Skip to main content

Long term atmospheric aerosol characterization in the Amazon Basin

  • Chapter
  • First Online:
Environmental Geochemistry in the Tropics

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 72))

Abstract

This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andreae, M.O. (1983). Soot carbon and excess fine potassium: long-range transport of combustion derived aerosols. Science, 220:1148–1151.

    Google Scholar 

  • Andreae, M.O.; T. W. Andreae; R. J. Ferek; H. Raemdonck (1984). Long-range transport of soot carbon in the marine atmosphere, Sci. Total Environ., 36:73–80.

    Google Scholar 

  • Artaxo, P., Storms, H., Bruynseels, F., Van Grieken, R., Maenhaut, W. (1988). Composition and sources of aerosols from the Amazon Basin. J. Geophys. Res., 93:1605–1615.

    Google Scholar 

  • Artaxo, P., Maenhaut, W., Storms, H. e Van Grieken, R. (1990). Aerosol characteristics and sources for the Amazon Basin during the wet season. J. Geophys. Res., 95:1671–16985.

    Google Scholar 

  • Artaxo, P., Gerab, F. e Rabello, M. L. C. (1993). Elemental composition of the aerosol particles from two atmospheric monitoring stations in the Amazon Basin. Nucl. Inst. Meth., B75:277–281.

    Google Scholar 

  • Artaxo, P.; Yamasoe, M.M.; Martins, J.V.; Kocinas, S.,; Carvalho, S.; Maenhaut, W. (1993). Case study of atmospheric measurements in Brazil: Aerosol emissions in the Amazon Basin biomass burning. In: Fire in the environment: The ecological, atmospheric and climatic importance of vegetation fires; Crutzen, P.J. and Goldammer, J-G. (Eds.). Dahlem Konferenzen ES13. John Wiley and Sons, Chichester. Pp:139–158.

    Google Scholar 

  • Artaxo, P., Gerab, F., Yamasoe, M. A. and Martins, J. V. (1994). Fine mode aerosol composition at three long term atmospheric monitoring sites in the Amazon Basin. J. Geophys. Res., 99D:22857–22868.

    Google Scholar 

  • Artaxo, P. e Hansson, H-C. (1995). Size distribution of biogenic aerosol particles from the Amazon Basin. Atmospheric Environment, 29:393–402.

    Google Scholar 

  • Asking, L., Swietlick, E., Garg, M. L. (1987). PIGE analysis for sodium in thin aerosol samples. Nucl. Inst. Meth., B22:368–371.

    Google Scholar 

  • Bingemer, H. G., Andreae, M. O., Andreae, T. W., Artaxo, P., Helas, G., Jacob, D. J., Mihalopoulos, N. and Nguyen, B. C. (1992). Sulfur gases and aerosols in and above the Equatorial African rain forest. J. Geophys. Res., 97:6207–6217.

    Google Scholar 

  • Cashier, H.; Buat-Menard, P.; Fontugne, M.; Rancher, J. (1985). Source terms and source strengths of the carbonaceous aerosols in the tropics. J.Atmos.Chem., 3:469–489.

    Google Scholar 

  • Crozat, G.; Domerge, J.L.; Baudet, J.; Bogui, V. (1978). Influence des feux de brousse sur la composition chimique des aérosols atmosphériques en Afrique de l'Ouest. Atmos.Environ., 12:1917–1920.

    Google Scholar 

  • Crutzen, P.; Andreae, M.O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250:1669–1678.

    Google Scholar 

  • Crutzen, P.J.; Heidt, L.E.; Krasnec, J.P.; Pollock, W.H., Seiler, W. (1979). Biomass burning as a source of the atmospheric gases CO, H2, N2O, NO, CH3Cl and COS Nature, 282:253–256.

    Google Scholar 

  • Dingle, A. M., (1966). Pollen as condensation nuclei, J. Rech. Atmosph., 2, 231–237.

    Google Scholar 

  • Garstang, M.; Scala, J.; Greco, S., Harriss, R.; Beck, S.; Browell, E.; Sachse, G.; Gregory, G.; Hill, G.; Simpson, J.; Tao, W.K.; Torres, A. (1988). Trace gas exchange and convective transport over the amazonian rain forest. J.Geophys. Res., 93:1528–1550.

    Google Scholar 

  • Greco, S., Swap, R., Garstang, M., Ulanski, S., Shipman, M., Harriss, R., Talbot, R., Andreae, M. O. and Artaxo, P. (1990). Rainfall and surface kinematic conditions over Central Amazonia during ABLE-2B. J. Geophys. Res., 95D:17001–17014.

    Google Scholar 

  • Holben, B. N., Setzer, A. W., Eck, T. F., Pereira, E. B. and Slusker, I. (1996). Effect of dry season biomass burning on Amazon basin aerosol concentrations and optical properties, 1992–1994. J. Geophys. Res., 101(D14):19465–19481.

    Google Scholar 

  • Hopke, P.K. (1991). Receptor modelling for air quality management. Elsevier Science Pub., Amsterdam.

    Google Scholar 

  • Horvath, H. (1993). Atmospheric light absorption: a review. Atmosph. Env., 27A(3):293–317.

    Google Scholar 

  • Johansson, S. A. E. and Campbell, J. L. (1988). PIXE: A novel technique for elemental analysis. John Wiley and Sons, Chichester.

    Google Scholar 

  • Lacaux, J.-P.; Cachier, H.; Delmas, H. (1993). Biomass burning in Africa. An overview of its impact on atmospheric chemistry. In: Fire in the environment: The ecological, atmospheric and climatic importance of vegetation fires. Crutzen, P.J. and Goldammer, J-G. (Eds.). Dahlem Konferenzen ES13. John Wiley and Sons, Chichester. Pp.:159–191.

    Google Scholar 

  • Maki, L. R. and Willoughby, K. J. (1978). Bacteria as a source of freezing nuclei. J. Applied Meteorology, 17:1049–1053.

    Google Scholar 

  • Parkin, D. W., Phillips, D. R., Sullivan, R. A. L. and Johnson, L. R. (1972). Airborn dust collections down the Atlantic. Quart. J. Roy. Meteor. Soc., 98:798–808.

    Google Scholar 

  • Pereira, E.B.; Setzer, A.W.; Gerab, F.; Artaxo, P.; Pereira, M.C.; Monroe, G. (1996). Airborne measurements of biomass burning aerosols in Brazil related to the Trace-A experiment. J.Geophys.Res., 101:23983–23992.

    Google Scholar 

  • Prospero, J. M., Nees, R. T. and Uematsu, M. (1987). Deposition rate of particulate and dissolved aluminium derived from Saharan dust in precipitation at Miami. J. Geophys. Res., 92:14723–14731.

    Google Scholar 

  • Prospero, J. M., Glaccum, R. A. and Nees, R. T. (1981). Atmospheric transport of soil dust from Africa to South America. Nature, 289:570–572.

    Google Scholar 

  • Salati, E. and Vose, P.B. (1984). Amazon Basin: A system in equilibrium. Science, 225:129–138.

    Google Scholar 

  • Savoie, D. and Prospero, J.M. (1977). Aerosol concentration statistics for the northern tropical Atlantic. J. Geophys. Res., 82:5954–5964.

    Google Scholar 

  • Schnell, R. C. (1982). Kenia leaf litter: a source of ice nuclei. Tellus, 34:92–95.

    Google Scholar 

  • Setzer, A.; Pereira, E.B. (1991). Amazon biomass burning in 1987 and estimate of their tropospheric emissions. Ambio, 20:19–22.

    Google Scholar 

  • Simoneit, B. R. T. (1989). Organic matter of the troposphere — V: Application of molecular marker analysis to biogenic emissions into the troposphere for source reconciliations. J. Atmosph. Chem., 8:251–275.

    Google Scholar 

  • Swap, R.; Garstang, M.; Greco, S.; Talbot, R.; Kallberg, P. (1992). Saharan dust in the Amazon basin. Tellus, 44B:133–149.

    Google Scholar 

  • Swap, R.; Ulanski, S.; Cobbett, M.; Garstang, M. (1996). Temporal and spatial characteristics of Saharan dust outbreaks. J.Geophys.Res., 101:4205–4220.

    Google Scholar 

  • Talbot, R. W., Andreae, M. O., Berrescheim, H., Artaxo, P., Garstang, M., Harriss, R. C., Beecher, K.M. and Li, S. M. (1990). Aerosol chemistry during the wet season in Central America: Thr influence of long term range transport. J. Geophys. Res., 95:16955–16969.

    Google Scholar 

  • Thurston, S. R. and Spengler, J. D. (1985). A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atm. Env., 19:9–25.

    Google Scholar 

  • Vali, G., Christensen, M., Fresh, R. W., Galyvan, E. L., Maki, R. R. e Schnell, R. C. (1976). Biogenic ice nuclei. Part II: Bacterial sources. J.Atmosph. Sci., 33:1565–1570.

    Google Scholar 

  • Vitousek, P.M.; Sanford, R.L. (1986). Nutrient cycling in moist tropical forest. Ann.Rev.Ecol. Syst., 17:137–167.

    Google Scholar 

  • Ward, D.E.; Hardy, C.C. (1991). Smoke emissions from wildland fires. Environ. Internat., 17:117–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Julio C. Wasserman Emmanuel V. Silva-Filho Roberto Villas-Boas

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag

About this chapter

Cite this chapter

Artaxo, P., Gerab, F., Yamasoe, M.A. (1998). Long term atmospheric aerosol characterization in the Amazon Basin. In: Wasserman, J.C., Silva-Filho, E.V., Villas-Boas, R. (eds) Environmental Geochemistry in the Tropics. Lecture Notes in Earth Sciences, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0010918

Download citation

  • DOI: https://doi.org/10.1007/BFb0010918

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63730-1

  • Online ISBN: 978-3-540-69638-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics