Skip to main content

Transition metal complexes of (strained) cyclophanes

  • Chapter
  • First Online:
Cyclophanes

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 172))

Abstract

Numerous transition metal complexes of strained cyclophanes are known, including the metals Cr, Mo, W, Fe, Ru, Co, Rh, Ir, Ni, Cu, Ag and U. The complexed phanes turned out to be valuable subjects for NMR-examinations in order to draw a map of the magnetic environment of sandwich complexes, e.g. di(benzene)chromium and ferrocene, and they provided an insight into the effect of ring current disrupture, due to metal complexation. First attempts were carried out to derivatize the cyclophanes using the metal fragment as an auxiliary group, which is easily introduced as well as removed. In this context a tricarbonylchromium complex of a chiral [2.2]metacyclophane was prepared recently and its absolute configuration, containing two elements of chirality, was determined by X-ray crystallography. Complexation of the cyclophanes was also used for the purpose of the preparation of numerous novel phanes which were not yet available via other routes, e.g. syn-[2.2]metacyclophane, and phanes, which contain anti-aromatic π-decks and are only stable when complexed with the metal. Removing the stabilizing metal unit lead to valence isomerism, which gave interesting hydrocarbons, e.g. propella[34]prismane.

The synthesis of [4]ferrocenophane, containing an iron-II-ion in the center of the hydrocarbon cage, has been achieved recently. The closely related [3]- and

Of increasing interest is the construction of an organometallic polymer, containing alternating phane and metal units, because of its use as an electrical conductor. The first oligomeric units of such a polymer have already been prepared, using either iron-II, coordinated to indenophanes, or ruthenium-II, coordinated sandwich-like to multibridged [2n]cyclophanes. The 2-electron reduction product of the sandwich complex of the bis(ruthenium-II) complex with [24](1,2,4,5)cyclophane, the most stable in this series, establishes the first example, where a netto-2-electron intervalence transfer of a discrete, mixed-valence organometallic complex was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pellegrin M (1899) Rec Trav Chim Pays Bas 18: 558

    Google Scholar 

  2. Cram DJ, Steinberg HJ (1951) J Am Chem Soc 73: 5691

    Google Scholar 

  3. Cram DJ (1959) Rec Chem Prog 20: 71

    Google Scholar 

  4. Boekelheide V (1980) Acc Chem Res 13: 65

    Google Scholar 

  5. Sekine Y, Boekelheide, V (1981) J Am Chem Soc 103: 1777

    Google Scholar 

  6. Sekine Y, Brown M, Boekelheide V (1979) J Am Chem Soc 101: 3126

    Google Scholar 

  7. Jenneskens LW, de Kanter FJJ, Kraakman PA, Turkenburg LAM, Koolhaas WE, de Wolf WH, Bickelhaupt F, Tobe Y, Kakiuchi K, Odaira Y (1985) J Am Chem Soc 107: 3716

    Google Scholar 

  8. Rice JE, Lee TJ, Remington RB, Allen WD, Clabo Jr DA, Schäfter III HF (1987) J Am Chem Soc 109: 2902

    Google Scholar 

  9. There is evidence for the short life existence of even [3]paracyclophane: F. Bickelhaupt, Amsterdam (personal communication, 1992)

    Google Scholar 

  10. Otsubo T, Mizogami S, Otsubo I, Tozuka Z, Sakagami A, Sakata Y, Misumi S (1973) Bull Chem Soc Jpn 46: 3519

    Google Scholar 

  11. Misumi S, Otsubo T (1978) Acc Chem Res 11: 251

    Google Scholar 

  12. Schmidbaur H (1985) Angew Chem 97: 893; Int Ed Engl 24: 893

    Google Scholar 

  13. Watts WE (1967) Organomet Chem Rev 2: 231

    Google Scholar 

  14. Mueller-Westerhoff UT (1986) Angew Chem 98: 700; Int Ed Engl 25: 702

    Google Scholar 

  15. 'Schmidbaur H, Bublak W, Huber B, Hofmann J, Müller G (1989) Chem Ber 122: 265

