Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 525 Accesses

Abstract

We start by reviewing previous theoretical and numerical studies on collective motion of self-propelled elements. Especially, we comprehensively review standard models on collective motion: Vicsek-style models and corresponding hydrodynamic theories. Then existing experimental works are carefully examined based on the theoretical understandings. We stress that giant number fluctuations rooted in the spontaneous rotational symmetry breaking need to be discussed in the homogeneous long-range ordered phase without any clusters. We conclude this chapter by mentioning the gaps between those previous experiments and the theoretical predictions. We clarify what is required to observe experimentally to test the theoretical predictions on the Vicsek universality class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the definition here, \(\theta _j^t\) is updated prior to the update of \(\varvec{r}_j^t\). It is known that the Vicsek model is robust against the order of updating these two variables.

  2. 2.

    Note that, if you do not wait until the system relaxes to steady states, there exist apparent clusters.

  3. 3.

    In the first Vicsek’s paper [2], the number of simulated particles was \(10^4\) at the largest. On the other hand, in [1], the number of particles was more than \(5\times 10^5\).

  4. 4.

    The period T should be long enough so that the N(t) and \(N(t+T)\) are decorrelated.

  5. 5.

    True and quasi-long-range order can be distinguished by correlation functions. If the correlation remains positive at the large system size limit, the system has true long-range order. On the other hand, the correlation decays algebraically in the case of quasi-long-range order.

  6. 6.

    In their original papers [4, 5, 7], there are ‘fluctuations of notation’, which we have corrected in this thesis.

  7. 7.

    Such topological phases are often observed in two-dimensional cultures of mammalian cells with high aspect ratio such as neural progenitor cells [37] and epithelial cells [38].

References

  1. Chaté H, Ginelli F, Grégoire G, Raynaud F (2008) Collective motion of self-propelled particles interacting without cohesion. Phys Rev E 77(4):046113

    Article  ADS  Google Scholar 

  2. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O (1995) Novel type of phase transition in a system of self-driven particles. Phys Rev Lett 75(6):1226

    Article  ADS  MathSciNet  Google Scholar 

  3. Grégoire G, Chaté H (2004) Onset of collective and cohesive motion. Phys Rev Lett 92(2):025702

    Article  ADS  Google Scholar 

  4. Toner J, Tu Y (1995) Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys Rev Lett 75(23):4326–4329

    Google Scholar 

  5. Toner J, Tu Y (1998) Flocks, herds, and schools: a quantitative theory of flocking. Phys Rev E 58(4):4828–4858

    Google Scholar 

  6. Toner J (2012) Reanalysis of the hydrodynamic theory of fluid, polar-ordered flocks. Phys Rev E 86(3):031918

    Article  ADS  MathSciNet  Google Scholar 

  7. Toner J, Tu Y, Ramaswamy S (2005) Hydrodynamics and phases of flocks. Ann Phys 318:170–244

    Google Scholar 

  8. Ramaswamy S, Simha RA, Toner J (2003) Active nematics on a substrate: giant number fluctuations and long-time tails. Europhys Lett 62(2):196–202

    Article  ADS  Google Scholar 

  9. Ginelli F (2016) The physics of the vicsek model. Eur Phys J: Special Topics 225:2099–2117

    ADS  Google Scholar 

  10. Tu Y, Toner J, Ulm M (1998) Sound waves and the absence of galilean invariance in flocks. Phys Rev Lett 80(21):4819–4822

    Google Scholar 

  11. Peshkov A, Aranson IS, Bertin E, Chaté H, Ginelli F (2012) Nonlinear field equations for aligning self-propelled rods. Phys Rev Lett 109(26):268701

    Article  ADS  Google Scholar 

  12. Bertin E, Chaté H, Ginelli F, Mishra S, Peshkov A, Ramaswamy S (2013) Mesoscopic theory for fluctuating active nematics. New J Phys 15(8):085032

    Article  Google Scholar 

  13. Peshkov A, Bertin E, Ginelli F, Chaté H (2014) Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models. Eur Phys J Special Topics 223:1315–1344

    Article  ADS  Google Scholar 

  14. Mermin ND, Wagner H (1966) Absence of ferromagnetism or antiferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys Rev Lett 17(22):1133

    Google Scholar 

  15. Kosterlitz JM, Thouless DJ (1973) Ordering, metastability and phase transitions in two-dimensional systems. J Phys C: Solid State Phys 6:1181–1203

    Article  ADS  Google Scholar 

  16. Chaté H, Ginelli F, Montagne R (2006) Simple model for active nematics: quasi-long-range order and giant fluctuations. Phys Rev Lett 96(18):180602

    Article  ADS  Google Scholar 

  17. Ngo S, Peshkov A, Aranson IS, Bertin E, Ginelli F, Chaté H (2014) Large-scale chaos and fluctuations in active nematics. Phys Rev Lett 113(3):038302

    Article  ADS  Google Scholar 

  18. Ginelli F, Peruani F, Bär M, Chaté H (2010) Large-scale collective properties of self-propelled rods. Phys Rev Lett 104(18):184502

    Article  ADS  Google Scholar 

  19. Narayan V, Ramaswamy S, Menon N (2007) Long-lived giant number fluctuations in a swarming granular nematic. Science (New York, N.Y.), Vol 317, p 105

    Google Scholar 

  20. Zhang HP, Be’er A, Florin E-L, Swinney HL (2010) Collective motion and density fluctuations in bacterial colonies. Proc Natl Acad Sci USA, Vol 107, No 31, pp 13626–13630

    Google Scholar 

  21. Mishra S, Puri S, Ramaswamy S (2014) Aspects of the density field in an active nematic. Philos Trans Royal Soc A 372(2029):20130364

    Article  ADS  Google Scholar 

  22. Mishra S, Simha RA, Ramaswamy S (2010) A dynamic renormalization group study of active nematics. J Stat Mech: Theory Exp 2010(02):P02003

    Google Scholar 

  23. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J, Rao M, Simha RA (2013) Hydrodynamics of soft active matter. Rev Modern Phys 85(3):1143–1189

    Google Scholar 

  24. Solon AP, Tailleur J (2013) Revisiting the flocking transition using active Spins. Phys Rev Lett 111(7):078101

    Article  ADS  Google Scholar 

  25. Solon AP, Chaté H, Tailleur J (2015) From phase to microphase separation in flocking models: the essential role of nonequilibrium fluctuations. Phys Rev Lett 114(6):068101

    Google Scholar 

  26. Nishiguchi D, Nagai KH, Chaté H, Sano M (2017) Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria. Phys Rev E 95(2):020601(R)

    Google Scholar 

  27. Schaller V, Bausch AR (2013) Topological defects and density fluctuations in collectively moving systems. Proc Natl Acad Sci USA 110(12):4488–4493

    Google Scholar 

  28. Bricard A, Caussin J-B, Desreumaux N, Dauchot O, Bartolo D (2013) Emergence of macroscopic directed motion in populations of motile colloids. Nature 503(7474):95–98

    Article  ADS  Google Scholar 

  29. Deseigne J, Dauchot O, Chaté H (2010) Collective motion of vibrated polar disks. Phys Rev Lett 105(9):098001

    Article  ADS  Google Scholar 

  30. Kumar N, Soni H, Ramaswamy S, Sood AK (2014) Flocking at a distance in active granular matter. Nature Commun 5:4688

    Google Scholar 

  31. Duclos G, Garcia S, Yevick HG, Silberzan P (2014) Perfect nematic order in confined monolayers of spindle-shaped cells. Soft Matter 10(14):2346–2353

    Article  ADS  Google Scholar 

  32. Wensink HH, Dunkel J, Heidenreich S, Drescher K, Goldstein RE, Löwen H, Yeomans JM (2012) Meso-scale turbulence in living fluids. Proc Natl Acad Sci USA 109(36):14308–14313

    Article  ADS  Google Scholar 

  33. Chaté H, Ginelli F, Grégoire G, Peruani F, Raynaud F (2008) Modeling collective motion: variations on the Vicsek model. Eur Phys J B 64:451–456

    Article  ADS  Google Scholar 

  34. Weber CA, Hanke T, Deseigne J, Léonard S, Dauchot O, Frey E, Chaté H (2013) Long-range ordering of vibrated polar disks. Phys Rev Lett 110(20):208001

    Article  ADS  Google Scholar 

  35. Peruani F, Starruß J, Jakovljevic V, Søgaard-Andersen L, Deutsch A, Bär M (2012) Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys Rev Lett 108(9):098102

    Article  ADS  Google Scholar 

  36. Wensink HH, Löwen H (2012) Emergent states in dense systems of active rods: from swarming to turbulence. J Phys: Condensed Matter Condensed Matter 24(46):464130

    ADS  Google Scholar 

  37. Kawaguchi K, Kageyama R, Sano M (2017) Topological defects control collective dynamics in neural progenitor cell cultures. Nature 545:327–331

    Article  ADS  Google Scholar 

  38. Saw TB, Doostmohammadi A, Nier V, Kocgozlu L, Thampi S, Toyama Y, Marcq P, Lim CT, Yeomans JM, Ladoux B (2017) Topological defects in epithelia govern cell death and extrusion. Nature 544(7649):212–216

    Google Scholar 

  39. Schaller V, Weber C, Semmrich C, Frey E, Bausch AR (2010) Polar patterns of driven filaments. Nature 467(7311):73–77

    Google Scholar 

  40. Sumino Y, Nagai KH, Shitaka Y, Tanaka D, Yoshikawa K, Chaté H, Oiwa K (2012) Large-scale vortex lattice emerging from collectively moving microtubules. Nature 483:448–452

    Google Scholar 

  41. Suzuki R, Weber CA, Frey E, Bausch AR (2015) Polar pattern formation in driven filament systems requires non-binary particle collisions. Nature Phys 11:839–844

    Article  ADS  Google Scholar 

  42. Geyer D, Morin A, Bartolo D (2018) Sounds and hydrodynamics of polar active fluids. Nature Mater 17(9):789–793

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daiki Nishiguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nishiguchi, D. (2020). Standard Models on Collective Motion. In: Order and Fluctuations in Collective Dynamics of Swimming Bacteria. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-32-9998-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-32-9998-6_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-32-9997-9

  • Online ISBN: 978-981-32-9998-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics