Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 250 Accesses

Abstract

The role of inter-model spreads of the cloud radiation feedback on the uncertainties of tropical Pacific SST warming (TPSW) pattern is investigated in this chapter. The large inter-model discrepancies of the cloud radiation feedback over the central Pacific, which appear to be the leading source of inter-model uncertainty in the TPSW pattern, contribute 24% of inter-model variance in the TPSW pattern with a peak over the western and central Pacific. The influence mechanism of the cloud radiation feedback on the TPSW pattern is revealed based on the surface heat budget analysis. A relatively weak negative cloud radiation feedback over the central Pacific can induce a warm SST deviation over the central Pacific, producing a low-level convergence on the equatorial Pacific that suppress (enhance) the evaporation cooling and zonal cold advection in the western (eastern) Pacific. With the processes, the original positive SST deviation over the central Pacific will move westward to the western and central Pacific with a negative SST deviation in the eastern Pacific. A group of model experiments with a coupled ocean–atmosphere model further verifies this mechanism of impact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anthes RA (1977) A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon Weather Rev 105:270–286

    Article  Google Scholar 

  2. Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17:2493–2525

    Article  Google Scholar 

  3. Bellomo K, Clement AC, Norris JR, Soden BJ (2013) Observational and model estimates of cloud amount feedback over the Indian and Pacific oceans. J Clim 27:925–940. https://doi.org/10.1175/JCLI-D-13-00165.1

    Article  Google Scholar 

  4. Bony S et al (2006) How well do we understand and evaluate climate change feedback processes? J Clim 19:3445–3482

    Article  Google Scholar 

  5. Calisto M, Folini D, Wild M, Bengtsson L (2014) Cloud radiative forcing intercomparison between fully coupled CMIP5 models and CERES satellite data. Ann Geophys 32:793–807. https://doi.org/10.5194/angeo-32-793-2014

    Article  Google Scholar 

  6. Cess RD et al (1989) Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science 245:513–516

    Article  CAS  Google Scholar 

  7. Cherry S (1996) Singular value decomposition analysis and canonical correlation analysis. J Clim 9:2003–2009

    Article  Google Scholar 

  8. Clement AC, Seager R, Cane MA, Zebiak SE (1996) An ocean dynamical thermostat. J Clim 9:2190–2196

    Article  Google Scholar 

  9. Collins M (2005) El Niño- or La Niña-like climate change? Clim Dyn 24:89–104. https://doi.org/10.1007/s00382-004-0478-x

    Article  Google Scholar 

  10. DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee S-K (2009) Climate response of the equatorial Pacific to global warming. J Clim 22:4873–4892. https://doi.org/10.1175/2009jcli2982.1

    Article  Google Scholar 

  11. Donner LJ et al (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519. http://doi.org/10.1175/2011JCLI3955.1

    Article  Google Scholar 

  12. Huang P, Ying J (2015) A multimodel ensemble pattern regression method to correct the tropical Pacific SST change patterns under global warming. J Clim 28:4706–4723. https://doi.org/10.1175/JCLI-D-14-00833.1

    Article  Google Scholar 

  13. Huang P, Wang P, Hu K, Huang G, Zhang Z, Liu Y, Yan B (2014) An introduction to the integrated climate model of the center for monsoon system research and its simulated influence of El Niño on East Asian-western North Pacific climate. Adv Atmos Sci 31:1136–1146

    Article  Google Scholar 

  14. Li G, Xie S-P (2012) Origins of tropical-wide SST biases in CMIP multi-model ensembles. Geophys Res Lett 39:L22703. https://doi.org/10.1029/2012GL053777

    Article  Google Scholar 

  15. Li G, Xie S-P (2014) Tropical biases in CMIP5 multimodel ensemble: the excessive equatorial Pacific cold tongue and double ITCZ problems. J Clim 27:1765–1780. https://doi.org/10.1175/jcli-d-13-00337.1

    Article  Google Scholar 

  16. Lin J-L (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20:4497–4525. https://doi.org/10.1175/JCLI4272.1

    Article  Google Scholar 

  17. Long SM, Xie SP (2015) Intermodel variations in projected precipitation change over the North Atlantic: sea surface temperature effect. Geophys Res Lett 42:4158–4165. https://doi.org/10.1002/2015GL063852

    Article  Google Scholar 

  18. Ma J, Xie S-P (2013) Regional patterns of sea surface temperature change: a source of uncertainty in future projections of precipitation and atmospheric circulation. J Clim 26:2482–2501. https://doi.org/10.1175/jcli-d-12-00283.1

    Article  Google Scholar 

  19. Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace, 193 pp

    Google Scholar 

  20. Ramanathan V, Collins W (1991) Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature 351:27–32. https://doi.org/10.1038/351027a0

    Article  Google Scholar 

  21. Randall D, Khairoutdinov M, Arakawa A, Grabowski W (2003) Breaking the cloud parameterization deadlock. Bull Am Meteor Soc 84:1547–1564

    Article  Google Scholar 

  22. Roeckner E et al (2006) Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J Clim 19:3771–3791. http://doi.org/10.1175/JCLI3824.1

    Article  Google Scholar 

  23. Soden BJ, Held IM (2006) An assessment of climate feedbacks in coupled ocean-atmosphere models. J Clim 19:3354–3360. https://doi.org/10.1175/JCLI3799.1

    Article  Google Scholar 

  24. Stephens GL (2005) Cloud feedbacks in the climate system: a critical review. J Clim 18:237–273. https://doi.org/10.1175/JCLI-3243.1

    Article  Google Scholar 

  25. Valcke S (2006) OASIS3 user guide. PRISM Tech Rep 3:64 pp

    Google Scholar 

  26. Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. https://doi.org/10.1175/jcli4258.1

    Article  Google Scholar 

  27. Vecchi GA, Clement A, Soden BJ (2008) Examining the tropical Pacific’s response to global warming. Eos, Trans Am Geophys Union 89:81–83. https://doi.org/10.1029/2008EO090002

    Article  Google Scholar 

  28. Wallace JM, Smith C, Bretherton CS (1992) Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J Clim 5:561–576. http://doi.org/10.1175/1520-0442(1992)005,0561:SVDOWS.2.0.CO;2

  29. Webb MJ et al (2006) On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Clim Dyn 27:17–38. http://doi.org/10.1007/s00382-006-0111-2

    Article  Google Scholar 

  30. Xie S-P, Deser C, Vecchi GA, Ma J, Teng H, Wittenberg AT (2010) Global warming pattern formation: sea surface temperature and rainfall. J Clim 23:966–986. https://doi.org/10.1175/2009jcli3329.1

    Article  Google Scholar 

  31. Ying J, Huang P (2016) Cloud-Radiation feedback as a leading source of uncertainty in the tropical Pacific SST warming pattern in CMIP5 models. J Clim 29:3867–3881. https://doi.org/10.1175/JCLI-D-15-0796.1

    Article  Google Scholar 

  32. Zhang L, Li T (2014) A simple analytical model for understanding the formation of sea surface temperature patterns under global warming. J Clim 27:8413–8421. https://doi.org/10.1175/jcli-d-14-00346.1

    Article  Google Scholar 

  33. Zheng Y, Lin J-L, Shinoda T (2012) The equatorial Pacific cold tongue simulated by IPCC AR4 coupled GCMs: upper ocean heat budget and feedback analysis. J Geophys Res 117:C05024. https://doi.org/10.1029/2011jc007746

    Article  Google Scholar 

  34. Zhou Z-Q, Xie S-P (2015) Effects of climatological model biases on the projection of tropical climate change. J Clim 28:9909–9917. https://doi.org/10.1175/JCLI-D-15-0243.1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ying .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ying, J. (2020). Influence of Cloud Radiation Feedback on the Uncertainty in Projecting Tropical Pacific SST Warming Pattern. In: Sources of Uncertainty in the Tropical Pacific Warming Pattern under Global Warming Projected by Coupled Ocean-Atmosphere Models. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9844-6_3

Download citation

Publish with us

Policies and ethics