Skip to main content

Use of Biofertilizers for Sustainable Crop Production

  • Chapter
  • First Online:
Agronomic Crops

Abstract

Sustainable crop production is the need of hour, and for optimum plant growth and development and higher productivity, availability of nutrients should be balanced and sufficient. In developing countries, among resource-poor farmers, soil infertility is the most important constraint for higher crop yield. In order to maintain soil fertility and higher crop production, use of synthetic fertilizers has been used widely. However, incessant use of fertilizers causes decline of soil quality as well as productivity. Continuous use of nitrogen and phosphorus fertilizers leads to soil acidity and enrichment of P in vegetable production. Improvement in soil fertility could be restored efficiently through adaption of integrated soil fertility management like biological nitrogen fixation (BNF) for increasing efficiency of inputs and higher productivity of crops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Agricultural importance of algae. Afr J Biotechnol 11:11648–11658

    Article  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni Sci 26:1–20

    Article  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth-promoting activities. Microbiol Res 163:173e181

    Article  CAS  Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Al Abboud MA, Ghany TMA, Alawlaqi MM (2013) Role of biofertilizers in agriculture: a brief review. Mycopathologia 11(2):95–101

    Google Scholar 

  • Ambrosini A, Beneduzi A, Stefanski T, Pinheiro F, Vargas L, Passaglia L (2012) Screening of plant growth promoting Rhizobacteria isolated from sunflower Helianthus annuus L. Plant Soil 356:245–264

    Article  CAS  Google Scholar 

  • Ansari MW, Trivedi DK, Sahoo RK, Gill SS, Tuteja N (2013) A critical review on fungi mediated plant responses with special emphasis to Piriformospora indica on improved production and protection of crops. Plant Physiol Biochem 70:403–410

    Article  CAS  PubMed  Google Scholar 

  • Arun KS (2007) Bio-fertilizers for sustainable agriculture. In: Sharma AK (ed) Biofertilizers for sustainable agriculture. Agribios Publishers, Jodhpur, pp 196–197

    Google Scholar 

  • Bagyalakshmi B, Ponmurugan P, Marimuthu S (2012) Influence of potassium solubilizing bacteria on crop productivity and quality of tea (Camellia sinensis). Afr J Agric Res 7:4250–4259

    Article  Google Scholar 

  • Banerjee S, Palit R, Sengupta C, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. Aust J Crop Sci 4:378–383

    CAS  Google Scholar 

  • Bertalan M, Albano R, de Pádua V, Rouws L, Rojas C, Hemerly A, Teixeira K, Schwab S, Araujo J, Oliveira A, França L (2009) Complete genome sequence of the sugarcane nitrogen-fixing endophyte Gluconacetobacter diazotrophicus Pal5. BMC Genomics 10(1):450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13(1):1

    Article  Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizer, a way toward organic agriculture: a review. Afr J Microbiol Res 8(24):2332–2342

    Article  Google Scholar 

  • Borkar SG (2015) Microbes as biofertilizers and their production technology. Wood Head Publishing India Pvt. Ltd, New Delhi, pp 7–153

    Book  Google Scholar 

  • Bucher M, Wegmüller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signalling. Curr Opin Plant Biol 12:500–507

    Article  CAS  PubMed  Google Scholar 

  • Chang CH, Yang SS (2009) Thermotolerant phosphate solubilizing microbes for multifunctional bio-fertilizer preparation. Bioresour Technol 100(4):1648–1658

    Article  CAS  PubMed  Google Scholar 

  • Chen JH (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, Land Development Department Bangkok, vol 16, pp 20

    Google Scholar 

  • Choudhury MA, Kennedy IR (2004) Prospect and potentials for system of biological nitrogen fixation in sustainable rice production. Biol Fertil Soils 39:219–227

    Article  Google Scholar 

  • Costa RRGF, Quirino GSF, Naves DCF, Santos CB, Rocha AFS (2015) Efficiency of inoculant with Azospirillum brasilense on the growth and yield of second-harvest maize. Pesq Agropec Trop Goiânia 45:304–311