    Google Scholar 

  16. Schmidbaur H, Hager R, Huber B, Müller G (1987) Angew Chem 99: 354; Int Ed Engl 26: 355

    Google Scholar 

  17. Schmidbaur H, Bublak W, Huber B, Müller G (1987) Zeitschr Naturforsch B42: 147

    Google Scholar 

  18. Schmidbaur H, Bublak W, Huber B, Müller G (1986) Helv Chim Acta 69: 1742

    Google Scholar 

  19. Schmidbaur H, Bublak W, Huber B, Müller G (1986) Organomet 5: 1647

    Google Scholar 

  20. Probst T, Steigelmann O, Riede J, Schmidbaur H (1990) Angew Chem 102: 1471; Int, Ed Engl 29: 1397

    Google Scholar 

  21. Probst T, Steigelmann O, Riede J, Schmidbaur H (1991) Chem Ber 124: 1089

    Google Scholar 

  22. Vögtle F, Neumann P (1970) Tetrahedron 26: 5847

    Google Scholar 

  23. Boekelheide V (1983) Top Curr Chem 133: 87

    Google Scholar 

  24. Vögtle F (ed) (1990) Cyclophan-Chemie, Teubner, Stuttgart; (1993) Cyclophane chemistry, Wiley, Chichester

    Google Scholar 

  25. Keehn PM, Rosenfeld SM (ed) (1983) Cyclophanes I, II, Academic Press, New York, London

    Google Scholar 

  26. Koray AR, Ziegler ML, Blank NE, Haenel MW (1979) Tetrahedron Lett 26: 2465

    Google Scholar 

  27. Swann RT, Boekelheide V (1982) J Organomet Chem 231: 143

    Google Scholar 

  28. Elschenbroich C, Hurley J, Metz B, Massa W, Baum G (1990) Organomet 9: 889

    Google Scholar 

  29. Kasahara A, Izumi T, Yoshida Y, Shimizu I (1982) Bull Chem Soc Jpn 55: 1901

    Google Scholar 

  30. Osborne AG, Whiteley RH, Meads RE (1980) J Organomet Chem 193: 345

    Google Scholar 

  31. Elschenbroich C, Sebbach J, Metz B, Heikenfeld G (1992) J Organomet Chem 426: 173

    Google Scholar 

  32. Dorer B, Diebold J, Weyand O, Brintzinger HH (1992) J Organomet Chem 427: 245

    Google Scholar 

  33. Lang H, Seyferth D (1991) Organomet 10: 347

    Google Scholar 

  34. Gomez R, Cuenca T, Royo P, Pellinghelli MA, Tiripicchio A (1991) Organomet 10: 1505

    Google Scholar 

  35. Burk MJ, Colletti SL, Halterman RL (1991) Organomet 10: 2998

    Google Scholar 

  36. Brintzinger HH (1990) In: Dötz KH, Brintzinger RW (eds) Organic synthesis via organometallics, Vieweg, Braunschweig, p 33

    Google Scholar 

  37. Grossel MC, Goldspink MR, Hriljac JA, Weston SC (1991) Organomet 10: 851

    Google Scholar 

  38. Holwerda RA, Robison TW, Bartsch RA, Czech BP (1991) Organomet 10: 2652

    Google Scholar 

  39. Rao SJ, Milberg CI, Petter RC (1991) Tetrahedron Lett 32: 3775

    Google Scholar 

  40. Beer PD, Kocian O, Mortimer RJ, Spencer P (1992) J Chem Soc Chem Commun 602

    Google Scholar 

  41. Marr G, Rockett BW (1991) J Organomet Chem 416: 399

    Google Scholar 

  42. Silverthorn WE (1975) Adv Organomet Chem 13: 47

    Google Scholar 

  43. Pidcock A, Smith JD, Taylor BW (1967) J Chem Soc A 872

    Google Scholar 

  44. Fischer EO (1957) Angew Chem 69: 715

    Google Scholar 

  45. Fischer EO, Öfele K (1957) Chem Ber 90: 2532

    Google Scholar 

  46. Fischer EO, Öfele K, Essler H, Fröhlich W, Mortensen JP, Semmlinger W (1958) Chem Ber 91: 2763

    Google Scholar 

  47. Hudecek M, Toma S (1990) J Organomet Chem 393: 115

    Google Scholar 

  48. Schumann H, Arif AM, Richmond TG (1990) Polyhedron 9: 1677

    Google Scholar 

  49. Beswick PJ, Greenwood CS, Mowlem TJ, Nechvatal G, Widdowson DA (1988) Tetrahedron 44: 7325

    Google Scholar 

  50. Nicholls B, Whiting MC (1959) J Chem Soc 559

    Google Scholar 

  51. Wey HG, Betz P, Butenschön H (1991) Chem Ber 124: 465

    Google Scholar 

  52. Tate DP, Knipple WR, Augl JM (1962) Inorg Chem 1: 433

    Google Scholar 

  53. Werner H, Deckelmann K, Schönenberger U (1970) Helv Chim Acta 53: 2002

    Google Scholar 

  54. Gracey DEF, Jackson WR, Jennings WB, Mitchell TRB (1969) J Chem Soc (B): 1204

    Google Scholar 

  55. Müller P, Bernardinelli G, Jacquier Y (1988) Helv Chim Acta 71: 1328

    Google Scholar 

  56. Kündig EP, Perret C, Spichiger S, Bernardinelli G (1985) J Organomet Chem 286: 183

    Google Scholar 

  57. Traylor TG, Stewart KJ (1986) J Am Chem Soc 108: 6977

    Google Scholar 

  58. Tobe Y, Nakayama A, Kobiro K, Kakiuchi K, Odaira Y (1989) Chem Lett 1549

    Google Scholar 

  59. Tobe Y, Ueda K, Kakiuchi K, Odaira Y, Kai Y, Kasai N (1986) Tetrahedron 42: 1851

    Google Scholar 

  60. Ohno H, Horita H, Otsubo T, Sakata Y, Misumi S (1977) Tetrahedron Lett 265

    Google Scholar 

  61. Mori N, Takamori M (1986) Magnet Res Chem 24: 151

    Google Scholar 

  62. Takamori M, Mori N (1986) J Organomet Chem 301: 321

    Google Scholar 

  63. Cram DJ, Wilkinson DI (1960) J Am Chem Soc 82: 5721

    Google Scholar 

  64. Cram DJ, Dewhirst K (1959) J Am Chem Soc 81: 5963

    Google Scholar 

  65. Benedikt M, Schlögl K (1978) Monatsh Chem 109: 805

    Google Scholar 

  66. Kainradl B, Langer E, Lehner H, Schlögl K (1972) Liebigs Ann Chem 766: 16

    Google Scholar 

  67. Langer E, Lehner H (1973) Tetrahedron 29: 375

    Google Scholar 

  68. Langer E, Lehner H (1979) J Organomet Chem 173: 47

    Google Scholar 

  69. Christiani F, De Fillippo D, Deplano P, Devillanova F, Diaz A, Trogu EF, Verani G (1975) Inorg Chim Acta 12: 119

    Google Scholar 

  70. Mourad AF, Hopf H (1979) Tetrahedron Lett 1209

    Google Scholar 

  71. Burri K, Jenny W (1967) Helv Chim Acta 50: 1978

    Google Scholar 

  72. Norinder U, Tanner D, Wennerström O (1983) Tetrahedron Lett 24: 5411

    Google Scholar 

  73. Elschenbroich C, Schneider J, Wünsch M, Pierre JL, Baret P, Chautemps P (1988) Chem Ber 121: 177

    Google Scholar 

  74. Misumi S, Otsubo T (1978) Acc Chem Res 11: 251

    Google Scholar 

  75. Mitchell RH, Vinod TK, Bushnell GW (1990) J Am Chem Soc 112: 3487

    Google Scholar 

  76. Mitchell RH, Vinod TK, Bodwell GJ, Weerawarna KS, Anker W, Williams RV, Bushnell GW (1986) Pure Appl Chem 58: 15

    Google Scholar 

  77. Mitchell RH, Vinod TK, Bushnel GW (1985) J Am Chem Soc 107: 3340

    Google Scholar 

  78. Böckmann K, Vögtle F (1981) Chem Ber 114: 1065

    Google Scholar 

  79. Kamp D, Boekelheide V (1978) J Org Chem 43: 3470

    Google Scholar 

  80. Balbach BK, Koray AR, Okur A, Wülknitz P, Ziegler ML (1981) J Organomet Chem 212: 77

    Google Scholar 

  81. Koray AR, Ziegler ML (1980) J Organomet Chem 202: 13

    Google Scholar 

  82. Koray AR, Ziegler ML (1979) J Organomet Chem 169: C34

    Google Scholar 

  83. Vögtle F, Przybilla KJ, Mannschreck A, Pustet N, Büllesbach P, Reuter H, Puff H (1988) Chem Ber 121: 823

    Google Scholar 

  84. Schulz J, Bartram S, Nieger M, Vögtle F (1992) Chem Ber 125: 2553

    Google Scholar 

  85. Zaworotko MJ, Stamps RJ, Ledet MT, Zhang H, Atwood JL (1985) Organomet 4: 1697

    Google Scholar 

  86. Adams CM, Holt EM (1990) Organomet 9: 980

    Google Scholar 

  87. Elschenbroich C, Salzer A (1989) Organometallics VCH, Weinheim

    Google Scholar 

  88. Watts L, Fitzpatrick JD, Pettit R (1965) J Am Chem Soc 87: 3253

    Google Scholar 

  89. Efraty A (1977) Chem Rev 77: 691

    Google Scholar 

  90. Pettit R (1975) J Organomet Chem 100: 205

    Google Scholar 

  91. Jutzi P, Siemeling U, Müller A, Bögge H (1989) Organomet 8: 1744

    Google Scholar 

  92. Heilbronner E, Yang Z-z (1984) Top Curr Chem 115: 1

    Google Scholar 

  93. Gerson F (1984) Top Curr Chem 115: 57

    Google Scholar 

  94. Rajasekharan MV, Giezynski S, Ammeter JH, Oswald N, Michaud P, Hamon JR, Astruc D (1982) J Am Chem Soc 104: 2400

    Google Scholar 

  95. Thompson MR, Day CS, Day VW, Mink RI, Mutterties EL (1980) J Am Chem Soc 102: 2979

    Google Scholar 

  96. Timms PL (1981) In: Müller A, Diemann E (eds) Transition metal chemistry, Verlag Chemie, Weinheim, p 23

    Google Scholar 

  97. Kündig EP, Timms PL (1980) J Chem Soc Dalton 991

    Google Scholar 

  98. Timms PL (1969) J Chem Soc Chem Commun 1033

    Google Scholar 

  99. Elschenbroich C, Möckel R, Zennek U (1978) Angew Chem 90: 560; (1978) Angew Chem, Int Ed Engl 17: 531

    Google Scholar 

  100. Hope H, Bernstein J, Trueblood KN (1972) Acta Cryst Sect B28: 1733

    Google Scholar 

  101. Haaland A (1965) Acta Chem Scand 19: 41

    Google Scholar 

  102. Keulen E, Jellinek F (1966) J Organomet Chem 5: 490

    Google Scholar 

  103. Förster E, Albrecht G, Dürselen W, Kurras E (1969) J Organomet Chem 19: 215

    Google Scholar 

  104. Haenel MW, Flatow A (1979) Chem Ber 112: 249

    Google Scholar 

  105. Gantzel P, Trueblood KN (1965) Acta Cryst 18: 958

    Google Scholar 

  106. Sakurai H, Hoshi S, Kamiya A, Hosomi A, Kabuto C (1986) Chem Lett 1781

    Google Scholar 

  107. Elschenbroich C, Hurley J, Massa W, Baum G (1988) Angew Chem 100: 727; (1988) Angew Chem, Int Ed Engl 27: 684

    Google Scholar 

  108. Elschenbroich C, Schneider J, Prinzbach H, Fessner WD (1986) Organomet 5: 2091

    Google Scholar 

  109. Pierre JL, Baret P, Chautemps P, Armand M (1981) J Am Chem Soc 103: 2986

    Google Scholar 

  110. Cohen-Addad PC, Baret P, Chautemps P, Pierre JL (1983) Acta Cryst C39: 1346

    Google Scholar 

  111. Kang HC, Hanson AW, Eaton B, Boekelheide V (1985) J Am Chem Soc 107: 1979

    Google Scholar 

  112. Griffith EAH, Amma EL (1974) J Am Chem Soc 96: 743 and 5407

    Google Scholar 

  113. Kealy TJ, Pausen PL (1951) Nature 168: 1039

    Google Scholar 

  114. Rockett BW, Marr G (1991) J Organomet Chem 416: 327

    Google Scholar 

  115. Rinehart KL, Frerichs AK, Kittle PA, Westmann LF, Gustafson DH, Pruett RL, McMahon JE (1960) J Am Chem Soc 82: 4111

    Google Scholar 

  116. Pruett RL, Morehouse EL, Patent US (1962) 3,063,974; (1963) Chem Abstr 58: 11404

    Google Scholar 

  117. Hisatome M, Watanabe N, Sakamoto T, Yamakawa K (1977) J Organomet Chem 125: 79

    Google Scholar 

  118. Hisatome M, Kawajiri Y, Yamakawa K (1982) J Organomet Chem 226: 71

    Google Scholar 

  119. Lüttringhaus A, Kullich W (1958) Angew Chem 70: 438

    Google Scholar 

  120. Hisatome M, Kawajiri Y, Yamakawa K, Harada Y, Iitaka Y (1982) Tetrahedron Lett 23: 1713

    Google Scholar 

  121. Hisatome M, Watanabe J, Kawajiri Y, Yamakawa K, Iitaka Y (1990) Organomet 9: 497

    Google Scholar 

  122. Hisatome M, Watanabe J, Yamakawa K, Iitaka Y (1986) J Am Chem Soc 108: 1333

    Google Scholar 

  123. Watanabe J, Hisatome M, Yamakawa K (1987) Tetrahedron Lett 28: 1427

    Google Scholar 

  124. Hisatome M, Yamashita R, Watanabe J, Yamakawa K, Iitaka Y (1988) Bull Chem Soc Jpn 61: 1687

    Google Scholar 

  125. Hisatome M, Kawajiri Y, Yamakawa K, Mamiya K, Harada Y, Iitaka Y (1982) Inorg Chem 21: 1345

    Google Scholar 

  126. Astruc D, Batail P, Martin ML (1977) J Organomet Chem 133: 77

    Google Scholar 

  127. Batail P, Grandjean D, Astruc D, Dabard R (1976) J Organomet Chem 110: 91

    Google Scholar 

  128. Astruc D, Dabard R, Martin M, Batail P, Grandjean D (1976) Tetrahedron Lett 829

    Google Scholar 

  129. Jutzi P (1986) Chem Rev 86: 983

    Google Scholar 

  130. Jutzi P, Krallmann R, Wolf G, Neumann B, Stammler HG (1991) Chem Ber 124: 2391

    Google Scholar 

  131. Plitzko KD, Boekelheide V (1988) Organomet 7: 1573

    Google Scholar 

  132. Elzinga B, Rosenblum M (1982) Tetrahedron Lett 23: 1535

    Google Scholar 

  133. Bennett MA, Mathesen TW (1979) J Organomet Chem 175: 87

    Google Scholar 

  134. Bennett MA, Mathesen TW, Roberts GB, Smith AK, Tucker PA (1980) Inorg Chem 19: 1014

    Google Scholar 

  135. Domaille PJ, Ittel SD, Jesson JP, Sweigart DA (1980) J Organomet Chem 202: 191

    Google Scholar 

  136. Miura T, Horishita T, Mori N (1987) Organomet J Chem 333: 387

    Google Scholar 

  137. Swann RT, Hansen AW, Boekelheide V (1984) J Am Chem Soc 106: 818

    Google Scholar 

  138. Swann RT, Boekelheide V (1984) Tetrahedron Lett 25: 899

    Google Scholar 

  139. Rohrbach WD, Boekelheide V (1983) J Org Chem 48: 3673

    Google Scholar 

  140. Koelle U, Fuss B, Rajasekharan MV, Ramakrishna BL, Ammeter JH, Böhm MC (1984) J Am Chem Soc 106: 4152

    Google Scholar 

  141. Thompson SJ, Bailey PM, White C, Maitlis PM (1976) Angew Chem 88: 506; (1976) Angew Chem, Int Ed Engl 15: 490

    Google Scholar 

  142. Rybinskaya MI, Kudinov AR, Kaganovich VS (1983) J Organomet Chem 246: 279

    Google Scholar 

  143. Gill TP, Mann KR (1982) Organomet 1: 485

    Google Scholar 

  144. Laganis ED, Finke RG, Boekelheide V (1980) Tetrahedron Lett 21: 4405

    Google Scholar 

  145. Laganis ED, Voegeli RH, Swann RT, Finke RG, Hopf H, Boekelheide V (1982) Organomet 1: 1415

    Google Scholar 

  146. Swann RT, Hansen AW, Boekelheide V (1986) J Am Chem Soc 108: 3324

    Google Scholar 

  147. Cram DJ, Helgesen RC, Lock D, Singer LA (1966) J Am Chem Soc 88: 1324

    Google Scholar 

  148. Elzinga J, Rosenblum M (1983) Organomet 2: 1214

    Google Scholar 

  149. Nesmeyanov AN, Vol'kenau NA, Shiloutseva LS (1970) Dokl Akad Nauk SSSR 190: 857

    Google Scholar 

  150. Schirsch PFT, Boekelheide V (1981) J Am Chem Soc 103: 6873

    Google Scholar 

  151. Gill TP, Mann KR (1980) Inorg Chem 19: 3007

    Google Scholar 

  152. Gill TP, Mann KR (1981) J Organomet Chem 216: 65

    Google Scholar 

  153. Laganis ED, Finke RG, Boekelheide V (1981) Proc Natl Acad Sci USA 78: 2657

    Google Scholar 

  154. Koray AR (1981) J Organomet Chem 212: 233

    Google Scholar 

  155. Mori N, Takamori M (1985) J Chem Soc Dalton Trans (1985) 1661

    Google Scholar 

  156. Hiermeier J, Köhler FH, Müller G (1991) Organomet 10: 1787

    Google Scholar 

  157. Siemeling U, Jutzi P (1992) Chem Ber 125: 31

    Google Scholar 

  158. Atzkern H, Hiermeier J, Köhler FH, Steck A (1991) J Organomet Chem 408: 281

    Google Scholar 

  159. Atzkern H, Hiermeier J, Kanellakopulos B, Köhler FH, Müller G, Steigelmann O (1991) J Chem Soc Chem Commun 997

    Google Scholar 

  160. Miller JS, Calabrese JC, Epstein AJ, Bigelow RW, Zhang JH, Reiff WM (1986) J Chem Soc Chem Commun 1026

    Google Scholar 

  161. Broderick WE, Thompson JA, Day EP, Hoffmann BM (1990) Science 249: 401

    Google Scholar 

  162. Hopf H, Raulfs FW, Schomburg D (1986) Tetrahedron 42: 1655

    Google Scholar 

  163. Hopf H, Raulfs FW (1985) Israel J Chem 25: 210

    Google Scholar 

  164. Wilkinson G (1956) Org Synth 36: 31

    Google Scholar 

  165. Eich JJ, King RB (1965) Organomet Synth 1: 73

    Google Scholar 

  166. King RB, Bisnette MB (1964) Inorg Chem 3: 796

    Google Scholar 

  167. Hopf H, Dannheim J (1988) Angew Chem 100: 724; Int Ed Engl 27: 701

    Google Scholar 

  168. El-Tamany S, Raulfs FW, Hopf H (1983) Angew Chem 95: 631; Int Ed Engl 22: 633

    Google Scholar 

  169. Frim R, Raulfs FW, Hopf H, Rabinovitz M (1986) Angew Chem 98: 160; (1986) Angew Chem, Int Ed Engl 25: 174

    Google Scholar 

  170. Elschenbroich C, Spangenberg B, Mellinghoff H (1984) Chem Ber 117: 3165

    Google Scholar 

  171. Elschenbroich C, Schneider J, Mellinghoff H (1987) J Organomet Chem 333: 37

    Google Scholar 

  172. Schmidbaur H, Bublak W, Haenel MW, Huber B, Müller G, (1988) Z Naturforsch 43b: 702

    Google Scholar 

  173. Schmidbaur H, Bublak W, Huber B, Reber G, Müller G (1986) Angew Chem 98: 1108; (1986) Angew Chem, Int Ed Engl 25: 1089

    Google Scholar 

  174. Kawashima N, Kawashima T, Otsubo T, Misumi S (1978) Tetrahedron Lett 5025

    Google Scholar 

  175. Streitwieser Jr A, Müller-Westerhoff U (1968) J Am Chem Soc 90: 7364

    Google Scholar 

  176. Garbe JE, Boekelheide V (1983) J Am Chem Soc 105: 7384

    Google Scholar 

  177. Gleiter R (1992) Angew Chem 104: 29; (1992) Angew Chem Int Ed Engl 31: 27

    Google Scholar 

  178. Gleiter R, Karcher M, Ziegler ML, Nuber B (1987) Tetrahedron Lett 28: 195

    Google Scholar 

  179. Gleiter R, Treptow B, Kratz D, Nuber B (1992) Tetrahedron Lett 33: 1733

    Google Scholar 

  180. Brown CJ (1953) J Chem Soc 3278

    Google Scholar 

  181. Kai Y, Yasuoka N, Kasai N (1977) Acta Crystallogr B33: 754

    Google Scholar 

  182. Vögtle F, Schulz J, Nieger M (1991) Chem Ber 124: 1415

    Google Scholar 

  183. Schulz J, Nieger M, Vögtle F (1992) J Chem Soc Perkin Trans II, in press

    Google Scholar 

  184. Schulz J, Nieger M, Vögtle F (1991) Chem Ber 124: 2797

    Google Scholar 

  185. Koray AR, Zahn T, Ziegler ML (1985) J Organomet Chem 291: 53

    Google Scholar 

  186. Koray AR (1982) J Organomet Chem 232: 345

    Google Scholar 

  187. Hanson AW (1982) Cryst Struct Commun 11: 1019

    Google Scholar 

  188. Hanson AW (1962) Acta Cryst 15: 956

    Google Scholar 

  189. Cameron TS, Linden A, Sturge KC, Zaworotko MJ (1992) Helv Chim Acta 75: 294

    Google Scholar 

  190. Hunter AD, Shilliday L, Furey WS, Zaworotko MJ (1992) Organomet 11: 1550

    Google Scholar 

  191. de Meijere A, Reiser O, Stöbbe M, Kopf J, Adiwidjaja G, Sinnwell V, Kahn SI (1988) Acta Chem Scand A42: 611

    Google Scholar 

  192. Kai Y, Yasuoka N, Kasai N (1978) Acta Cryst B34: 2840

    Google Scholar 

  193. Benn R, Blank NE, Haenel MW, Klein J, Koray AR, Weidenhammer K, Ziegler ML (1980) Angew Chem 92: 45; (1980) Angew Chem, Int Ed Engl 19: 44

    Google Scholar 

  194. Blank NE, Haenel MW, Koray AR, Weidenhammer K, Ziegler ML (1980) Acta Cryst B36: 2054

    Google Scholar 

  195. Oike H, Kai Y, Miki K, Tanaka N, Kasai N (1987) Bull Chem Soc Jpn 60: 1993

    Google Scholar 

  196. Hanson AW (1982) Cryst Struct Commun 11: 901; b. Hanson AW (1982) Cryst Struct Commun 11: 1395

    Google Scholar 

  197. Hillman M, Fujita E, Dauplaise H, Kvick A, Kerber RC (1984) Organomet 3: 1170

    Google Scholar 

  198. Hisatome M, Yamashita R, Watanabe J, Yamakawa K (1988) Bull Chem Soc 61: 1391

    Google Scholar 

  199. Hisatome M, Watanabe J, Yamakawa K, Kozawa K, Uchida T (1984) J Organomet Chem 262: 365

    Google Scholar 

  200. Hisatome M, Kawajiri Y, Yamakawa K, Kozawa K, Uchida T (1982) J Organomet Chem 236: 359

    Google Scholar 

  201. Hisatome M, Hillman M (1981) J Organomet Chem 212: 217

    Google Scholar 

  202. Spaulding LD, Hillmann M, Williams GJB (1978) J Organomet Chem 155: 109

    Google Scholar 

  203. Laing MB, Trueblood KN (1965) Acta Cryst 19: 373

    Google Scholar 

  204. Jones ND, Marsh RE, Richards JH (1965) Acta Cryst 19: 330

    Google Scholar 

  205. Batail P, Grandjean D, Astruc D, Dabard R (1975) J Organomet Chem 102: 79

    Google Scholar 

  206. Paul IC (1966) J Chem Soc Chem Commun 377

    Google Scholar 

  207. Hillman M, Fujita E (1978) J Organomet Chem 155: 87

    Google Scholar 

  208. Seiler P, Dunitz JD (1979) Acta Cryst B35: 1068

    Google Scholar 

  209. Takusagawa F, Koetzle TF (1979) Acta Cryst B35: 1074

    Google Scholar 

  210. Hillman M, Nagy AG (1980) J Organomet Chem 184: 433

    Google Scholar 

  211. Nagy AG, Dezsi I, Hillman M (1976) J Organomet Chem 117: 55

    Google Scholar 

  212. Hillman M, Gordon B, Weiss AJ, Guzikowski AP (1978) J Organomet Chem 155: 77

    Google Scholar 

  213. Fujita E, Gordon B, Hillman M, Nagy AG (1981) J Organomet Chem 218: 105

    Google Scholar 

  214. Hisatome M, Watanabe J, Yamakawa K, Kozawa K, Uchida T (1985) Nippon Kagaku Kaishi 572

    Google Scholar 

  215. Heilbronner E, Maier JP (1974) Helv Chim Acta 57: 151

    Google Scholar 

  216. Boschi R, Schmidt W (1973) Angew Chem 85: 408; (1973) Angew Chem, Int Ed Engl 12: 402

    Google Scholar 

  217. Glotzmann C, Langer E, Lehner H (1974) Monatsh Chem 105: 354

    Google Scholar 

  218. Takemura T, Sato T (1976) Can J Chem 54: 3412

    Google Scholar 

  219. Sato T, Takemura T (1974) J Chem Soc Chem Commun 97

    Google Scholar 

  220. Mitchell RH, Vinod TK, Bodwell GJ, Bushnell GW (1989) J Org Chem 54: 5871

    Google Scholar 

  221. Elschenbroich C, Schneider J, Burdorf H (1990) J Organomet Chem 391: 195

    Google Scholar 

  222. Maricq MM, Waugh JS, Fletcher JL, McGlinchley MJ (1978) J Am Chem Soc 100: 6902

    Google Scholar 

  223. Steele BR, Sutherland RG, Lee CC (1981) J Chem Soc Dalton Trans 529

    Google Scholar 

  224. Mori N, Takamori M, Takemura T (1985) J Chem Soc Dalton Trans (1985) 1065

    Google Scholar 

  225. Ono I, Mita S, Kondo S, Mori N (1989) J Organomet Chem 367: 81

    Google Scholar 

  226. Elschenbroich C, Koch J, Schneider J, Spangenberg B, Schiess P (1986) J Organomet Chem 317: 41

    Google Scholar 

  227. Turbitt TD, Watts WE (1972) Tetrahedron 28: 1227

    Google Scholar 

  228. Solladié-Cavallo A (1985) Polyhedron 4: 901

    Google Scholar 

  229. Hegedus LS (1990) J Organomet Chem 380: 169

    Google Scholar 

  230. Kündig EP, Desobry V, Simmons DP, Wenger E (1989) J Am Chem Soc 111: 1804

    Google Scholar 

  231. Dickins PJ, Gilday JP, Negri JT, Widdowson DA (1990) Pure Appl Chem 62: 575

    Google Scholar 

  232. Kündig EP (1985) Pure Appl Chem 57: 1855

    Google Scholar 

  233. Kündig EP, Do Thi NP, Paglia P, Simmons DP, Spichiger S, Wenger E (1987) Organometallics in Organic Synthesis (ed de Meijere A, tom Dieck H), Springer

    Google Scholar 

  234. Stöbbe R, Reiser O, Thiemann T, Daniels RG, de Meijere A (1986) Tetrahedron Lett 27: 2353

    Google Scholar 

  235. Uemura M, Nishikawa N, Take K, Ohnishi M, Hirotsu K, Higuchi T, Hayashi Y (1983) J Org Chem 48: 2349

    Google Scholar 

  236. Card RJ, Trahanovsky WS (1980) J Org Chem 45: 2560

    Google Scholar 

  237. Card RJ, Trahanovsky WS (1980) J Org Chem 45: 2555

    Google Scholar 

  238. Schlögl K (1984) Top Curr Chem 125: 27

    Google Scholar 

  239. Langer E, Lehner H, Schlögl K (1973) Tetrahedron 29: 2473

    Google Scholar 

  240. Schlögl K (1989) Organometallics in Organic Synthesis 2 (ed Werner H, Erker G) Springer-Verlag

    Google Scholar 

  241. Langer E, Lehner H, Schlögl K (1973) Tetrahedron 29: 2473

    Google Scholar 

  242. Falk H, Reich-Rohrwig P, Schlögl K (1970) 26: 511

    Google Scholar 

  243. Schlögl K (1986) J Organomet Chem 300: 219

    Google Scholar 

  244. Hirschmann H (1983) Top Stereochem 14: 189

    Google Scholar 

  245. Schlögl K (1967) Top Stereochem 1: 39

    Google Scholar 

  246. Vögtle F, Neumann P (1973) Synthesis 85

    Google Scholar 

  247. Akabori S, Sato T, Hata K (1968) J Org Chem 33: 3277

    Google Scholar 

  248. Allinger NL, Gorden BJ, Hu S, Ford RA (1967) J Org Chem 32: 2272

    Google Scholar 

  249. Mitchell RH, Chaudhary M, Kamada T, Slowey PD, Williams RV (1986) Tetrahedron 42: 1741

    Google Scholar 

  250. vgl. Chelat-Komplexe: a. Creaser II, Harrowfield JM, Herlt AJ, Sargeson AM, Springborg J, Geue RJ, Snow MR (1977) J Am Chem Soc 99: 3181

    Google Scholar 

  251. Creaser II, Geue RJ, Harrowfield JM, Herlt AJ, Sargeson AM, Snow MR, Springborg J (1982) J Am Chem Soc 104: 6016

    Google Scholar 

  252. vgl. Carceranden: Cram DJ, Karbach S, Kim YH, Baczynskyj L, Kalleymeyn GW (1985) J Am Chem Soc 107: 2575

    Google Scholar 

  253. Cram DJ (1992) Nature 356: 29

    Google Scholar 

  254. Hillman M, Gordon B, Dudek N, Fajer R, Fujita E, Gaffney J, Jones P, Weiss AJ, Takagi S (1980) J Organomet Chem 194: 229

    Google Scholar 

  255. Hisatome M, Kawajiri Y, Watanabe J, Masahiro Y, Yamakawa K (1984) J Organomet Chem 266: 147

    Google Scholar 

  256. Bickelhaupt F, de Wolf WH (1988) Recl Trav Chim Pays-Bas 107: 459

    Google Scholar 

  257. Paquette LA, Kesselmayer MA, Underiner GE, House SD, Rogers RD, Meerholz K, Heinze J (1992) J Am Chem Soc 114: 2644

    Google Scholar 

  258. Gleiter R, Karcher M (1988) Angew Chem 100: 851; (1988) Angew Chem, Int Ed Engl 27: 840

    Google Scholar 

  259. Fagan PJ, Ward MD, Calabrese JC (1989) J Am Chem Soc 111: 1698

    Google Scholar 

  260. Ward MD, Fagan PJ, Calabrese JC, Johnson DC (1989) 111: 1719

    Google Scholar 

  261. Miller JS, Epstein AJ, Reiff WM (1988) Science 240: 40

    Google Scholar 

  262. Fürholz U, Bürgi HB, Wagner FE, Stebler A, Ammeter JH, Krausz E, Clark RJH, Stead MJ, Ludi A (1984) J Am Chem Soc 106: 121

    Google Scholar 

  263. Creutz C, Taube H (1973) J Am Chem Soc 95: 1086

    Google Scholar 

  264. Creutz C, Taube H (1969) J Am Chem Soc 91: 3988

    Google Scholar 

  265. Elschenbroich C, Bilger E, Metz B (1991) Organomet 10: 2823

    Google Scholar 

  266. Dong TY, Chou CY (1990) J Chem Soc Chem Commun 1332

    Google Scholar 

  267. Dong TY, Hendrickson DA, Pierpont CG, Moore MF (1986) J Am Chem Soc 108: 963

    Google Scholar 

  268. Elschenbroich C, Heck J (1979) J Am Chem Soc 101: 6773

    Google Scholar 

  269. Le Vanda C, Bechgaard K, Cowan DO, Mueller-Westerhoff UT, Eilbracht P, Candela GA, Collins RL (1976) J Am Chem Soc 98: 3181

    Google Scholar 

  270. Elschenbroich C, Heck J (1979) J Am Chem Soc 101: 6773

    Google Scholar 

  271. Boekelheide V (1986) Pure Appl Chem 58: 1

    Google Scholar 

  272. Fischer EO, Elschenbroich C (1970) Chem Ber 103: 162

    Google Scholar 

  273. Darensbourg MY, Mutterties EL (1979) J Am Chem Soc 100: 7425

    Google Scholar 

  274. Huttner G, Lange S (1972) Acta Cryst B28: 2049

    Google Scholar 

  275. Pierce DT, Geiger WE (1989) J Am Chem Soc 111: 7636

    Google Scholar 

  276. Finke RG, Voegeli RH, Laganis ED, Boekelheide V (1983) Organomet 2: 347

    Google Scholar 

  277. Hanson AW (1977) Acta Cryst B33: 2003

    Google Scholar 

  278. Plitzko KD, Rapko B, Gollas B, Wehrle G, Weakley T, Pierce DT, Geiger Jr WE, Haddon RC, Boekelheide V (1990) J Am Chem Soc 112: 6545

    Google Scholar 

  279. Hanson AW (1980) Cryst Struct Commun 9: 1243

    Google Scholar 

  280. Lacoste M, Rabaa H, Astruc D, Ardoin N, Varret F, Saillard JY, Le Beuze A (1990) J Am Chem Soc 112: 9548

    Google Scholar 

  281. Astruc D (1986) Acc Chem Res 19: 377

    Google Scholar 

  282. Hamon JR, Astruc D, Michaud P (1981) J Am Chem Soc 103: 758

    Google Scholar 

  283. Astruc D, Hamon JR, Althoff G, Roman E, Batail P, Michaud P, Mariot JP, Varret F, Cozak D (1979) J Am Chem Soc 101: 5445

    Google Scholar 

  284. Voegeli RH, Kang HC, Finke RG, Boekelheide V (1986) J Am Chem Soc 108: 7010

    Google Scholar 

  285. Plitzko KD, Wehrle G, Gollas B, Rapko B, Dannheim J, Boekelheide V (1990) J Am Chem Soc 112: 6556

    Google Scholar 

  286. Plitzko KD, Boekelheide V (1987) Angew Chem 99: 715; (1987) Angew Chem, Int Ed Engl 26: 700

    Google Scholar 

  287. Bowyer WJ, Geiger WE, Boekelheide V (1984) Organomet 3: 1079

    Google Scholar 

  288. Sato T, Torizuka K, Komaki R, Atobe H (1980) J Chem Soc Perkin II 561

    Google Scholar 

  289. Elschenbroich C, Sebbach J, Metz B (1991) Helv Chim Acta 74: 1718

    Google Scholar 

  290. Stoddart JF, Zarzycki R (1988) Recl Trav Chim Pays-Bas 107: 515

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Weber

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Schulz, J., Vögtle, F. (1994). Transition metal complexes of (strained) cyclophanes. In: Weber, E. (eds) Cyclophanes. Topics in Current Chemistry, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0025267

Download citation

  • DOI: https://doi.org/10.1007/BFb0025267

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-58257-1

  • Online ISBN: 978-3-540-48587-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics