Skip to main content

Soil Ecological Pros and Cons of Nanomaterials: Impact on Microorganisms and Soil Health

  • Chapter
  • First Online:
Nanotechnology for Agriculture

Abstract

Nanotechnology is a novel technology that is currently emerging and may soon be used in every branch of agriculture. In the area of agriculture, scientific production is evident, concentrating on nano-agrochemicals, from nanopesticides to nanofertilizers. There has been a great interest in the use of nanomaterials in crop production and crop protection-based agriculture. However, the existing research reveals that the mixed response from the nanoparticle exposure on plants, microbes and soil starts from enhanced crop yield to genetic alteration. The rapid development of nanotechnology in agriculture sector could lead to release of huge amount of engineered nanoparticles, which may cause adverse effects on soil environment. Assessing the safety of nano-mediated chemicals related to human and environmental health, as emerging contaminants, needs to be addressed. With this in mind, this chapter explores the interesting aspects related to use, benefits, and potential challenges with both positive and negative effects of added nanomaterials with respect to the microbial diversity and health of soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  PubMed  Google Scholar 

  • Adewopo JB, Van Zomeren C, Bhomia RK, Almaraz M, Bacon AR, Eggleston E, Judy JD, Lewis RW, Lusk M, Miller B, Moorberg C, Hodges E, Tiedeman M (2014) Top-ranked priority research questions for soil science in the 21st century. Soil Sci Soc Am J 78:337–347

    Article  CAS  Google Scholar 

  • Asadishad B, Chahal S, Cianciarelli V, Zhou K, Tufenkji N (2017) Effect of gold nanoparticles on extracellular nutrient-cycling enzyme activity and bacterial Community in Soil Slurries: role of nanoparticle size and surface coating, environmental science. Nano 4(4). https://doi.org/10.1039/C6EN00567E

    CAS  Google Scholar 

  • Aslani F, Bagheri S, Julkapli NM, Juraimi AS, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth: an overview. Sci World J 2014:1–28

    Article  CAS  Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2008) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    Article  CAS  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90(2):640–646

    Article  CAS  PubMed  Google Scholar 

  • Biswas P, Wu CY (2005) Critical review: nanoparticles and the environment. J Air Waste Manag 55:708–746

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87(7):1181–1200. https://doi.org/10.1007/s00204-013-1079-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8

    CAS  PubMed  Google Scholar 

  • Calvarro LM, de Santiago-Martn A, Gomez JQ, Huecas GC, Quintana JR, Vázquez A (2014) Biological activity in metal contaminated calcareous agricultural soils: the role of the organic matter composition and the particle size distribution. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-014-2561-0

    Article  CAS  PubMed  Google Scholar 

  • Colvin VL (2003) The potential environmental impact of engineered nanomaterials. Nat Biotechnol 21:1166–1171

    Article  CAS  PubMed  Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch CK, Hochella MF Jr, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One 8(2):e57189. https://doi.org/10.1371/journal.pone.0057189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Windt W, Boon N, Van den Bulcke J, Rubberecht L, Prata F, Mast J, Hennebel T, Verstraete W (2006) Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis. Anton Leeuw Int J Gen Mol Microbiol 90:377–389

    Article  CAS  Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) Cuo and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Article  CAS  Google Scholar 

  • Ditta A, Arshad M, Ibrahim M (2015) Nanoparticles in sustainable agricultural crop production: applications and perspectives. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (eds) Nanotechnology and plant sciences-nanoparticles and their impact on plants. Springer, Cham

    Google Scholar 

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  PubMed  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172

    Article  PubMed  Google Scholar 

  • Hass D, Keel C (2003) Regulation of antibiotic production in root colonizing Pseudomonas sp. and relevance for biological control of plant disease. Annual reviews in. Phytopathology 41:117–153

    Article  CAS  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4:172–177

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger P, Marschner P (2006) Rhizosphere perspectives and challenges- a tribute to Lorenz Hiltner 12-17 September 2004 Munich, Germany. Plant Soil 283:7–8

    Article  CAS  Google Scholar 

  • Huang L, Li DQ, Lin YJ, Wei M, Evans DG, Duan X (2005) Controllable preparation of Nano-MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China: a review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim BC, Sang BI, Gu MB (2007) Analysis of nanoparticles’ toxic modes of actions by using recombinant bioluminescent bacteria. In Abstracts, American Institute of Chemical Engineers Meeting, Salt Lake City, UT, USA, November 4–9

    Google Scholar 

  • Illes E, Tombacz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295:115–123

    Article  CAS  PubMed  Google Scholar 

  • Janvier C, Villeneuve F, Alabouvette C, Edel-Hermann V, Mateille T, Steinberg C (2007) Soil health through soil disease suppression: which strategy from descriptors to indicators? Soil Biol Biochem 39:1–23

    Article  CAS  Google Scholar 

  • Josko P, Oleszczuk B, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537

    Article  CAS  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1–3):396–414. https://doi.org/10.1016/j.scitotenv.2008.06.042

    Article  CAS  PubMed  Google Scholar 

  • Kai Y, Komazawa Y, Miyajima A, Miyata N, Yamakoshi Y (2003) Fullerene as a novel photoinduced antibiotic. Fullerines, Nanotubes, Carbon Nanostruct 11:79–87

    Article  CAS  Google Scholar 

  • Kanerva T, Palojarvi A, Ramo K, Manninen S (2008) Changes in soil microbial community structure under elevated tropospheric O3 and CO2. Soil Biol Biochem 40:2502–2510

    Article  CAS  Google Scholar 

  • Kaye JP, Mc Culley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11:575–587

    Article  Google Scholar 

  • Kim JS, Yoon TJ, Yu KN, Kim BG, Park SJ, Kim HW, Lee KH, Park SB, Lee JK, Cho MH (2006) Toxicity and tissue distribution of magnetic nanoparticles in mice. Toxicol Sci 89:338–347

    Article  CAS  PubMed  Google Scholar 

  • Kloepfer JA, Mielke RE, Nadeau JL (2005) Uptake of CdSe and CdSe/ZnS quantum dots into bacteria via purine dependent mechanisms. Appl Environ Microbiol 71:2548–2557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar N, Shah V, Walker VK (2011) Perturbation of an arctic soil microbial community by metal nanoparticles. J Hazard Mater 190(1–3):816–822

    Article  CAS  PubMed  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Keskar D, Wu Y, Wang X, Mount AS, Klaine SJ, More JM, Rao AM, Ke PC (2007) Detection of phospholipid-carbon nanotube translocation using fluorescence energy transfer. Appl Phys Lett 89:143118

    Article  CAS  Google Scholar 

  • Lyon DY, Thill A, Rose J, Alvarez PJJ (2007) Ecotoxicological impacts of nanomaterials. In: Wiesner MR, Bottero J-Y (eds) Environmental nanotechnology: applications and impacts of nanomaterials. McGraw-Hill, New York, pp 445–480

    Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408(16):3053–3061

    Article  CAS  PubMed  Google Scholar 

  • Mashino T, Okuda K, Hirota T, Hirobe M, Nagano T, Mochizuki M (1999) Inhibition of E. coli growth by fullerene derivatives and inhibition mechanism. Bioorg Med Chem Lett 9:2959–2962

    Article  CAS  PubMed  Google Scholar 

  • McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    Article  CAS  PubMed  Google Scholar 

  • McGee CF, Storey S, Clipson N, Doyle E (2017) Soil microbial community 1197 responses to contamination with silver, aluminium oxide and silicon dioxide 1198 nanoparticles. Ecotoxicology 26(3):449–458. https://doi.org/10.1007/s10646-017-1776-5

    Article  CAS  PubMed  Google Scholar 

  • Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labeling and sensing. Nat Mater 4:435–446

    Article  CAS  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizae: physiology and function. Kluwer Academic Press, London

    Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. J Nanotechnol 16:2346–2353

    Article  CAS  Google Scholar 

  • Musee N (2010) Simulated environmental risk estimation of engineered nanomaterials: a case of cosmetics in Johannesburg City. Hum Exp Toxicol 30:1181–1195

    Article  PubMed  CAS  Google Scholar 

  • Nannipieri P, Kandeler E, Ruggiero P (2002) Enzyme activities and microbiological and biochemical processes in soil. In: Burns RG, Dick R (eds) Enzymes in the environment, vol 45. Marcel Dekker, New York, pp 1–33

    Google Scholar 

  • Nowack B (2009) The behavior and effects of nanoparticles in the environment. Environ Pollution (Barking, Essex : 1987) 157:1063–1064. https://doi.org/10.1016/j.envpol.2008.12.019

    Article  CAS  Google Scholar 

  • Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Nanoparticles - the next generation technology for sustainable agriculture. In: Singh DP, Singh HB, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, Functional Applications, vol 2. Springer, New Delhi, pp 289–300

    Chapter  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rincon A, Pulgarin C (2004) Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2 implications in solar water disinfection. Appl Catal B Environ 51:283–302

