Skip to main content

The Role of Tau in the Post-synapse

  • Chapter
  • First Online:
Tau Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1184))

Abstract

It is well documented that tauopathy is involved in various forms of neurodegenerative disease. However, there is a huge gap in terms of our understanding of the neurophysiological roles of tau, and how these can be aberrantly regulated by pathological processes. Tau is enriched in the axon but is also localized to synapses. The finding of synaptically localised tau has undoubtedly created more questions than it has answered. What is the physiological role of tau at the synapse? Whether and how does tau interact with and effect other synaptic proteins to mediate this function? Are these effects regulated by post-translational modifications of tau, such as phosphorylation? Such questions require significant attention from the scientific community if we are to resolve this critical aspect of tau biology. This chapter will describe our current understanding of synaptic tau and its functions and illuminate the numerous remaining challenges in this evolving research area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Aβ:

Amyloid beta

AD:

Alzheimer’s disease

AMPAR:

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

GSK-3:

Glycogen synthase kinase-3

LTD:

Long-term depression

LTP:

Long-term potentiation

NMDAR:

N-methyl-D-aspartate receptor

pTau:

Phosphorylated Tau

Tau:

Microtubule associated protein tau

References

  1. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83:4913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ittner LM, et al. Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–97.

    Article  CAS  PubMed  Google Scholar 

  3. Kimura T, Whitcomb DJ, Jo J, Regan P, Piers T, Heo S, Brown C, Hashikawa T, Murayama M, Seok H, Sotiropoulos I, Kim E, Collingridge GL, Takashima A, Cho K. Microtubule-associated protein tau is essential for long-term depression in the hippocampus. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1633):20130144.

    Article  CAS  Google Scholar 

  4. Regan P, Piers T, Yi J-H, Kim D-H, Huh S, Park SJ, Ryu JH, Whitcomb DJ, Cho K. Tau phosphorylation at serine 396 residue is required for hippocampal LTD. J Neurosci. 2015;35:4804–12.

    Article  CAS  PubMed  Google Scholar 

  5. Ke YD, Suchowerska AK, van der Hoven J, De Silva DM, Wu CW, van Eersel J, Ittner A, Ittner LM. Lessons from tau-deficient mice. Int J Alzheimers Dis. 2012;2012:873270.

    PubMed  PubMed Central  Google Scholar 

  6. Biundo F, Del Prete D, Zhang H, Arancio O, D’Adamio L. A role for tau in learning, memory and synaptic plasticity. Sci Rep. 2018;8(1):3184.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ahmed T, Van der Jeugd A, Blum D, Galas MC, D’Hooge R, Buee L, Balschun D. Cognition and hippocampal synaptic plasticity in mice with a homozygous tau deletion. Neurobiol Aging. 2014;35(11):2474–8.

    Article  CAS  PubMed  Google Scholar 

  8. Chen Q, Zhou Z, Zhang L, Wang Y, Zhang YW, Zhong M, Xu SC, Chen CH, Li L, Yu ZP. Tau protein is involved in morphological plasticity in hippocampal neurons in response to BDNF. Neurochem Int. 2012;60(3):233–42.

    Article  CAS  PubMed  Google Scholar 

  9. Sapir T, Frotscher M, Levy T, Mandelkow EM, Reiner O. Tau’s role in the developing brain: implications for intellectual disability. Hum Mol Genet. 2012;21(8):1681–92.

    Article  CAS  PubMed  Google Scholar 

  10. Tackenberg C, Grinschgl S, Trutzel A, Santuccione AC, Frey MC, Konietzko U, Grimm J, Brandt R, Nitsch RM. NMDA receptor subunit composition determines beta-amyloid-induced neurodegeneration and synaptic loss. Cell Death Dis. 2013;4:e608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zempel H, Luedtke J, Kumar Y, Biernat J, Dawson H, Mandelkow E, Mandelkow EM. Amyloid-β oligomers induce synaptic damage via Tau-dependent microtubule severing by TTLL6 and spastin. EMBO J. 2013;32(22):2920–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roberson ED, Halabisky B, Yoo JW, Yao J, Chin J, Yan F, Wu T, Hamto P, Devidze N, Yu GQ, Palop JJ, Noebels JL, Mucke L. Amyloid-β/Fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of Alzheimer’s disease. J Neurosci. 2011;31(2):700–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicholls RE, Alarcon JM, Malleret G, Carroll RC, Grody M, Vronskaya S, Kandel ER. Transgenic mice lacking NMDAR-dependent LTD exhibit deficits in behavioral flexibility. Neuron. 2008;58(1):104–17.

    Article  CAS  PubMed  Google Scholar 

  14. Kim JI, Lee HR, Sim SE, Baek J, Yu NK, Choi JH, Ko HG, Lee YS, Park SW, Kwak C, Ahn SJ, Choi SY, Kim H, Kim KH, Backx PH, Bradley CA, Kim E, Jang DJ, Lee K, Kim SJ, Zhuo M, Collingridge GL, Kaang BK. PI3Kγ is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nat Neurosci. 2011;14(11):1447–54.

    Article  CAS  PubMed  Google Scholar 

  15. Dong Z, Bai Y, Wu X, Li H, Gong B, Howland JG, Huang Y, He W, Li T, Wang YT. Hippocampal long-term depression mediates spatial reversal learning in the Morris water maze. Neuropharmacology. 2013;64:65–73.

    Article  CAS  PubMed  Google Scholar 

  16. Biundo F, d’Abramo C, Tambini MD, Zhang H, Del Prete D, Vitale F, Giliberto L, Arancio O, D’Adamio L. Abolishing Tau cleavage by caspases at aspartate(421) causes memory/synaptic plasticity deficits and pre-pathological Tau alterations. Transl Psychiatry. 2017;7(8):e1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jackson JS, Witton J, Johnson JD, Ahmed Z, Ward M, Randall AD, Hutton ML, Isaac JT, O’Neill MJ, Ashby MC. Altered synapse stability in the early stages of tauopathy. Cell Rep. 2017;18(13):3063–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985;101(4):1371–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kubo A, Misonou H, Matsuyama M, Nomori A, Wada-Kakuda S, Takashima A, Kawata M, Murayama S, Ihara Y, Miyasaka T. Distribution of endogenous normal tau in the mouse brain. J Comp Neurol. 2019;527(5):985–98.

    Article  CAS  PubMed  Google Scholar 

  20. Kosik KS, Finch EA. MAP 2 and tau segregate into dendritic and axonal domains after the elaboration of morphologically distinct neurites: an immunocytochemical study of cultured rat cerebrum. J Neurosci. 1987;7(10):3142–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kowall NW, Kosik KS. Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer’s disease. Ann Neurol. 1987;22(5):639–43.

    Article  CAS  PubMed  Google Scholar 

  22. Malmqvist T, Anthony K, Gallo JM. Tau mRNA is present in axonal RNA granules and is associated with elongation factor 1A. Brain Res. 2014;1584:22–7.

    Article  CAS  PubMed  Google Scholar 

  23. Li C, Götz J. Somatodendritic accumulation of Tau in Alzheimer’s disease is promoted by Fyn-mediated local protein translation. EMBO J. 2017 Nov 2;36(21):3120–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li X, Kumar Y, Zempel H, Mandelkow EM, Biernat J, Mandelkow E. Novel diffusion barrier for axonal retention of Tau in neurons and its failure in neurodegeneration. EMBO J. 2011;30(23):4825–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu L, Drouet V, Wu JW, Witter MP, Small SA, Clelland C, Duff K. Trans-synaptic spread of tau pathology in vivo. PLoS One. 2012;7(2):e31302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pooler AM, Phillips EC, Lau DH, Noble W, Hanger DP. Physiological release of endogenous tau is stimulated by neuronal activity. EMBO Rep. 2013;14(4):389–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yamada K, Holth JK, Liao F, Stewart FR, Mahan TE, Jiang H, Cirrito JR, Patel TK, Hochgräfe K, Mandelkow EM, Holtzman DM. Neuronal activity regulates extracellular tau in vivo. J Exp Med. 2014;211(3):387–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Calafate S, et al. Synaptic contacts enhance cell-to-cell Tau pathology propagation. Cell Rep. 2015;11:1176–83.

    Article  CAS  PubMed  Google Scholar 

  29. de Calignon A, et al. Propagation of Tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73:685–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Frandemiche ML, De Seranno S, Rush T, Borel E, Elie A, Arnal I, Lanté F, Buisson A. Activity-dependent tau protein translocation to excitatory synapse is disrupted by exposure to amyloid-beta oligomers. J Neurosci. 2014;34:6084–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pinheiro S, Silva J, Mota C, Vaz-Silva J, Veloso A, Pinto V, Sousa N, Cerqueira J, Sotiropoulos I. Tau Mislocation in glucocorticoid-triggered hippocampal pathology. Mol Neurobiol. 2016;53(7):4745–53.

    Article  CAS  PubMed  Google Scholar 

  32. Gómez-Ramos A, Díaz-Hernández M, Rubio A, Miras-Portugal MT, Avila J. Extracellular tau promotes intracellular calcium increase through M1 and M3 muscarinic receptors in neuronal cells. Mol Cell Neurosci. 2008;37(4):673–81.

    Article  PubMed  CAS  Google Scholar 

  33. Gómez-Ramos A, Díaz-Hernández M, Rubio A, Díaz-Hernández JI, Miras-Portugal MT, Avila J. Characteristics and consequences of muscarinic receptor activation by tau protein. Eur Neuropsychopharmacol. 2009;19(10):708–17.

    Article  PubMed  CAS  Google Scholar 

  34. Mondragón-Rodríguez S, Trillaud-Doppia E, Dudilot A, Bourgeois C, Lauzon M, Leclerc N, Boehm J. Interaction of endogenous tau protein with synaptic proteins is regulated by N-methyl-D-aspartate receptor-dependent tau phosphorylation. J Biol Chem. 2012;287(38):32040–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nakazawa T, Komai S, Tezuka T, Hisatsune C, Umemori H, Semba K, Mishina M, Manabe T, Yamamoto T. Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-D-aspartate receptor. J Biol Chem. 2001;276(1):693–9.

    Article  CAS  PubMed  Google Scholar 

  36. Miyamoto T, Stein L, Thomas R, Djukic B, Taneja P, Knox J, Vossel K, Mucke L. Phosphorylation of tau at Y18, but not tau-fyn binding, is required for tau to modulate NMDA receptor-dependent excitotoxicity in primary neuronal culture. Mol Neurodegener. 2017;12(1):41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Suzuki M, Kimura T. Microtubule-associated tau contributes to intra-dendritic trafficking of AMPA receptors in multiple ways. Neurosci Lett. 2017;653:276–82.

    Article  CAS  PubMed  Google Scholar 

  38. Yagishita S, Murayama M, Ebihara T, Maruyama K, Takashima A. Glycogen synthase kinase 3β-mediated phosphorylation in the most C-terminal region of protein interacting with C kinase 1 (PICK1) regulates the binding of PICK1 to glutamate receptor subunit GluA2. J Biol Chem. 2015;290(49):29438–48.

    Article  CAS  PubMed  Google Scholar 

  39. Gardner SM, Takamiya K, Xia J, Suh JG, Johnson R, Yu S, Huganir RL. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron. 2005;45(6):903–15.

    Article  CAS  PubMed  Google Scholar 

  40. Citri A, Bhattacharyya S, Ma C, Morishita W, Fang S, Rizo J, Malenka RC. Calcium binding to PICK1 is essential for the intracellular retention of AMPA receptors underlying long-term depression. J Neurosci. 2010;30(49):16437–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lin DT, Huganir RL. PICK1 and phosphorylation of the glutamate receptor 2 (GluR2) AMPA receptor subunit regulates GluR2 recycling after NMDA receptor-induced internalization. J Neurosci. 2007;27(50):13903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kapitein LC, Yau KW, Gouveia SM, van der Zwan WA, Wulf PS, Keijzer N, Demmers J, Jaworski J, Akhmanova A, Hoogenraad CC. NMDA receptor activation suppresses microtubule growth and spine entry. J Neurosci. 2011;31(22):8194–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fulga TA, Elson-Schwab I, Khurana V, Steinhilb ML, Spires TL, Hyman BT, Feany MB. Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol. 2007;9(2):139–48.

