphene oxide-a review. Int. J. Adv. Chem. Sci. Appl. 5, 19–23 (2017)

    Google Scholar 

  24. Ma, N., Liu, J., He, W., Li, Z., Luan, Y., Song, Y., Garg, S.: Folic acid-grafted bovine serum albumin decorated graphene oxide: an efficient drug carrier for targeted cancer therapy. J. Colloid Interface Sci. 490, 598–607 (2017). https://doi.org/10.1016/j.jcis.2016.11.097

    Article  CAS  Google Scholar 

  25. Park, J., Yan, M.: Covalent functionalization of graphene with reactive intermediates. Acc. Chem. Res. 46, 181–189 (2013). https://doi.org/10.1021/ar300172h

    Article  CAS  Google Scholar 

  26. Feng, L., Yang, X., Shi, X., Tan, X., Peng, R., Wang, J., Liu, Z.: Polyethylene glycol and polyethylenimine dual-functionalized nano-graphene oxide for photothermally enhanced gene delivery. Small 9, 1989–1997 (2013). https://doi.org/10.1002/smll.201202538

    Article  CAS  Google Scholar 

  27. Zaminpayma, E., Nayebi, P.: Mechanical and electrical properties of functionalized graphene nanoribbon: a study of reactive molecular dynamic simulation and density functional tight-binding theory. Phys. B 459, 29–35 (2015). https://doi.org/10.1016/j.physb.2014.11.015

    Article  CAS  Google Scholar 

  28. El-shafai, N.M., El-khouly, M.E., El-kemary, M.: Chemistry fabrication and characterization of graphene oxide—titanium dioxide nanocomposite for degradation of some toxic insecticides. J. Ind. Eng. Chem. (2018). https://doi.org/10.1016/j.jiec.2018.09.045

    Article  CAS  Google Scholar 

  29. Vecera, P., Chacón-Torres, J.C., Pichler, T., Reich, S., Soni, H.R., Görling, A., Edelthalhammer, K., Peterlik, H., Hauke, F., Hirsch, A.: The: precise determination of graphene functionalization by in situ raman spectroscopy. Nat. Commun. 1–9 (2017). https://doi.org/10.1038/ncomms15192

  30. Rattana, T., Chaiyakun, S., Witit-Anun, N., Nuntawong, N., Chindaudom, P., Oaew, S., Kedkeaw, C., Limsuwan, P.: Preparation and characterization of graphene oxide nanosheets. Procedia Eng. 32, 759–764 (2012). https://doi.org/10.1016/j.proeng.2012.02.009

    Article  CAS  Google Scholar 

  31. Huang, C., Wu, J., Jiang, W., Liu, R., Li, Z., Luan, Y.: Amphiphilic prodrug-decorated graphene oxide as a multi-functional drug delivery system for efficient cancer therapy. Mater. Sci. Eng. C 89, 15–24 (2018). https://doi.org/10.1016/j.msec.2018.03.017

    Article  CAS  Google Scholar 

  32. Melo-diogo, D.De, Lima-sousa, R., Alves, C.G., Costa, E.C., Louro, R.O.: Functionalization of graphene family nanomaterials for application in cancer therapy. Colloids Surf. B Biointerfaces 171, 260–275 (2018). https://doi.org/10.1016/j.colsurfb.2018.07.030

    Article  CAS  Google Scholar 

  33. Sasidharan, A., Panchakarla, L.S., Chandran, P., Menon, D., Nair, S., Rao, C.N.R., Koyakutty, M.: Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3, 2461–2464 (2011). https://doi.org/10.1039/C1NR10172B

    Article  CAS  Google Scholar 

  34. Lalwani, G., Agati, M.D., Mahmud, A., Sitharaman, B.: Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 105, 109–144 (2016). https://doi.org/10.1016/j.addr.2016.04.028

    Article  CAS  Google Scholar 

  35. Zhi, X., Fang, H., Bao, C., Shen, G., Zhang, J., Wang, K., Guo, S., Wan, T., Cui, D.: The immunotoxicity of graphene oxides and the effect of PVP-coating. Biomaterials 34, 5254–5261 (2013). https://doi.org/10.1016/j.biomaterials.2013.03.024

    Article  CAS  Google Scholar 

  36. Pooresmaeil, M., Namazi, H.: Biointerfaces Surface modification of graphene oxide with stimuli-responsive polymer brush containing β-cyclodextrin as a pendant group: preparation, characterization, and evaluation as controlled drug delivery agent. Colloids Surf. B Biointerfaces 172, 17–25 (2018). https://doi.org/10.1016/j.colsurfb.2018.08.017

    Article  CAS  Google Scholar 

  37. Hussien, N.A., Işıklan, N., Türk, M.: Aptamer-functionalized magnetic graphene oxide nanocarrier for targeted drug delivery of paclitaxel. Mater. Chem. Phys. 211, 479–488 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.015

    Article  CAS  Google Scholar 

  38. Khoee, S., Karimi, M.R.: Dual-drug loaded Janus graphene oxide-based thermoresponsive nanoparticles for targeted therapy. Polymer 142, 80–98 (2018). https://doi.org/10.1016/j.polymer.2018.03.022

    Article  CAS  Google Scholar 

  39. Rao, Z., Ge, H., Liu, L., Zhu, C., Min, L., Liu, M., Fan, L., Li, D.: Carboxymethyl cellulose modified graphene oxide as pH-sensitive drug delivery system. Int. J. Biol. Macromol. 107, 1184–1192 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.096

    Article  CAS  Google Scholar 

  40. Mu, S., Li, G., Liang, Y., Wu, T., Ma, D.: Hyperbranched polyglycerol-modified graphene oxide as an efficient drug carrier with good biocompatibility. Mater. Sci. Eng. C. 78, 639–646 (2017). https://doi.org/10.1016/j.msec.2017.04.145

    Article  CAS  Google Scholar 

  41. Zeinab, R., Sahraei, R., Ghaemy, M.: Preparation of spherical porous hydrogel beads based on ion-crosslinked gum tragacanth and graphene oxide: study of drug delivery behavior. Carbohydr. Polym. 194, 34–42 (2018). https://doi.org/10.1016/j.carbpol.2018.04.022

    Article  CAS  Google Scholar 

  42. Gong, P., Ji, S., Wang, J., Dai, D., Wang, F., Tian, M., Zhang, L., Guo, F., Liu, Z.: Fluorescence-switchable ultrasmall fluorinated graphene oxide with high near-infrared absorption for controlled and targeted drug delivery. Chem. Eng. J. 348, 438–446 (2018). https://doi.org/10.1016/j.cej.2018.04.193

    Article  CAS  Google Scholar 

  43. Masoud, M., Rahmati, M., Shahrooz, S., Khordad, R.: Molecular dynamics simulation of functionalized graphene surface for high efficient loading of doxorubicin. J. Mol. Struct. 1141, 441–450 (2017). https://doi.org/10.1016/j.molstruc.2017.04.007

    Article  CAS  Google Scholar 

  44. Zhang, J., Chen, L., Chen, J., Zhang, Q., Feng, J.: Stability, cellular uptake, and in vivo tracking of zwitterion modified graphene oxide as a drug carrier. 1–19 (2018). https://doi.org/10.1021/acs.langmuir.8b01995

    Article  Google Scholar 

  45. Patel, D.K., Senapati, S., Mourya, P., Singh, M., Aswal, V.K., Ray, B., Maiti, P.: Functionalized graphene tagged polyurethanes for corrosion inhibitor and sustained drug delivery functionalized graphene tagged polyurethanes for corrosion inhibitor and sustained drug delivery School of Materials Science and Technology, Indian Institute. Biomater. Sci. Eng. 1–44 (2017). https://doi.org/10.1021/acsbiomaterials.7b00342

    Article  CAS  Google Scholar 

  46. Dorniani, D., Saifullah, B., Barahuie, F., Arulselvan, P., Hussein, M.Z. Bin, Fakurazi, S., Twyman, L.J.: Graphene oxide-gallic acid nanodelivery system for cancer therapy. Nanoscale Res. Lett. 11, 491 (2016). https://doi.org/10.1186/s11671-016-1712-2

  47. Masoudipour, E., Kashanian, S., Maleki, N.: A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem. Phys. Lett. 668, 56–63 (2017). https://doi.org/10.1016/j.cplett.2016.12.019

    Article  CAS  Google Scholar 

  48. Liping, R., Shuang, P., Haiqing, L., Yanping, L., He, L., Shuang, Z., Che, J.: Effects of aspirin-loaded graphene oxide coating of a titanium surface on proliferation and osteogenic differentiation of MC3T3-E1 cells. Nat. Publ. Gr. 8, 1–13 (2018). https://doi.org/10.1038/s41598-018-33353-7

    Article  CAS  Google Scholar 

  49. Some, S., Gwon, A.R., Hwang, E., Bahn, G.H., Yoon, Y., Kim, Y.: Cancer therapy using ultrahigh hydrophobic drug-loaded graphene derivatives. Nat. Publ. Gr. 4, 1–9 (2014). https://doi.org/10.1038/srep06314

    Article  CAS  Google Scholar 

  50. Muthoosamy, K., Abubakar, I.B., Bai, R.G., Loh, H.: Exceedingly higher co-loading of curcumin and paclitaxel onto polymer-functionalized reduced graphene oxide for highly potent synergistic anticancer treatment. Nat. Publ. Gr. 1–14 (2016). https://doi.org/10.1038/srep32808

  51. Emadi, F., Amini, A., Gholami, A., Ghasemi, Y.: Functionalized graphene oxide with chitosan for protein nanocarriers to protect against enzymatic cleavage and retain collagenase activity. Nat. Publ. Gr. 1–13 (2017). https://doi.org/10.1038/srep42258

  52. Liu, Y., Peng, J., Wang, S., Xu, M., Gao, M., Xia, T., Weng, J., Xu, A., Liu, S.: Molybdenum disulfide/graphene oxide nanocomposites show favorable lung targeting and enhanced drug loading/tumor-killing efficacy with improved biocompatibility. Asia Mater. 10, 1–15 (2018). https://doi.org/10.1038/am.2017.225

    Article  Google Scholar 

  53. Fan, L., Ge, H., Zou, S., Xiao, Y., Wen, H., Li, Y., Feng, H., Nie, M.: Sodium alginate conjugated graphene oxide as a new carrier for drug delivery system. Int. J. Biol. Macromol. 93, 582–590 (2016). https://doi.org/10.1016/j.ijbiomac.2016.09.026

    Article  CAS  Google Scholar 

  54. Tyagi, N., Attia, N.F., Geckeler, K.E.: Exfoliated graphene nanosheets: pH-sensitive drug carrier and anti-cancer activity. J. Colloid Interface Sci. 498, 364–377 (2017). https://doi.org/10.1016/j.jcis.2017.03.057

    Article  CAS  Google Scholar 

  55. Pooresmaeil, M., Namazi, H.: β-cyclodextrin grafted magnetic graphene oxide applicable as cancer drug delivery agent: synthesis and characterization. Mater. Chem. Phys. 218, 62–69 (2018). https://doi.org/10.1016/j.matchemphys.2018.07.022

    Article  CAS  Google Scholar 

  56. Huang, Y., Lu, Y., Chen, J.: Magnetic graphene oxide as a carrier for targeted delivery of chemotherapy drugs in cancer therapy. J. Magn. Magn. Mater. 427, 34–40 (2017). https://doi.org/10.1016/j.jmmm.2016.10.042

    Article  CAS  Google Scholar 

  57. Sgarlata, C., Urso, L.D., Consiglio, G., Grasso, G., Satriano, C., Forte, G.: pH sensitive functionalized graphene oxide as a carrier for delivering gemcitabine: a computational approach. Comput. Theor. Chem. 1096, 1–6 (2016). https://doi.org/10.1016/j.comptc.2016.09.026

    Article  CAS  Google Scholar 

  58. Han, C., Zhang, C., Ma, T., Zhang, C., Luo, J., Xu, X., Zhao, H., Chen, Y., Kong, L.: Hypericin-functionalized graphene oxide for enhanced mitochondria-targeting and synergistic anticancer effect. Acta Biomater. 77, 268–281 (2018). https://doi.org/10.1016/j.actbio.2018.07.018

    Article  CAS  Google Scholar 

  59. Wu, C., He, Q., Zhu, A., Li, D., Xu, M., Yang, H., Liu, Y.: Synergistic anticancer activity of photo- and chemoresponsive nanoformulation based on polylysine-functionalized graphene. Appl. Mater. Interfaces 6, 21615–21623 (2014). https://doi.org/10.1021/am5066128

    Article  CAS  Google Scholar 

  60. Yang, L., Wang, F., Han, H., Yang, L., Zhang, G., Fan, Z.: Graphene oxide as a drug carrier for loading pirfenidone in treatment of subarachnoid hemorrhage. Colloids Surf. B Biointerfaces 129, 21–29 (2015). https://doi.org/10.1016/j.colsurfb.2015.03.022

    Article  CAS  Google Scholar 

  61. Alibolandi, M., Mohammadi, M., Mohammad, S., Ramezani, M., Abnous, K.: Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydr. Polym. 155, 218–229 (2017). https://doi.org/10.1016/j.carbpol.2016.08.046

    Article  CAS  Google Scholar 

  62. Zhou, T., Zhou, X., Xing, D.: Biomaterials controlled release of doxorubicin from graphene oxide based charge-reversal nanocarrier. Biomaterials 35, 4185–4194 (2014). https://doi.org/10.1016/j.biomaterials.2014.01.044

    Article  CAS  Google Scholar 

  63. Yang, H., Bremner, D.H., Tao, L., Li, H., Hu, J., Zhu, L.: Carboxymethyl chitosan-mediated synthesis of hyaluronic acid-targeted graphene oxide for cancer drug delivery. Carbohydr. Polym. 135, 72–78 (2016). https://doi.org/10.1016/j.carbpol.2015.08.058

    Article  CAS  Google Scholar 

  64. Chen, X., Huang, X., Zheng, C., Liu, Y., Xu, T., Liu, J.: Preparation of different sized nano-silver loaded on functionalized graphene oxide with highly effective antibacterial properties. J. Mater. Chem. B. 3, 7020–7029 (2015). https://doi.org/10.1039/C5TB00280J

    Article  CAS  Google Scholar 

  65. Meng, N., Su, Y., Zhou, N., Zhang, M., Shao, M.: Carboxylated graphene oxide functionalized with β-cyclodextrin—engineering of a novel nanohybrid drug carrier. Int. J. Biol. Macromol. 93, 117–122 (2016). https://doi.org/10.1016/j.ijbiomac.2016.08.051

    Article  CAS  Google Scholar 

  66. An, J., Gou, Y., Yang, C., Hu, F., Wang, C.: Synthesis of a biocompatible gelatin functionalized graphene nanosheets and its application for drug delivery. Mater. Sci. Eng. C 33, 2827–2837 (2013). https://doi.org/10.1016/j.msec.2013.03.008

    Article  CAS  Google Scholar 

  67. Song, M., Xu, H., Liang, J., Xiang, H., Liu, R., Shen, Y.: Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery. Mater. Sci. Eng. C. 77, 904–911 (2017). https://doi.org/10.1016/j.msec.2017.03.309

    Article  CAS  Google Scholar 

  68. Zhang, B., Yang, X., Wang, Y., Zhai, G.: Heparin modified graphene oxide for pH-sensitive sustained release of doxorubicin hydrochloride. Mater. Sci. Eng. C. 75, 198–206 (2017). https://doi.org/10.1016/j.msec.2017.02.048

    Article  CAS  Google Scholar 

  69. Chandrasekar, A., Pradeep, T.: Luminescent silver clusters with covalent functionalization of graphene. J. Phys. Chem. C 116, 14057–14061 (2012). https://doi.org/10.1021/jp304131v

    Article  CAS  Google Scholar 

  70. Theodosopoulos, G.V., Bilalis, P., Sakellariou, G.: Polymer functionalized graphene oxide: a versatile nanoplatform for drug/gene delivery. Curr. Org. Chem. 19, 1828–1837 (2015). https://doi.org/10.2174/1385272819666150526005714

    Article  CAS  Google Scholar 

  71. Deb, A., Vimala, R.: Camptothecin loaded graphene oxide nanoparticle functionalized with polyethylene glycol and folic acid for anticancer drug delivery. J. Drug Deliv. Sci. Technol. 43, 333–342 (2018). https://doi.org/10.1016/j.jddst.2017.10.025

    Article  CAS  Google Scholar 

  72. Karki, N., Tiwari, H., Pal, M., Chaurasia, A., Bal, R., Joshi, P.: Functionalized graphene oxides for drug loading, release and delivery of poorly water soluble anticancer drug: a comparative study. Colloids Surf. B Biointerfaces 169, 265–272 (2018). https://doi.org/10.1016/j.colsurfb.2018.05.022

    Article  CAS  Google Scholar 

  73. Tan, J., Meng, N., Fan, Y., Su, Y., Zhang, M.: Hydroxypropyl-β-cyclodextrin—graphene oxide conjugates: carriers for anti-cancer drugs. Mater. Sci. Eng. C 61, 681–687 (2016). https://doi.org/10.1016/j.msec.2015.12.098

    Article  CAS  Google Scholar 

  74. Xie, M., Zhang, F., Liu, L., Zhang, Y., Li, Y., Li, H., Xie, J.: Modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci. 440, 853–860 (2018). https://doi.org/10.1016/j.apsusc.2018.01.175

    Article  CAS  Google Scholar 

  75. Guo Li, Yang, Y., Zhou, R., Meng, F., Li, X.: Functionalized graphene oxide as a nanocarrier of new copper (II) complexes for targeted therapy on nasopharyngeal carcinoma. Eur. J. Pharm. Sci. 123, 249–259 (2018). https://doi.org/10.1016/j.ejps.2018.07.006

    Article  CAS  Google Scholar 

  76. Ting, X., Qing, X., Ming, C.: Highly efficient nuclear delivery of anti-cancer drugs using a bio-functionalized reduced graphene oxide. J. Colloid Interface Sci. 467, 35–42 (2016). https://doi.org/10.1016/j.jcis.2015.12.052

    Article  CAS  Google Scholar 

  77. Lu, Y., Lin, C., Yang, H., Lin, K., Wey, S., Sun, C., Wei, K., Yen, T., Lin, C., Ma, C.M., Chen, J.: Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon 74, 83–95 (2014). https://doi.org/10.1016/j.carbon.2014.03.007

    Article  CAS  Google Scholar 

  78. Pan, Q., Lv, Y., Williams, G.R., Tao, L., Yang, H., Li, H., Zhu, L.: Lactobionic acid and carboxymethyl chitosan functionalized graphene oxide nanocomposites as targeted anticancer drug delivery systems. Carbohydr. Polym. 151, 812–820 (2016). https://doi.org/10.1016/j.carbpol.2016.06.024

    Article  CAS  Google Scholar 

  79. Imani, R., Shao, W., Taherkhani, S., Hojjati, S., Prakash, S., Faghihi, S.: Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids Surf. B Biointerfaces 147, 315–325 (2016). https://doi.org/10.1016/j.colsurfb.2016.08.015

    Article  CAS  Google Scholar 

  80. Imani, R., Mohabatpour, F., Mostafavi, F.: Graphene-based nano-carrier modifications for gene delivery applications. Carbon 140, 569–591 (2018). https://doi.org/10.1016/j.carbon.2018.09.019

    Article  CAS  Google Scholar 

  81. Zeng, Y., Yang, Z., Li, H., Hao, Y., Liu, C., Zhu, L., Liu, J., Lu, B.: Multifunctional nanographene oxide for targeted gene-mediated thermochemotherapy of drug-resistant tumour. Nat. Publ. Gr. 1–10 (2017). https://doi.org/10.1038/srep43506

  82. Gu, Y., Guo, Y., Wang, C., Xu, J., Wu, J., Kirk, T.B., Ma, D., Xue, W.: A polyamidoamne dendrimer functionalized graphene oxide for DOX and MMP-9 shRNA plasmid co-delivery. Mater. Sci. Eng. C 70, 572–585 (2017). https://doi.org/10.1016/j.msec.2016.09.035

    Article  CAS  Google Scholar 

  83. Yang, H., Huang, C., Lin, C., Liu, H., Huang, C., Liao, S., Chen, P., Lu, Y., Wei, K., Ma, C.M.: Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging. Biomaterials 35, 6534–6542 (2014). https://doi.org/10.1016/j.biomaterials.2014.04.057

    Article  CAS  Google Scholar 

  84. Loutfy, S.A., Salaheldin, T.A., Ramadan, M.A., Yehia, K., Abdallah, Z.F., Youssef, T.: Synthesis, characterization and cytotoxic evaluation of graphene oxide nanosheets: in vitro liver cancer model. Asian Pac. J. Cancer Prev. 18, 955–961 (2017). https://doi.org/10.22034/apjcp.2017.18.4.955

    Article  Google Scholar 

  85. Gurunathan, S., Han, J.W., Kim, E.S., Park, J.H., Kim, J.H.: Reduction of graphene oxide by resveratrol: a novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int. J. Nanomed. 10, 2951–2969 (2015). https://doi.org/10.2147/IJN.S79879

  86. Zhou, T., Zhang, B., Wei, P., Du, Y., Zhou, H., Yu, M., Yan, L., Zhang, W., Nie, G., Chen, C., Tu, Y., Wei, T.: Energy metabolism analysis reveals the mechanism of inhibition of breast cancer cell metastasis by PEG-modified graphene oxide nanosheets. Biomaterials 35, 9833–9843 (2014). https://doi.org/10.1016/j.biomaterials.2014.08.033

    Article  CAS  Google Scholar 

  87. Sawosz, E., Jaworski, S., Kutwin, M., Vadalasetty, K.P.: Graphene functionalized with arginine decreases the development of glioblastoma multiforme tumor in a gene-dependent manner. Int. J. Mol. Sci. 16, 25214–25233 (2015). https://doi.org/10.3390/ijms161025214

    Article  CAS  Google Scholar 

  88. Zare-Zardini, H., Taheri-Kafrani, A., Amiri, A., Bordbar, A.-K.: New generation of drug delivery systems based on ginsenoside Rh2-, Lysine- and Arginine-treated highly porous graphene for improving anticancer activity. Sci. Rep. 8, 586 (2018). https://doi.org/10.1038/s41598-017-18938-y

    Article  CAS  Google Scholar 

  89. Khan, M., Khan, M., Al-Marri, A.H., Al-Warthan, A., Alkhathlan, H.Z., Siddiqui, M.R.H., Nayak, V.L., Kamal, A., Adil, S.F.: Apoptosis inducing ability of silver decorated highly reduced graphene oxide nanocomposites in A549 lung cancer. Int. J. Nanomed. 11, 873–883 (2016)

    Article  CAS  Google Scholar 

  90. Chen, Y., Su, Y., Hu, S., Chen, S.: Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Adv. Drug Deliv. Rev. 105, 190–204 (2016). https://doi.org/10.1016/j.addr.2016.05.022

    Article  CAS  Google Scholar 

  91. Zarafu, I., Turcu, I., Culit, D.C., Petrescu, S., Popa, M., Limban, C., Telehoiu, A., Ionit, P.: Antimicrobial features of organic functionalized. Materials (Basel) 11, 1–10 (2018). https://doi.org/10.3390/ma11091704

    Article  CAS  Google Scholar 

  92. Li, P., Sun, S., Dong, A., Hao, Y., Shi, S., Sun, Z.: Developing of a novel antibacterial agent by functionalization of graphene oxide with guanidine polymer with enhanced antibacterial activity. Appl. Surf. Sci. 355, 446–452 (2015). https://doi.org/10.1016/j.apsusc.2015.07.148

    Article  CAS  Google Scholar 

  93. Cai, X., Lin, M., Tan, S., Mai, W., Zhang, Y., Liang, Z., Lin, Z., Zhang, X.: The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity. Carbon 50, 3407–3415 (2012). https://doi.org/10.1016/j.carbon.2012.02.002

    Article  CAS  Google Scholar 

  94. Chandraker, K., Nagwanshi, R., Jadhav, S.K., Ghosh, K.K., Satnami, M.L.: Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 181, 47–54 (2017). https://doi.org/10.1016/j.saa.2017.03.032

    Article  CAS  Google Scholar 

  95. Santos, C.M., Mangadlao, J., Ahmed, F., Leon, A., Advincula, R.C., Rodrigues, D.F.: Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23, 395101 (2012). https://doi.org/10.1088/0957-4484/23/39/395101

    Article  Google Scholar 

  96. Peña-Bahamonde, J., San Miguel, V., Nguyen, H.N., Ozisik, R., Rodrigues, D.F., Cabanelas, J.C.: Functionalization of reduced graphene oxide with polysulfone brushes enhance antibacterial properties and reduce human cytotoxicity. Carbon 111, 258–268 (2017). https://doi.org/10.1016/j.carbon.2016.10.005

    Article  CAS  Google Scholar 

  97. Azimi, S., Behin, J., Abiri, R., Rajabi, L., Derakhshan, A.A., Karimnezhad, H.: Synthesis, characterization and antibacterial activity of chlorophyllin functionalized graphene oxide nanostructures. Sci. Adv. Mat. 6(4), 771–781 (2014). https://doi.org/10.1166/sam.2014.1767

    Article  CAS  Google Scholar 

  98. Ra, A.R., Bushroa, A.R., Amiri, A., Vadivelu, J.: Antibacterial biocompatible arginine functionalized mono-layer graphene: no more risk of silver toxicity. J. Hazard. Mater. J. 360, 132–140 (2018). https://doi.org/10.1016/j.jhazmat.2018.07.107

    Article  CAS  Google Scholar 

  99. Perreault, F., de Faria, A.F., Nejati, S., Elimelech, M.: Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 9, 7226–7236 (2015). https://doi.org/10.1021/acsnano.5b02067

    Article  CAS  Google Scholar 

  100. Taha, A.A., Mousa, A., Al-ott, M., Faroun, M., Assali, M., Gomez, P.R., Thiab, S.: Department: non-covalent functionalization of graphene sheets with surfactants and their antibacterial activity. Palest. Med. Pharm. J. 1, 65–72 (2016)

    Google Scholar 

  101. Banerjee, A.N.: Prospects and challenges of graphene-based nanomaterials in nanomedicine. Glob. J. Nanomed. 1, 1–9 (2016). https://doi.org/10.19080/gjn.2016.01.555552

  102. Ye, H., Zhang, X., Xu, C., Han, B., Xu, L.: Enhanced dielectric property and energy density in poly(vinylidene fluoride-chlorotrifluoroethylene) nanocomposite incorporated with graphene functionalized with hyperbranched polyethylene-graft-poly(trifluoroethyl methacrylate) copolymer. J. Mater. Chem. C. (2018). https://doi.org/10.1039/c8tc04510k

    Article  CAS  Google Scholar 

  103. Layek, R.K., Nandi, A.K.: Feature article a review on synthesis and properties of polymer functionalized graphene. Polymer (Guildf) 54, 5087–5103 (2013). https://doi.org/10.1016/j.polymer.2013.06.027

    Article  CAS  Google Scholar 

  104. Wu, L., Ji, H., Guan, Y., Ran, X., Ren, J., Qu, X.: A graphene-based chemical nose/tongue approach for the identification of normal, cancerous and circulating tumor cells. Asia Mater. 9, 1–9 (2017). https://doi.org/10.1038/am.2017.11

    Article  CAS  Google Scholar 

  105. Akpotu, S.O., Moodley, B.: MCM-48 encapsulated with reduced graphene oxide/graphene oxide and as-synthesised MCM-48 application in remediation of pharmaceuticals from aqueous system. J. Mol. Liq. 261, 540–549 (2018). https://doi.org/10.1016/j.molliq.2018.04.046

    Article  CAS  Google Scholar 

  106. Saravanan, S., Sareen, N., Abu-el-rub, E., Ashour, H., Salah, S., Sayed, E., Moudgil, M., Vadivelu, J., Dhingra, S.: Graphene oxide-gold nanosheets containing chitosan scaffold improves ventricular contractility and function after implantation into infarcted heart. Nat. Publ. Gr. 8, 1–13 (2018). https://doi.org/10.1038/s41598-018-33144-0

    Article  CAS  Google Scholar 

  107. Yoon, H.J., Kim, T.H., Zhang, Z., Azizi, E., Pham, T.M., Paoletti, C., Lin, J., Ramnath, N., Wicha, M.S., Hayes, D.F.: Sensitive capture of circulating tumor cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 8, 735–741 (2014). https://doi.org/10.1038/nnano.2013.194.Sensitive

    Article  Google Scholar 

  108. Ke, Q., Wang, J.: Graphene-based materials for supercapacitor electrodes–a review. J Mater. 2, 37–54 (2016). https://doi.org/10.1016/j.jmat.2016.01.001

    Article  Google Scholar 

  109. Yang, W., Ni, M., Ren, X., Tian, Y., Li, N., Su, Y., Zhang, X.: Graphene in supercapacitor applications. Curr. Opin. Colloid Interface Sci. 20, 416–428 (2015). https://doi.org/10.1016/j.cocis.2015.10.009

    Article  CAS  Google Scholar 

  110. Hu, C., Liu, D., Xiao, Y., Dai, L.: Functionalization of graphene materials by heteroatom-doping for energy conversion and storage. Prog. Nat. Sci. Mater. Int. 28, 121–132 (2018). https://doi.org/10.1016/j.pnsc.2018.02.001

    Article  CAS  Google Scholar 

  111. Chhabra, V.A.: Functionalization of graphene using carboxylation process. Int. J. Sci. Emerg. Technol. 4, 13–19 (2012)

    Google Scholar 

  112. Abdelhalim, A.O., Galal, A., Hussein, M.Z., Sayed, E.I.: Graphene functionalization by 1,6-diaminohexane and silver nanoparticles for water disinfection (2016). https://doi.org/10.1155/2016/1485280

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pramod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henna, T.K., Nivitha, K.P., Raphey, V.R., Sabu, C., Pramod, K. (2019). Functionalized Graphene for Drug Delivery Applications. In: Khan, A., Jawaid, M., Neppolian, B., Asiri, A. (eds) Graphene Functionalization Strategies. Carbon Nanostructures. Springer, Singapore. https://doi.org/10.1007/978-981-32-9057-0_11

Download citation

Publish with us

Policies and ethics