    Article  CAS  Google Scholar 

  • Rousk J, Rousk K, Curling SF, Jones DL (2012) Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 7(3):e34197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozhkov SP, Goryunov AS, Sukhanova GA, Borisova AG, Rozhkova NN, Andrievsky GV (2003) Protein interaction with hydrated C(60) fullerene in aqueous solutions. Biochem Biophys Res Commun 303:562–566

    Article  CAS  PubMed  Google Scholar 

  • Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Glob Change Biol 3:217–224

    Article  Google Scholar 

  • Sawai J, Igarashi H, Hashimoto A, Kokugan T, Shimizu M (1995) Effect of ceramic powder slurry on spores of Bacillus subtilis. J Chem Eng Jpn 28:556–561

    Article  CAS  Google Scholar 

  • Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM, Ausman KD, Tao YJ, Sitharaman B, Wilson LJ, Hughes JB (2004) The differential cytotoxicity of water soluble fullerenes. Nano Lett 4:1881–1887

    Article  CAS  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and Agri-food systems. Int J Sociol Food Agric 15:22–44

    Google Scholar 

  • Siddiqui MH, Al-Whaibi MH, Mohammad F (2015) Nanotechnology and plant sciences nanoparticles and their impact on plants. Springer International Publishing, Cham

    Google Scholar 

  • Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bull Environ Contam Toxicol 97:548–553

    Article  CAS  PubMed  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  PubMed  Google Scholar 

  • Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9:024001

    Article  CAS  Google Scholar 

  • Tarafdar JC, Adhikari T (2015) Nanotechnology in soil science. In: Rattan RK et al (eds) Soil science: an introduction. Indian Society of Soil Science, Calcutta, pp 775–807

    Google Scholar 

  • Thill A, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli: a physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  PubMed  Google Scholar 

  • Tiedje JM, Cho JC, Murray A, Treves D, Xia B, Zhou J (2001) Soil teeming with life: new frontiers for soil science. In: Rees RM, Ball BC, Campbell CD, Watson CA (eds) Sustainable management of soil organic matter. CAB International, Wallingford, pp 393–412

    Chapter  Google Scholar 

  • TNVKV P, Sudhaka P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TSP, Sajanlal R, Pradeep T (2012) Effect of nano scale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutri 35(6):905–927

    Article  CAS  Google Scholar 

  • Tolaymat T, El Badawy A, Genaidy A, Abdelraheem W, Sequeira R (2017) Analysis of metallic and metal oxide nanomaterial environmental emissions. J Clean Prod 143:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong ZH, Bischoff M, Nies L, Applegate B, Turco RF (2007) Impact of fullerene (C-60) on a soil microbial community. Environ Sci Technol 41:2985–2991

    Article  CAS  PubMed  Google Scholar 

  • Tourinho PS, Van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692

    Article  CAS  PubMed  Google Scholar 

  • Torsvik V, OvreÃ¥s L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Tran CL, Danaldson K, Stones V, Fernandez T, Ford A, Christofi N, Ayres JG, Steiner M, Hurley JF, Aitken RJ (2015) A scoping study to identify Hazard data needs for addressing risks presented by nanoparticles and nanotubes. Institute of Occupational Medicine (IOM) Research Report, Edinburgh

    Google Scholar 

  • Tsao N, Kanakamma PP, Luh TY, Chou CK, Lei HY (1999) Inhibition of Escherichia coli-induced meningitis by carboxyfullerence. Antimicrob Agents Chemothermogens 43:2273–2277

    Article  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylemand phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441

    Article  CAS  PubMed  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JA (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  CAS  Google Scholar 

  • Wei W, Sethuraman A, Jin C, Monteiro-Riviere NA, Narayan RJ (2007) Biological properties of carbon nanotubes. J Nanosci Nanotechnol 7:1284–1297

    Article  CAS  PubMed  Google Scholar 

  • Yadav T, Mungray AA, Mungray AK (2014) Fabricated nanoparticles: current status and potential phytotoxic threats. Rev Environ Contam Toxicol 230:83–110

    CAS  PubMed  Google Scholar 

  • You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2017) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments 18:2179–2187

    Google Scholar 

  • Zuin S, Gaiani M, Ferrari A, Golanski L (2013) Leaching of nanoparticles from experimental water-borne paints under laboratory test conditions. J Nanopart Res 16(1):2185–2191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandeppa, Gobinath, R., Latha, P.C., Manasa, V., Chavan, S. (2019). Soil Ecological Pros and Cons of Nanomaterials: Impact on Microorganisms and Soil Health. In: Panpatte, D., Jhala, Y. (eds) Nanotechnology for Agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-32-9370-0_10

Download citation

Publish with us

Policies and ethics