Skip to main content

Biological Nitrogen Fixation in Nutrient Management

  • Chapter
  • First Online:
Agronomic Crops

Abstract

The use of costly chemical nitrogen fertilizers for increased food production is a global concern due to their economic and environmental effects. It is the dire need of the day to find out some alternative to the nitrogen fertilizers which is economical and environmentally safe. Biological fixation of atmospheric diatomic nitrogen into a form useable by the plant is a possible alternative to the chemical nitrogen fertilizer which is economically viable, ecologically desirable, and environmentally safe with reduced external inputs. In most of the symbiotic systems, Rhizobium-legume association contributes its major part in providing the N to most of the cropping system, whereas Anabaena and Azolla can be important in reduced conditions such as flooded rice. Despite the importance of nitrogen fixation, there are a number of sociocultural and scientific constraints that limit the adoption of BNF system in agriculture. The major limitation is the hindrance in the management of nutrients in the soil using the BNF as sustainable system. However, if these limitations are handled carefully on scientific basis, then BFN can be a potential source for the management of soil nutrients. Crop residues from nodulated crops also provide nutrients especially nitrogen to the subsequent crops. By adopting the BFN as cropping system, it can cut the heavy use of nitrogen fertilizer which is not only costly but also polluting the environment especially the groundwater. However, optimization of nitrogen fixation can balance the use of fertilizer and thus can help to manage the nutrients for the crops in a sustainable manner. In the present chapter, it is discussed how BNF can be crucial in managing the nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DG (2000) Symbiotic interactions. In: Whitton BA, Potts M (eds), The ecology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 523–561

    Google Scholar 

  • Appleby CA (1984) Leghemoglobin and Rhizobium respiration. Annu Rev Plant Physiol 35:443–478

    Article  CAS  Google Scholar 

  • Beijerinck M (1901) Uber oligonitrophile mikroben. Zentralbl Bakterol Parasitenkd Infektionskr Hyg Abt II 7:561–582

    Google Scholar 

  • Bergersen F, Turner G, Gault R, Chase D, Brockwell J (1985) The natural abundance of 15N in an irrigated soybean crop and its use for the calculation of nitrogen fixation. Aust J Agric Res 36:411–423

    Article  CAS  Google Scholar 

  • Brady N, Weil R (2002) The nature and properties of soils, 2002. Contact: web: http://www.bjbabe.ro, e-mail: bjb@usab–tm.ro, 306

  • Brockwell J, Gault R, Herridge D, Morthorpe L, Roughley R (1988) Studies on alternative means of legume inoculation: microbiological and agronomic appraisals of commercial procedures for inoculating soybeans with BradyRhizobium japonicum. Aust J Agric Res 39:965–972

    Article  Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)–model food legumes. Plant Soil 252:55–128

    Article  CAS  Google Scholar 

  • Burns RC, Hardy RWF (1975) Nitrogen fixation in bacteria and higher plants. Molecular biology, biochemistry, and biophysics. Springer-Verlag, Berlin/Heidelberg, p 192 ISBN: 978-3-642-80926-2

    Book  Google Scholar 

  • Byth D, Chutikul OK, Topark-Ngarm OA (1986) Food legume improvement for Asian farming systems. Food legume improvement for Asian farming systems: proceedings of an international workshop held in Khon Kaen, Thailand, pp 1–5

    Google Scholar 

  • Chalk P (1991) The contribution of associative and symbiotic nitrogen fixation to the nitrogen nutrition of non-legumes. Plant Soil 132:29–39

    Article  CAS  Google Scholar 

  • Choudhury A, Kennedy I (2004) Prospects and potentials for systems of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Chu GX, Shen QR, Cao J (2004) Nitrogen fixation and N transfer from peanut to rice cultivated in aerobic soil in an intercropping system and its effect on soil N fertility. Plant Soil 263:17–27

    Article  CAS  Google Scholar 

  • Chudasama M, Mahatma L (2016) Isolation identification and characterization of Rhizobium sp. isolated from mung bean. J Cell Tissue Res 16:5457

    CAS  Google Scholar 

  • Craswell E, Loneragan J, Keerati-Kasikorn P (1987) Mineral constraints to food legume crop production in Asia. In: Wallis ES, Byth DE (eds) Food legume improvement for Asian farming systems, pp 99–111

    Google Scholar 

  • Danso S, Owiredu J (1988) Competitiveness of introduced and indigenous cowpea Brady Rhizobium strains for nodule formation on cowpeas [Vigna unguiculata (L.) Walp.] in three soils. Soil Biol Biochem 20:305–310

    Article  Google Scholar 

  • El-Refai H, Abdel Naby M, Gaballa A, El-Araby M, Fattah AA (2005) Improvement of the newly isolated Bacillus pumilus FH9 keratinolytic activity. Process Biochem 40:2325–2332

    Article  CAS  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636

    Article  CAS  Google Scholar 

  • Freire JJ (1982) Research into the Rhizobium/Leguminosae symbiosis in Latin America. Plant Soil 67:227–239

    Article  Google Scholar 

  • Hatfield JL, Boote KJ, Kimball B, Ziska L, Izaurralde RC, Ort D, Thomson AM, Wolfe D (2011) Climate impacts on agriculture: implications for crop production. Agron J 103:351–370

    Article  Google Scholar 

  • Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kabir R, Yeasmin S, Islam A, Sarkar MR (2013) Effect of phosphorus, calcium and boron on the growth and yield of groundnut (Arachis hypogea L.). Int J Bio Sci Bio Technol 5:51–60

    Google Scholar 

  • Karaca Ü, Uyanöz R (2012) Effectiveness of native Rhizobium on nodulation and growth properties of dry bean (Phaseolus vulgaris L.). Afr J Biotechnol 11:8986–8991

    Google Scholar 

  • Krishnan HB (2002) NolX of SinoRhizobium fredii USDA257, a type III-secreted protein involved in host range determination, is localized in the infection threads of cowpea (Vigna unguiculata [L.] Walp) and soybean (Glycine max [L.] Merr.) nodules. J Bacteriol 184:831–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Cassman KG, Field CB (2009) Crop yield gaps: their importance, magnitudes, and causes. Annu Rev Environ Resour 34:179–204

    Article  Google Scholar 

  • Ludwig F, Asseng S (2006) Climate change impacts on wheat production in a Mediterranean environment in Western Australia. Agric Syst 90:159–179

    Article  Google Scholar 

  • Martínez-Abarca F, Martínez-Rodríguez L, López-Contreras JA, Jiménez-Zurdo JI, Toro N (2013) Complete genome sequence of the alfalfa symbiont SinoRhizobium/Ensifer meliloti strain GR4. Genome Announc 1:e00174–e00112

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Romero E, Hernández-Lucas I, Peña-Cabriales J, Castellanos J (1998) Symbiotic performance of some modified Rhizobium etli strains in assays with Phaseolus vulgaris beans that have a high capacity to fix N 2. In: Molecular microbial ecology of the soil. Springer, Dordrecht, pp 89–94

    Chapter  Google Scholar 

  • Melorose J, Perroy R, Careas S (2015) World population prospects: the 2015 revision, key findings and advance tables. Working paper no. ESA/P/WP. 241, pp 1–59

    Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Kundu S, Shankar Gupta H (2009) Enhanced soybean (Glycine max L.) plant growth and nodulation by BradyRhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agric Scand Sect B Soil Plant Sci 59:189–196

    CAS  Google Scholar 

  • Mutegi JK, Mugendi DN, Verchot LV, Kung’u JB (2008) Combining napier grass with leguminous shrubs in contour hedgerows controls soil erosion without competing with crops. Agrofor Syst 74:37–49

    Article  Google Scholar 

  • Myers R, Wood I (1987) Food legumes in the nitrogen cycle of farming systems. In: Wallis ES, Byth DE (eds) Food legume improvement for Asian farming systems. ACIAR proceedings, pp 46–51

    Google Scholar 

  • Novak K, Chovanec P, Škrdleta V, Kropáčová M, Lisá L, Němcová M (2002) Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.). J Exp Bot 53:1735–1745

    Article  CAS  PubMed  Google Scholar 

  • Nyoki D, Ndakidemi P (2013) Economic benefits of BradyRhizobium japonicum inoculation and phosphorus supplementation in cowpea (Vigna unguiculata (L) Walp) grown in northern Tanzania. Am J Res Commun 1:173–189

    Google Scholar 

  • Ofori F, Stern W (1987) Cereal–legume intercropping systems. Advances in agronomy. Elsevier, pp 41–90

    Google Scholar 

  • Panhwar QA, Naher UA, Radziah O, Shamshuddin J, Razi IM (2015) Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria. Molecules 20:3628–3646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul E (1988) Towards the year 2000: directions for future nitrogen research. In: Wilson JR (ed) Advances in nitorogen cycling in agricultural ecosystems. CAB International, Wallingford, pp 417–425

    Google Scholar 

  • Peoples MB, Faizah A, Rerkasem B, Herridge DF (1989) Methods for evaluating nitrogen fixation by nodulated legumes in the field. Monographs. ACIAR, Canberra

    Google Scholar 

  • Provorov N, Tikhonovich I (2003) Genetic resources for improving nitrogen fixation in legume-rhizobia symbiosis. Genet Resour Crop Evol 50:89–99

    Article  CAS  Google Scholar 

  • Rai AN, Söderbäck E, Bergman B (2000) Tansley review no. 116 cyanobacterium–plant symbioses. New Phytol 147:449–481

    Article  CAS  PubMed  Google Scholar 

  • Rashid MH-o, Schäfer H, Gonzalez J, Wink M (2012) Genetic diversity of rhizobia nodulating lentil (Lens culinaris) in Bangladesh. Syst Appl Microbiol 35:98–109

    Article  PubMed  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303

    Article  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2011) Functional ecology of free-living nitrogen fixation: a contemporary perspective. Annu Rev Ecol Evol Syst 42:489–512

    Article  Google Scholar 

  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crop Res 108:1–13

    Article  Google Scholar 

  • Sanchez PA, Uehara G (1980) Management considerations for acid soils with high phosphorus fixation capacity. In: Khasawneh FE (ed) The role of phosphorus in agriculture. ASA, Madison, pp 471–514

    Google Scholar 

  • Sandhu J, Sinha M, Ambasht R (1990) Nitrogen release from decomposing litter of Leucaena leucocephala in the dry tropics. Soil Biol Biochem 22:859–863

    Article  CAS  Google Scholar 

  • Shanmugasundaram S (1989) Global cooperation for the improvement of soybean research and development. In: Pascale AJ (ed) Proceedings world soybean research conference IV, pp 1939–1947

    Google Scholar 

  • Soussi M, Ocana A, Lluch C (1998) Effects of salt stress on growth, photosynthesis and nitrogen fixation in chick-pea (Cicer arietinum L.). J Exp Bot 49:1329–1337

    Article  CAS  Google Scholar 

  • Thompson V (2004) Associative nitrogen fixation, C 4 photosynthesis, and the evolution of spittlebugs (Hemiptera: Cercopidae) as major pests of neotropical sugarcane and forage grasses. Bull Entomol Res 94:189–200

    Article  CAS  PubMed  Google Scholar 

  • Torrey JG (1978) Nitrogen fixation by actinomycete-nodulated angiosperms. Bioscience 28:586–592

    Article  Google Scholar 

  • Tschakert P, Khouma M, Sene M (2004) Biophysical potential for soil carbon sequestration in agricultural systems of the Old Peanut Basin of Senegal. J Arid Environ 59:511–533

    Article  Google Scholar 

  • Vadakattu G, Paterson J (2006) Free-living bacteria lift soil nitrogen supply. Farm Ahead 169:40

    Google Scholar 

  • Van Dommelen A, Vanderleyden J (2007) Associative nitrogen fixation. In: Biology of the nitrogen cycle. Elsevier, Amsterdam, pp 179–192

    Chapter  Google Scholar 

  • Van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crop Res 65:165–181

    Article  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall LG, Favelukes G (1991) Early recognition in the Rhizobium meliloti-alfalfa symbiosis: root exudate factor stimulates root adsorption of homologous rhizobia. J Bacteriol 173:3492–3499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yilmaz Ş, Atak M, Erayman M (2008) Identification of advantages of maize-legume intercropping over solitary cropping through competition indices in the East Mediterranean Region. Turk J Agric For 32:111–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Ul-Allah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khan, M.N., Ijaz, M., Ali, Q., Ul-Allah, S., Sattar, A., Ahmad, S. (2019). Biological Nitrogen Fixation in Nutrient Management. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_8

Download citation

Publish with us

Policies and ethics