    Article  CAS  PubMed  Google Scholar 

  44. Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA, Di Stefano P, Demmers J, Krugers H, Defilippi P, Akhmanova A, Hoogenraad CC. Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron. 2009;61(1):85–100.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou Q, Xiao M, Nicoll RA. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc Natl Acad Sci U S A. 2001;98(3):1261–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou Q, Homma KJ, Poo MM. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron. 2004;44(5):749–57.

    Article  CAS  PubMed  Google Scholar 

  47. Sokolow S, et al. Pre-synaptic C-terminal truncated tau is released from cortical synapses in Alzheimer’s disease. J Neurochem. 2015;133:368–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Decker JM, et al. Pro-aggregant Tau impairs mossy fiber plasticity due to structural changes and Ca++ dysregulation. Acta Neuropathol Commun. 2015;3:23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ, Wang YC, Swerts J, Beyens J, Miskiewicz K, Vilain S, Dewachter I, Moechars D, De Strooper B, Spires-Jones TL, De Wit J, Verstreken P. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun. 2017;8:15295.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Lin RC, Scheller RH. Mechanisms of synaptic vesicle exocytosis. Annu Rev Cell Dev Biol. 2000;16:19–49.

    Article  CAS  PubMed  Google Scholar 

  51. DeKosky ST, Scheff SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol. 1990;27:457e464.

    Article  Google Scholar 

  52. Hanger DH, Anderson BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15:112–9.

    Article  CAS  PubMed  Google Scholar 

  53. Bramblett GT, et al. Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron. 1993;10:1089–99.

    Article  CAS  PubMed  Google Scholar 

  54. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res. 2010;7(8):656–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jo J, Whitcomb DJ, Olsen KM, Kerrigan TL, Lo SC, Bru-Mercier G, Dickinson B, Scullion S, Sheng M, Collingridge G, Cho K. Aβ(1-42) inhibition of LTP is mediated by a signaling pathway involving caspase-3, Akt1 and GSK-3β. Nat Neurosci. 2011;14(5):545–7.

    Article  CAS  PubMed  Google Scholar 

  56. Shipton OA, Leitz JR, Dworzak J, Acton CE, Tunbridge EM, Denk F, Dawson HN, Vitek MP, Wade-Martins R, Paulsen O, Vargas-Caballero M. Tau protein is required for amyloid {beta}-induced impairment of hippocampal long-term potentiation. J Neurosci. 2011;31(5):1688–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron. 2007;53(5):703–17.

    Article  CAS  PubMed  Google Scholar 

  58. Babür E, Tan B, Delibaş S, Yousef M, Dursun N, Süer C. Depotentiation of long-term potentiation is associated with epitope-specific Tau hyper-/hypophosphorylation in the hippocampus of adult rats. J Mol Neurosci. 2018;67 https://doi.org/10.1007/s12031-018-1224-x.

    Article  PubMed  CAS  Google Scholar 

  59. Hu YY, He SS, Wang X, Duan QH, Grundke-Iqbal I, Iqbal K, Wang J. Levels of nonphosphorylated and phosphorylated tau in cerebrospinal fluid of Alzheimer’s disease patients: an ultrasensitive bienzyme-substrate-recycle enzyme-linked immunosorbent assay. Am J Pathol. 2002;160(4):1269–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Alonso Adel C, Mederlyova A, Novak M, Grundke-Iqbal I, Iqbal K. Promotion of hyperphosphorylation by frontotemporal dementia tau mutations. J Biol Chem. 2004;279(33):34873–81.

    Article  PubMed  CAS  Google Scholar 

  61. Mondragón-Rodríguez S, Perry G, Luna-Muñoz J, Acevedo-Aquino MC, Williams S. Phosphorylation of tau protein at sites Ser(396-404) is one of the earliest events in Alzheimer’s disease and Down syndrome. Neuropathol Appl Neurobiol. 2014;40(2):121–35.

    Article  PubMed  CAS  Google Scholar 

  62. Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science. 2002;298(5594):789–91.

    Article  CAS  PubMed  Google Scholar 

  63. Li Z, Jo J, Jia JM, Lo SC, Whitcomb DJ, Jiao S, Cho K, Sheng M. Caspase-3 activation via mitochondria is required for long-term depression and AMPA receptor internalization. Cell. 2010;141(5):859–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A, Sousa N, Almeida OF. Stress acts cumulatively to precipitate Alzheimer’s disease-like tau pathology and cognitive deficits. J Neurosci. 2011;31(21):7840–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Arendt T, Bullmann T. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a “master switch” regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol. 2013;305(5):R478–89.

    Article  CAS  PubMed  Google Scholar 

  66. Yi JH, Brown C, Whitehead G, Piers T, Lee YS, Perez CM, Regan P, Whitcomb DJ, Cho K. Glucocorticoids activate a synapse weakening pathway culminating in tau phosphorylation in the hippocampus. Pharmacol Res. 2017;121:42–51.

    Article  CAS  PubMed  Google Scholar 

  67. Zhu H, Zhang W, Zhao Y, Shu X, Wang W, Wang D, Yang Y, He Z, Wang X, Ying Y. GSK3β-mediated tau hyperphosphorylation triggers diabetic retinal neurodegeneration by disrupting synaptic and mitochondrial functions. Mol Neurodegener. 2018;13(1):62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lopes S, Vaz-Silva J, Pinto V, Dalla C, Kokras N, Bedenk B, Mack N, Czisch M, Almeida OF, Sousa N, Sotiropoulos I. Tau protein is essential for stress-induced brain pathology. Proc Natl Acad Sci U S A. 2016;113(26):E3755–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Noble W, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proc Natl Acad Sci U S A. 2005;102:6990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Forlenza OV, et al. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: randomised controlled trial. Br J Psychiatry. 2011;198:351–6.

    Article  PubMed  Google Scholar 

  71. Shankar GM, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Strittmatter WJ, Saunders AM, Goedert M, Weisgraber KH, Dong LM, Jakes R, Huang DY, Pericak-Vance M, Schmechel D, Roses AD. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91(23):11183–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Manczak M, Reddy PH. Abnormal interaction of oligomeric amyloid-β with phosphorylated tau: implications to synaptic dysfunction and neuronal damage. J Alzheimers Dis. 2013;36(2):285–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Sottejeau Y, Bretteville A, Cantrelle FX, Malmanche N, Demiaute F, Mendes T, Delay C, Alves Dos Alves H, Flaig A, Davies P, Dourlen P, Dermaut B, Laporte J, Amouyel P, Lippens G, Chapuis J, Landrieu I, Lambert JC. Tau phosphorylation regulates the interaction between BIN1’s SH3 domain and Tau’s proline-rich domain. Acta Neuropathol Commun. 2015;3:58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Jack CR Jr, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12:207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Busche MA, Wegmann S, Dujardin S, Commins C, Schiantarelli J, Klcikstein N, Kamath TV, Carlson GA, Nelken I, Hyman BT. Tau impairs neural circuits, dominating amyloid-β effects, n Alzheimer models in vivo. Nat Neurosci. 2018;22:57–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Nelson PT, et al. Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J Neuropathol Exp Neurol. 2012;71:362–81.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwangwook Cho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Regan, P., Cho, K. (2019). The Role of Tau in the Post-synapse. In: Takashima, A., Wolozin, B., Buee, L. (eds) Tau Biology. Advances in Experimental Medicine and Biology, vol 1184. Springer, Singapore. https://doi.org/10.1007/978-981-32-9358-8_10

Download citation

Publish with us

Policies and ethics