    Article  Google Scholar 

  • Dastager SG, Deepa CK, Pandey A (2010) Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiol Biochem 48:987–992

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekar R, Dhandapani R (2012) Effect of biofertilizers on the growth of Helianthus annuus. Int J Plant Anim Environ Sci 2:143–147

    Google Scholar 

  • Gaur V (2010) Biofertilizer–necessity for sustainability. J Adv Dev 1:7–8

    Google Scholar 

  • Gupta AK (2004) The complete technology book on biofertilizer and organic farming. National Institute Of Industrial Research Press India, Delhi, pp 242–253

    Google Scholar 

  • Jetiyanon K, Pliabanchang P (2011) Potential of Bacillus cereus strain RS87 for the partial replacement of chemical fertilizers in the production of Thai rice cultivars. J Sci Food Agric 92(5):1080–1085

    Article  CAS  Google Scholar 

  • Ju I, Wj B, Md S, Ia O, Oj E (2018) A review: biofertilizer-a key player in enhancing soil fertility and crop productivity. J Microbiol Biotechnol Rep 2(1):22–28

    Google Scholar 

  • Khan MZ, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of meta contaminated soils. Environ Chem Lett 7(1):1–19

    Article  CAS  Google Scholar 

  • Kogel KH, Franken P, Huckelhovenl R (2006) Endophyte or parasite – what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Kosuta S (2003) Diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific expression in roots of Medicago truncatula. Plant Physiol 131:952–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kravchenko LV, Azarova TS, Makarova NM, Tikhonovich IA (2004) The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiol Res 73:156e158

    Google Scholar 

  • Kumar VV (2018) Biofertilizers and biopesticides in sustainable agriculture. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 377–398

    Chapter  Google Scholar 

  • Lamabam PS, Gill SS, Tuteja N (2011) Unraveling the role of fungal symbionts in plant abiotic stress tolerance. Plant Signal Behav 6:175–191

    Article  CAS  Google Scholar 

  • Liang LZ, Zhao X, Yi XY, Chen ZC, Dong XY, Chen RF, Shen RF (2013) Excessive application of nitrogen and phosphorus fertilizers induces soil acidification and phosphorus enrichment during vegetable production in Yangtze River Delta, China. Soil Use Manag 29:161–168

    Article  Google Scholar 

  • Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P (2017) Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24(4):3315–3335

    Article  CAS  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA, Rather HA, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. J Phytology 2(10):9–14

    Google Scholar 

  • Meena SK, Rakshit A, Meena VS (2016) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75

    Article  Google Scholar 

  • Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barley (Hordeum vulgare L.). Am Eurasian J Agric Environ Sci 3(6):822–828

    Google Scholar 

  • Mia MB, Shamsuddin ZH (2010) Nitrogen fixation and transportation by rhizobacteria: a scenario of rice and banana. Int J Bot 6:235–242

    Article  Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. ARPN J Agric Biol Sci 7(5):307–316

    Google Scholar 

  • Molina-Favero C, Mónica Creus C, Luciana Lanteri M, Correa-Aragunde N, Lombardo MC, Barassi AC, Lamattina L (2007) Nitric oxide and plant growth promoting rhizobacteria: common features influencing root growth and development. Adv Bot Res 46:1–33

    Article  CAS  Google Scholar 

  • Ogbo FC (2010) Conversion of cassava wastes for biofertilizer production using phosphate solubilizing fungi. Bioresour Technol 101:4120–4124

    Article  CAS  PubMed  Google Scholar 

  • Park J, Bolan N, Megharaj M, Naidu R (2010) Isolation of phosphate-solubilizing bacteria and characterization of their effects on lead immobilization. Pedologist 53:67–75

    CAS  Google Scholar 

  • Pindi PK, Satyanarayana SDV (2012) Liquid microbial consortium- a potential tool or sustainable soil health. J Biofertil Biopest 3:4

    Google Scholar 

  • Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V, Brun A, Tyler BM, Pardo AG, Martin F (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21:1197–1203

    Article  CAS  PubMed  Google Scholar 

  • Prajapathi K (2016) Impact of potassium solubilizing bacteria on growth and yield of mung bean Vigna radiata. Indian J Appl Res 6:390–392

    Google Scholar 

  • Pretty J, Bharucha ZP (2015) Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6(1):152–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramachandran VK, East AK, Karunakaran R, Downie JA, Poole SP (2011) Adaptation of Rhizobium leguminosarum to pea, alfalfa and sugar beet rhizosphere investigated by comparative transcriptomics. Genome Biol 12:106–109

    Article  CAS  Google Scholar 

  • Ritika B, Uptal D (2014) Bio-fertilizer a way towards organic agriculture: a review. Acad J 8(24):2332–2342

    Google Scholar 

  • Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GE, Downie JA, Etzler ME (2013) Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. Plant Physiol 161:556–567

    Article  CAS  PubMed  Google Scholar 

  • Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proc R Soc Lond B Biol Sci 264(1380):341–346

    Article  Google Scholar 

  • Salvioli A, Zouari I, Chalot M, Bonfante P (2012) The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol 12:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos VB, Araujo SF, Leite LF, Nunes LA, Melo JW (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231

    Article  CAS  Google Scholar 

  • Sevilla M, Burris RH, Gunapala N, Kennedy C (2001) Comparison of benefit to sugarcane plant growth and 15n2 incorporation following inoculation of sterile plants with Acetobacter diazotrophicus wild-type and Nif–mutant strains. Mol Plant-Microbe Interact 14:358–366

    Article  CAS  PubMed  Google Scholar 

  • Sheng XF (2005) Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biol Biochem 37:1918–1922

    Article  CAS  Google Scholar 

  • Sieberer BJ, Chabaud M, Timmers AC, Monin A, Fournier J, Barker DG (2009) A nuclear-targeted cameleon demonstrates intranuclear Ca2+ spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol 151:1197–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3):339–353

    Article  Google Scholar 

  • Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. https://doi.org/10.5958/2229-4473.2015.00012.9

    Article  Google Scholar 

  • Splivallo R, Fischer U, Gobel C, Feussner I, Karlovsky P (2009) Truffles regulate plant root morphogenesis via the production of auxin and ethylene. Plant Physiol 150:2018–2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swathi V (2010) The use and benefits of bio-fertilizer and biochar on agricultural soils. Unpublished B.Sc. thesis, Department of Chemical and Biological Engineering. Chalmers University of Technology Goteborg Sweden vol 20, pp 4

    Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact in microbial soil microbial communities: a review. Biomed Res Int 2013:11

    Article  Google Scholar 

  • Tromas A, Parizot B, Diagne N, Champion A, Hocher V (2012) Heart of endosymbioses: transcriptomics reveals a conserved genetic program among arbuscular mycorrhizal, actinorhizal and legume-rhizobial symbioses. PLoS One 7:e44742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vlek PLG, Vielhauer K (1994) Nutrient management strategies in stressed environments. In: Virmani SM, Katyal JC, Eswaran H, Abrol IP (eds) Stressed ecosystems and sustainable agriculture. Oxford and IBH Publishing Co, New Delhi, pp 203–229

    Google Scholar 

  • Whitman M (2009) Mycorrhizae and plants. Wild ones March/April, pp 1–3

    Google Scholar 

  • Yang S (2006) Effect of long–term fertilization on soil productivity and nitrate accumulation in Gansu oasis. Agric Sci China 5:57–67

    Article  Google Scholar 

  • Zhang Q, Blaylock LA, Harrison MJ (2010) Two Medicago truncatula half-ABC transporters are essential for arbuscule development in arbuscular mycorrhizal symbiosis. Plant Cell 22:1483–1497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shabbir, R.N. et al. (2019). Use of Biofertilizers for Sustainable Crop Production. In: Hasanuzzaman, M. (eds) Agronomic Crops. Springer, Singapore. https://doi.org/10.1007/978-981-32-9783-8_9

Download citation

Publish with us

Policies and ethics